STORMWATER CALCULATIONS

TOWN OF ZEBULON WAKE COUNTY, NC

STRONG ROCK ENGINEERING GROUP, PLLC PO BOX 99552, Raleigh, NC 27624

TABLE OF CONTENTS

Narrative	
Stormwater Calculations	
Stormwater Control Measure Sizing	4
SCM Orifice Sizing	9
NOAA Rainfall Data	
Drainage Area Maps	15
Pre-Development/Post Development Runoff	19
Nutrient Offset	

The project area of $1.38 \text{ ac} (60,200 \text{ ft}^2)$ is an undeveloped, grassed, and wooded lot. The development proposes building 12 residential lots. This will also include the necessary infrastructure (i.e., roadways, sidewalks, and public utilities) needed to facilitate the development.

The Town of Zebulon requires new residential development to meet NCDEQ stormwater regulations and requires that "Structural and non-structural BMPs shall be used to ensure there is no net increase in peak flow leaving the site from the pre-development conditions for the one-year, 24-hour storm". A stormwater wet pond, SCM #1, has been proposed to meet the requirements.

The proposed disturbed area for this project is 45,981 ft² (1.06 ac) with a total of 21,121 ft² (0.48 ac) of impervious areas. 46,412 ft² of the site, including all the impervious areas, is being captured by SCM #1. Pre onsite drainage goes to POI#1 while post onsite drainage goes to both POI#1 and POI#2.

The simple method and the SA/DA method were used for sizing the pond. AutoCAD Civil 3D and Storm Water Management Model (SWMM) were used for the design and routing of the pond.

For stormwater control measure sizing, we were more conservative in a way that instead of 35%, we assumed there is 50% of impervious area after site development. One reason to make this conservative approach is to consider 70% of each residential as the impervious area (rooftop and driveway).

Table 1 – SCM #1 Volumes

	Required	Provided
Water Quality Volume	2,539 cf	3,183 cf
Permanent Pool Volume	3,269 cf	3,309 cf
Forebay Volume	654 cf	678 cf

Summary

The post development discharge from the site at POI #1 and #2 for 1-year & 24-hour storm event is 17% less than the pre-development discharge at POI #1 meeting the requirements set for by both the Town of Zebulon and NCDEQ. The emergency spillway is not triggered during the 1-year& 24-hour storm event. Phosphorus and nitrogen have been reduced for this site.

Stormwater Control Measure Sizing

Project:	True Homes - Zebulon - 712	Arendell		
SCM	SCM 1 (Wet Pond)			
Date:	9/23/2021			
Rev.:				
Rev.2:				
		DETERMINE SCM TYPE AND I	DIMENSIONS	
Simple N	lethod: Pond Runoff Volume			
p	Simple Method - $V = 3630$ *F	Rv*Rd*A		
		Rd - Rainfall Depth (inches)=		1
		$R_V = 0.05 \pm 0.9 \times 10^{-10}$		
		Rv = Runoff Coefficient		
		la = Impervious fraction = Imper	vious drainage area	/ Total drainage area
		A = Drainage area (ac.) =		1.38 ac
	Impervious portion of drainag	ze area (ac.) =		0.70 ac
		, (,		
			la =	0.507
			Rv = 0.05 +0.9*Ia	
			Rv =	0.506
Water Q	uality Volume Required:	WQV = DV = 3630 *	Rv*Rd*A =	2,539 cf
Water Q	uality Volume Provided:			3,183 cf
MDC WE	T POND Sizing:			
Option 1	: HRT Method (Main Pool Hy	draulic Retention Time)		
	Vmp = 0.87*HRT/Ts*DV			
	Vmp	Volume of main pool		
	HRT	Hydraulic Residence Time (14 da	ays)	
	Ts	Time between storm events (5 c	lays)	
	DV	Design Volume (cf)		
Design Vo	olume from simple method			
	Vmp = 0.87 * (HRT/TS) * WQ	V	•	
	WQV =	2,539 cf	-	
	Vmp =	6,185 cf	J	
	Determine Min. SA of Main P	ool:		
	Davg = Vpp / SA = Vmp / Ar	np		
	Amp =	Vmp / Davg		
	Amp =	2,062 st	Choose Depth =	3 ft
	Plus 20% Forebay=		-	
	App =	2,474 st	J	
	5			
	VPP			
Da	$wg = \frac{1}{SA}$			
	.14			
W	nere: D _{avq} = A Vep = M	verage depth (teet) Jain pool volume at permanent pool	elevation (feet3)	
	SA = M	Aain pool area at permanent pool ele	evation (feet ²)	
3			1999 - 1999 1999 - 1999	1

(Per MDC, when calculating the average depth, only the main pool is considered. The forebay is excluded from the calculation.)

