Stormwater Impact Analysis

For

1915 & 1917 Old Bunn Road

Zebulon, North Carolina 27597

Submitted to:

Wake County Environmental Services Department Water Quality Division, Watershed Management Section

336 Fayetteville St. Raleigh, North Carolina 27602

Prepared for:

Eastwood Homes

7101 Creedmoor Road, Suite 115 Raleigh, North Carolina 27610

Prepared by:

PASST