Option 2: SA/DA and Average Depth Method

Impervious Ratio =	
Choose Permanent Pool Avg Depth, Davg	=

0.507	
3	ft

From MDC 1, Table 1: Piedmont and Mountain SA/DA Table SA/DA (%) = DA (acres) =

Therefore, SA = DA * coefficient SA = SA (main pool) = Plus 20% Forebay = SA (total) =

Find Volume of Permanent Pool

1.38 ac
0.025 ac

1.81 %

0.025	ac
1,090	sf
218	sf
1,308	sf

Davg = Vpp/SA = Vmp/Amp		
Vmp = Davg * Amp		
Vmp =	3,269	cf
Plus 20% Forebay =	654	cf
Vpp =	3,923	cf

SUMMARY: Determine SCM Type and Volume/Area/Depth

Wet Ponc HRT Method 1:	Vpp (cf) =	6,185 App (sf) =	2,474 Davg =	3
Wet Ponc SA/DA Method 2:	Vpp (cf) =	3,923 App (sf) =	1,308 Davg =	3

NCDEQ Stormwater BMP Manual

Table 1: Piedmont and Mountain SA/DA Table (Adapted from Driscoll, 1986)

Percent		P	ermanent Pool A	Average Depth (ft)	
Impervious Cover	3.0	4.0	5.0	6.0	7.0	8.0
10%	0.51	0.43	0.37	0.30	0.27	0.25
20%	0.84	0.69	0.61	0.51	0.44	0.40
30%	1.17	0.81	0.84	0.72	0.61	0.56
40%	1.51	1.22	1.09	0.91	0.78	0.71
50%	1.79	1.47	1.31	1.13	0.95	0.87
60%	2.09	1.73	1.49	1.31	1.12	1.03
70%	2.51	2.04	1.80	1.56	1.34	1.17
80%	2.92	2.36	2.07	1.82	1.62	1.40
90%	3.25	2.64	2.31	2.04	1.84	1.59

Desired Depth =			3 ft
		Imp.	Ratio

Lower Limit =	0.5	1.79
Upper Limit =	0.6	2.09

Acutal Surface Area Ratio = 1.81

Temporary pool								
depth	1 ft							
(From BMP Orifice Sizing excel file)								
Main pool								
depth	3 ft							
From SCM Sizing Calcs-WP excel file)								

Elevation	
Ground elv	<mark>311.9</mark> ft
Distance to pond	<mark>130</mark> ft
slope	<mark>0.5%</mark>
dif elv	0.65 ft
SSMN	
Rim	<mark>313</mark> ft
Inv in	<mark>309.22</mark> ft
Inv out	<mark>309.03</mark> ft
Forebay	
main pool elv	310 ft
Depth	3.0 ft
Bottem elv	307.0 ft
Sediment storage in Forebay	
Sediment storage depth	12 inch
Sediment storage bottom elv (Entrance)	306 ft
Sediment storage bottom elv (Exit)	306.5 ft
Main pool	
main pool elv	310 ft
Depth	3 ft
bottom elv	307 ft
Sediment storage depth	6 inch
sediment storage bottom elv	306.5 ft

				Forebay			
	Desi	gned foreba	y (SCM #	‡1)		Design Criteria	
	Area (ft2)	Area (ac)	depth	elevation	Volume	volume	DASS
Bottom	73	0.0017	2	307	670	654	PA33
Тор	429	0.0098	5	310	070	054	

			Ν	Aain Pool				
	Designed main pool (SCM #1) Design Criteria							
	Area (ft2)	Area (ac)	depth	elevation	Volume	Volume	DACC	
Bottom	436	0.0100	2	307	2200	2 260	PASS	
Тор	1951	0.0448	5	310	5509	5,209		

Temporary pool									
	Area (ft2)	Area (ac)	depth	elevation	Volume	Volume	DASS		
Bottom	2380	0.0546	1	310	2102	2 5 2 0	PA33		
Тор	4061	0.0932	T	311	5105	2,559			

SCM Orifice Sizing

Orifice Sizing - BMP A WETPOND

$$Q = Cd \times A \times sqrt(2gh)$$

Total Volume to be discharged from Ponds (Q) = Depth of Storage (H) =

2,539	cf
1.0	

2 days to Discharge - 172,800 seconds

Q2 = 0.014693 cfs

$A2 = \frac{Q2}{Cd \times sqrt(2gh)}$

$$Cd = 0.60$$

 $g = 32.2$
 $H/3 = h = 0.33$

A2 = 0.0053 sf
$$A=\pi R^2 = \pi D^2/4$$

0.761 sq in
diameter **0.984** inches D=sqrt (4A/ π)

5 Days to Discharge - 432,000 seconds

Q5 = 0.005877 cfs

$$A5 = \underbrace{Q5}_{Cd \times sqrt(2gh)}$$

$$Cd = 0.60$$

$$g = 32.2$$

$$H/3 = h = 0.33$$

$$A5 = 0.002 \text{ sf}$$

$$0.304 \text{ sq in}$$

$$diameter 0.623 \text{ inches}$$

Orifice Cl	nosen	
diameter =	0.90	inches
A =	0.0044	sf
Q =	Cd x A x sq	rt(2 x g x h)
Q =	0.0123	cfs
time =	206736.30	seconds
Time =	2.39	days
•		•

NOAA Rainfall Data

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 2, Version 3 Location name: Zebulon, North Carolina, USA* Latitude: 35.8281°, Longitude: -78.3171° Elevation: 312.79 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Averaç	ge recurrenc	e interval (y	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.405 (0.369-0.445)	0.468 (0.428-0.513)	0.531 (0.486-0.581)	0.601 (0.549-0.658)	0.671 (0.609-0.733)	0.729 (0.659-0.796)	0.780 (0.701-0.852)	0.828 (0.740-0.905)	0.881 (0.781-0.964)	0.932 (0.819-1.02)
10-min	0.647 (0.590-0.710)	0.749 (0.685-0.820)	0.851 (0.778-0.930)	0.962 (0.877-1.05)	1.07 (0.971-1.17)	1.16 (1.05-1.27)	1.24 (1.12-1.35)	1.31 (1.17-1.43)	1.39 (1.24-1.53)	1.47 (1.29-1.61)
15-min	0.808 (0.738-0.888)	0.941 (0.861-1.03)	1.08 (0.984-1.18)	1.22 (1.11-1.33)	1.36 (1.23-1.48)	1.47 (1.33-1.61)	1.57 (1.41-1.71)	1.66 (1.48-1.81)	1.75 (1.56-1.92)	1.84 (1.62-2.02)
30-min	1.11 (1.01-1.22)	1.30 (1.19-1.42)	1.53 (1.40-1.67)	1.76 (1.61-1.93)	2.01 (1.82-2.19)	2.21 (2.00-2.42)	2.40 (2.16-2.62)	2.58 (2.30-2.82)	2.79 (2.48-3.06)	2.98 (2.62-3.27)
60-min	1.38 (1.26-1.52)	1.63 (1.49-1.79)	1.96 (1.79-2.14)	2.30 (2.09-2.51)	2.67 (2.43-2.92)	3.00 (2.71-3.28)	3.31 (2.97-3.61)	3.62 (3.23-3.95)	4.00 (3.55-4.38)	4.36 (3.83-4.78)
2-hr	1.62 (1.46-1.79)	1.91 (1.74-2.10)	2.33 (2.12-2.56)	2.77 (2.50-3.04)	3.28 (2.95-3.59)	3.75 (3.36-4.10)	4.20 (3.74-4.60)	4.67 (4.13-5.12)	5.30 (4.64-5.80)	5.88 (5.10-6.45)
3-hr	1.71 (1.55-1.90)	2.03 (1.85-2.25)	2.48 (2.25-2.74)	2.96 (2.68-3.27)	3.55 (3.19-3.90)	4.09 (3.66-4.50)	4.63 (4.11-5.09)	5.21 (4.58-5.72)	5.99 (5.21-6.58)	6.72 (5.79-7.41)
6-hr	2.05 (1.87-2.27)	2.43 (2.22-2.68)	2.97 (2.70-3.27)	3.56 (3.23-3.91)	4.28 (3.86-4.69)	4.95 (4.43-5.42)	5.63 (5.00-6.15)	6.35 (5.59-6.94)	7.35 (6.38-8.03)	8.30 (7.11-9.09)
12-hr	2.42 (2.20-2.66)	2.87 (2.62-3.15)	3.52 (3.21-3.86)	4.23 (3.85-4.64)	5.12 (4.63-5.60)	5.97 (5.35-6.51)	6.83 (6.06-7.44)	7.77 (6.81-8.46)	9.07 (7.83-9.88)	10.3 (8.78-11.3)
24-hr	2.86 (2.65-3.09)	3.46 (3.21-3.74)	4.39 (4.07-4.75)	5.14 (4.76-5.56)	6.21 (5.71-6.71)	7.08 (6.49-7.65)	8.01 (7.30-8.66)	9.01 (8.15-9.75)	10.4 (9.35-11.3)	11.6 (10.3-12.6)
2-day	3.31 (3.07-3.57)	3.99 (3.71-4.30)	5.02 (4.66-5.42)	5.86 (5.42-6.32)	7.03 (6.48-7.59)	7.99 (7.33-8.62)	9.00 (8.22-9.73)	10.1 (9.15-10.9)	11.6 (10.4-12.6)	12.9 (11.5-14.1)
3-day	3.51 (3.27-3.78)	4.22 (3.94-4.55)	5.29 (4.92-5.69)	6.15 (5.71-6.61)	7.36 (6.80-7.91)	8.34 (7.67-8.97)	9.37 (8.58-10.1)	10.5 (9.52-11.3)	12.0 (10.8-13.0)	13.3 (11.9-14.4)
4-day	3.71 (3.47-3.98)	4.46 (4.16-4.79)	5.56 (5.19-5.96)	6.44 (6.00-6.90)	7.68 (7.11-8.23)	8.69 (8.01-9.32)	9.74 (8.94-10.5)	10.9 (9.90-11.7)	12.4 (11.2-13.4)	13.7 (12.3-14.8)
7-day	4.32 (4.03-4.62)	5.16 (4.83-5.53)	6.36 (5.94-6.80)	7.32 (6.82-7.83)	8.65 (8.03-9.26)	9.72 (9.00-10.4)	10.8 (9.99-11.6)	12.0 (11.0-12.9)	13.7 (12.4-14.7)	15.0 (13.5-16.2)
10-day	4.93 (4.62-5.25)	5.87 (5.50-6.26)	7.13 (6.68-7.60)	8.12 (7.59-8.65)	9.48 (8.84-10.1)	10.6 (9.82-11.3)	11.7 (10.8-12.5)	12.8 (11.8-13.8)	14.5 (13.2-15.5)	15.7 (14.3-16.9)
20-day	6.61 (6.22-7.03)	7.83 (7.36-8.33)	9.34 (8.78-9.94)	10.5 (9.89-11.2)	12.2 (11.4-13.0)	13.5 (12.6-14.4)	14.8 (13.8-15.8)	16.2 (15.0-17.3)	18.1 (16.6-19.3)	19.5 (17.9-21.0)
30-day	8.21 (7.74-8.71)	9.68 (9.13-10.3)	11.4 (10.7-12.1)	12.7 (11.9-13.5)	14.4 (13.5-15.3)	15.8 (14.8-16.8)	17.2 (16.0-18.2)	18.5 (17.2-19.7)	20.4 (18.9-21.8)	21.8 (20.1-23.4)
45-day	10.4 (9.91-11.0)	12.3 (11.6-12.9)	14.2 (13.4-15.0)	15.6 (14.8-16.5)	17.6 (16.6-18.6)	19.1 (18.0-20.1)	20.5 (19.3-21.7)	22.0 (20.6-23.3)	24.0 (22.3-25.5)	25.4 (23.6-27.1)
60-day	12.5 (11.9-13.2)	14.7 (13.9-15.4)	16.8 (15.9-17.6)	18.4 (17.4-19.3)	20.5 (19.4-21.6)	22.1 (20.8-23.3)	23.6 (22.2-24.9)	25.1 (23.6-26.6)	27.1 (25.4-28.8)	28.6 (26.7-30.4)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 2, Version 3 Location name: Zebulon, North Carolina, USA* Latitude: 35.8281°, Longitude: -78.3171° Elevation: 312.79 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration				Avera	ge recurren	ce interval (y	/ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.86 (4.43-5.34)	5.62 (5.14-6.16)	6.37 (5.83-6.97)	7.21 (6.59-7.90)	8.05 (7.31-8.80)	8.75 (7.91-9.55)	9.36 (8.41-10.2)	9.94 (8.88-10.9)	10.6 (9.37-11.6)	11.2 (9.83-12.3)
10-min	3.88	4.49	5.11	5.77	6.41	6.96	7.44	7.87	8.36	8.81
	(3.54-4.26)	(4.11-4.92)	(4.67-5.58)	(5.26-6.31)	(5.83-7.01)	(6.30-7.61)	(6.69-8.12)	(7.03-8.60)	(7.42-9.16)	(7.74-9.66)
15-min	3.23 (2.95-3.55)	3.76 (3.44-4.12)	4.30 (3.94-4.71)	4.86 (4.44-5.32)	5.42 (4.92-5.92)	5.88 (5.32-6.42)	6.27 (5.64-6.84)	6.62 (5.92-7.24)	7.02 (6.22-7.68)	7.37 (6.48-8.08)
30-min	2.22	2.60	3.06	3.53	4.01	4.43	4.80	5.15	5.58	5.97
	(2.02-2.43)	(2.38-2.85)	(2.80-3.34)	(3.22-3.86)	(3.65-4.38)	(4.00-4.84)	(4.32-5.24)	(4.61-5.63)	(4.95-6.11)	(5.24-6.54)
60-min	1.38	1.63	1.96	2.30	2.67	3.00	3.31	3.62	4.00	4.36
	(1.26-1.52)	(1.49-1.79)	(1.79-2.14)	(2.09-2.51)	(2.43-2.92)	(2.71-3.28)	(2.97-3.61)	(3.23-3.95)	(3.55-4.38)	(3.83-4.78)
2-hr	0.808	0.957	1.16	1.38	1.64	1.87	2.10	2.34	2.65	2.94
	(0.732-0.895)	(0.872-1.05)	(1.06-1.28)	(1.25-1.52)	(1.48-1.80)	(1.68-2.05)	(1.87-2.30)	(2.07-2.56)	(2.32-2.90)	(2.55-3.23)
3-hr	0.570	0.676	0.825	0.987	1.18	1.36	1.54	1.73	1.99	2.24
	(0.517-0.634)	(0.616-0.748)	(0.749-0.912)	(0.893-1.09)	(1.06-1.30)	(1.22-1.50)	(1.37-1.70)	(1.53-1.90)	(1.74-2.19)	(1.93-2.47)
6-hr	0.343	0.406	0.496	0.594	0.714	0.826	0.940	1.06	1.23	1.39
	(0.312-0.379)	(0.371-0.448)	(0.452-0.547)	(0.539-0.653)	(0.644-0.783)	(0.741-0.905)	(0.834-1.03)	(0.933-1.16)	(1.07-1.34)	(1.19-1.52)
12-hr	0.201	0.238	0.292	0.351	0.425	0.495	0.567	0.645	0.753	0.857
	(0.183-0.221)	(0.218-0.261)	(0.267-0.321)	(0.319-0.386)	(0.384-0.465)	(0.444-0.540)	(0.503-0.618)	(0.565-0.702)	(0.650-0.820)	(0.729-0.934)
24-hr	0.119	0.144	0.183	0.214	0.259	0.295	0.334	0.375	0.435	0.484
	(0.111-0.129)	(0.134-0.156)	(0.170-0.198)	(0.198-0.232)	(0.238-0.279)	(0.270-0.319)	(0.304-0.361)	(0.340-0.406)	(0.390-0.472)	(0.430-0.526)
2-day	0.069	0.083	0.105	0.122	0.146	0.166	0.188	0.210	0.242	0.268
	(0.064-0.074)	(0.077-0.090)	(0.097-0.113)	(0.113-0.132)	(0.135-0.158)	(0.153-0.180)	(0.171-0.203)	(0.191-0.227)	(0.217-0.263)	(0.239-0.293)
3-day	0.049	0.059	0.073	0.085	0.102	0.116	0.130	0.145	0.167	0.185
	(0.045-0.052)	(0.055-0.063)	(0.068-0.079)	(0.079-0.092)	(0.094-0.110)	(0.107-0.125)	(0.119-0.140)	(0.132-0.157)	(0.150-0.181)	(0.165-0.201)
4-day	0.039	0.047	0.058	0.067	0.080	0.090	0.101	0.113	0.129	0.143
	(0.036-0.041)	(0.043-0.050)	(0.054-0.062)	(0.062-0.072)	(0.074-0.086)	(0.083-0.097)	(0.093-0.109)	(0.103-0.122)	(0.117-0.140)	(0.128-0.154)
7-day	0.026	0.031	0.038	0.044	0.051	0.058	0.065	0.072	0.081	0.089
	(0.024-0.027)	(0.029-0.033)	(0.035-0.040)	(0.041-0.047)	(0.048-0.055)	(0.054-0.062)	(0.059-0.069)	(0.066-0.077)	(0.074-0.088)	(0.080-0.096)
10-day	0.021	0.024	0.030	0.034	0.040	0.044	0.049	0.054	0.060	0.066
	(0.019-0.022)	(0.023-0.026)	(0.028-0.032)	(0.032-0.036)	(0.037-0.042)	(0.041-0.047)	(0.045-0.052)	(0.049-0.057)	(0.055-0.065)	(0.060-0.071)
20-day	0.014	0.016	0.019	0.022	0.025	0.028	0.031	0.034	0.038	0.041
	(0.013-0.015)	(0.015-0.017)	(0.018-0.021)	(0.021-0.023)	(0.024-0.027)	(0.026-0.030)	(0.029-0.033)	(0.031-0.036)	(0.035-0.040)	(0.037-0.044)
30-day	0.011	0.013	0.016	0.018	0.020	0.022	0.024	0.026	0.028	0.030
	(0.011-0.012)	(0.013-0.014)	(0.015-0.017)	(0.017-0.019)	(0.019-0.021)	(0.021-0.023)	(0.022-0.025)	(0.024-0.027)	(0.026-0.030)	(0.028-0.032)
45-day	0.010	0.011	0.013	0.014	0.016	0.018	0.019	0.020	0.022	0.024
	(0.009-0.010)	(0.011-0.012)	(0.012-0.014)	(0.014-0.015)	(0.015-0.017)	(0.017-0.019)	(0.018-0.020)	(0.019-0.022)	(0.021-0.024)	(0.022-0.025)
60-day	0.009	0.010	0.012	0.013	0.014	0.015	0.016	0.017	0.019	0.020
	(0.008-0.009)	(0.010-0.011)	(0.011-0.012)	(0.012-0.013)	(0.013-0.015)	(0.014-0.016)	(0.015-0.017)	(0.016-0.018)	(0.018-0.020)	(0.019-0.021)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Drainage Area Maps

Large scale terrain

Large scale aerial

ls Window Help

tudy Area Map

│ \$ | ■ ₩ ₩ Ⅲ № Σ | ☎ ቘ| ▶ ⋉ ♡ € < Ҳ ╩ │ ? ∞ Ο ∇ ◊ ╘ ⊢ ౮ ፼ ⋈ ፼ T

Pre/Post Development Runoff

Stormwater peak flow

Storm Water Management Model (SWMM) developed by EPA is used to simulate the rainfall-runoff process in this project.

SWMM uses a nonlinear reservoir model to estimate surface runoff produced by rainfall over a subcatchment. The model was first published by Chen and Shubinski (1971) and included in the original release of SWMM (Metcalf and Eddy et al., 1971a). This method is closer to the reality than rational or SCM curve number methods. Although SWMM can be manipulated to use rational or SCM methods, its better to use more realistic methods such as the kinematic wave approach for routing rainfall-runoff process.

> <u>Pre-development:</u>

The pre-development situation is simulated using SWMM model (**Error! Reference source not found.**), the peak flow before development is 0.35 cfs.

> <u>Post-development:</u>

Another SWMM model is built to simulate rainfall-runoff process for post-development situation in which 12 private lots, a road, and a wet pond were located. There are 11 subcatchments in the watershed in which runoff from 9 of them would flow to the pond, while runoff from 2 of them (S8 and S9) would be released to the "POI1". The area of these two subcatchments that are not flowing to the pond is about 14,000 sf.

After running the model, the runoff analyses in the outlets, links, and nodes are as follow.

POI#1 Inflow (Stormwater runoff at the first POI)

POI#2 Inflow (Stormwater runoff at the second POI)

Flow at the weir.

Flow at the orifice

Flow at the pipe that connects pond outlet to the stormwater manhole.

"POI#1" total inflow: Peak flow at POI#1 is 0.14 cfs while before development, it was 0.35 cfs.

<u>"POI#2" total inflow:</u> The peak flow goes to the stormwater manhole is 0.15 cfs. This is the section Point of Interest (POI2).

<u>"Pond" depth:</u> Initial depth of pond is 3 ft (main pool). Depth increase in pond up to 4.4 feet which is the weir elevation. There are some overflow through the weir in the pond outlet structure. After about 70 hours, depth of pond would goes down to the main pool level, means the temporary pool flow out to the outlet. Therefore, runoff volume drawdown time is less than 3 days.

It should <u>be mentioned that</u> there is no flow at the emerfenxy "spillway", means that the spillway is not activated based on the storm event. So, all runoffs are capture in the wet pond and released by the outlet structure to the stormwater pipeline manhole. So, the inflow at "POI#1" comes from two subcatchments that are not connected to the pond (S8 and S9), means the design SCM cannot influence on this overflow at this POI.

Considering both watershed POIs, the total peak flow in both outlets (post-development) is 0.29 cfs, which is 17% less than pre-development peak flow (0.35 cfs).

Nutrient Offset

Project Summary

Project Name: 712 Arendell-True home-Zebulon									
Project Area (ft ²):	Project Area (ft ²): 60,200 f				Submissic	n Date:			
Disturbed Area (ft ²):	45,981	ft ²	1.0556	acres					
County:	Wa	ike		Local Jurisdiction:	Zebu	lon			
Development Land Use Type:	Single Family	y Residential		Owner Type:	Priva	ite			
Development Activity Type:	Developm	ent - New	Designated	Downtown Area?	no	1			
Nutrient Management Watershed:	Neu	use		Subwatershed:	Neuse - 03	3020203			
Phosphorus Delivery Zone:	Neuse - Co	ontentnea	Nitrog	en Delivery Zone:	Neuse - Co	ntentnea			
Phosphorus Deli	very Factor (%):	100%		Nitrogen Deliv	very Factor (%):	100%			
Phosphorus Loading Rate Ta	rget (lb/ac/yr):	0.97	Nitroge	en Loading Rate Ta	rget (lb/ac/yr):	7.05			
Phosphorus Load Targe	t at Site (Ib/yr):	1.35	Ni	trogen Load Targe	t at Site (lb/yr):	9.74			
Phosphorus Load Leaving Site	w/SCMs (lb/yr):	1.17	Nitrogen	Load Leaving Site v	v/SCMs (lb/yr):	8.59			
P Offsite Buy-Down Threshold Loading	Rate (lb/ac/yr):	N/A	N Offsite B	Buy-Down Thresho	ld Loading Rate	N/A			
Total P Load Reduction	Needed (Ib/yr):	0.00	Total	N Load Reduction	Needed (lb/yr):	0.00			
P Load Treatment Balanc	e at Site (lb/yr):	-0.18	N Load	Treatment Balance	e at Site (lb/yr):	-1.16			
P Load Treatment Balance	at Lake (lb/yr):	-0.18	N Load 1	reatment Balance	at Lake (lb/yr):	-1.16			

Nutrient Export Summary	Pre-Project Whole Site Conditions	Post-Project Whole Site without SCMs	Post-Project Whole Site with SCMs	Post-Project SCM-Treated Area	Post-Project Untreated Area
Percent Impervious (for runoff calculation) (%)	0.0%	58.9%	58.9%	75.3%	3.6%
Percent Built-Upon Area (BUA) (%)	0.0%	50.7%	50.7%	65.7%	0.0%
Annual Runoff Volume (ft ³ /yr)	10,231	119,477	109,725	105,767	3,958
Annual Runoff % Change (relative to pre-D)	0%	1068%	972%		
Total Nitrogen EMC (mg/L)	2.48	1.31	1.26	1.23	1.92
Total Nitrogen Load Leaving Site (lb/yr)	1.58	9.74	8.59	8.11	0.47
Total Nitrogen Loading Rate (lb/ac/yr)	1.15	7.05	6.21	7.61	1.50
Total Nitrogen % Change (relative to pre-D)	0%	515%	442%		
Total Phosphorus EMC (mg/L)	1.07	0.18	0.17	0.15	0.66
Total Phosphorus Load Leaving Site (lb/yr)	0.68	1.35	1.17	1.00	0.16
Total Phosphorus Loading Rate (lb/ac/yr)	0.49	0.97	0.84	0.94	0.51
Total Phosphorus % Change (relative to pre-D)	0%	97%	71%		

SCM/Catchment Summary

SCM ID and Type	Volume Reduction (%)	TN Out (mg/L)	TP Out (mg/L)	TN Out (Ibs/ac/yr)	TP Out (Ibs/ac/yr)	TN Reduction (%)	TP Reduction (%)
Catchment 1	8.44%	1.23	0.15	7.61	0.94	12.44%	15.09%
101: Wet Pond per MDC	8.44%	1.23	0.15	7.61	0.94	12.44%	15.09%
102: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
103: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
Catchment 2	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
201: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
202: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
203: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
Catchment 3	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
301: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
302: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
303: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
Catchment 4	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
401: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
402: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
403: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
Catchment 5	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
501: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
502: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
503: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
Catchment 6	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
601: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
602: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%
603: NA	0.00%	0.00	0.00	0.00	0.00	0.00%	0.00%

SCM rows in red have a data entry error for the SCM that makes an error in the calculation.

Nutrient Management Strategy Watershed - Nutrient Offset Credit Reporting Form

Please complete and submit the following information to the local government permitting your development project to characterize it and assess the need to purchase nutrient offset credits. Contact and rule implementation information can be found online at:

http://deq.nc.gov/about/divisions/water-resources/planning/nonpoint-source-management/nutrient-offsetinformation

PROJECT INFORMATION

Applicant Name:						
Project Name:	712 Arendell-	712 Arendell-True home-Zebulon				
Project Address:	712 North Ar	/12 North Arendell Ave				
Date: (mm/dd/yyyy)		Development Land Use Type: Single Family Residential				
County:	Wake	Development Activity Type:		De	Development - New	
Pre-Project Built-Upon Area %:		0.00%	Project Latitude:		0	
Post-Project Built-Upon Area %:		50.68%	Project Longitude:		0	

WATERSHED INFORMATION

Nutrient Management Watershed:	Neuse	N Offsite Threshold Rate (lb/ac/yr):	N/A
Subwatershed:	Neuse - 03020203	P Offsite Threshold Rate (lb/ac/yr):	N/A
Nitrogen Delivery Zone:	Neuse - Contentnea	Nitrogen Delivery Factor:	100%
Phosphorus Delivery Zone:	Neuse - Contentnea	Phosphorus Delivery Factor:	100%

NUTRIENT OFFSET REQUEST

Nitrogen Load Offset Needs

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(L) (Where Applicable)
Untreated Loading Rate (lbs/ac/yr)	Treated Loading Rate (lbs/ac/yr)	Loading Rate Target (lbs/ac/yr)	Reduction Need (lbs/ac/yr) B - C	Project Size (ac)	Offset Duration (yrs)	Delivery Factor (%)	State Buy Down Amount (lbs) D * E * F * G	Local Gov't Buy Down Amount (lbs)
7.05	6.21	7.05	-0.84	1.3820	30	100%	0.00	

Phosphorus Load Offset Needs

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(L) (Where Applicable)
Untreated Load Rate (lbs/ac/yr)	Treated Load Rate (lbs/ac/yr)	Loading Rate Target (lbs/ac/yr)	Reduction Need (Ibs/ac/yr) B - C	Project Size (ac)	Offset Duration (yrs)	Delivery Factor (%)	State Buy Down Amount (lbs) D * E * F * G	Local Gov't Buy Down Amount (lbs)
0.97	0.84	0.97	-0.13	1.3820	30	100%	0.00	

LOCAL GOVERNMENT AUTHORIZATION

Local Government Name: Zebulon						
Staff Name:		Phone:				
Staff Email:		Date:				
Local Government Authorizing Signature	::					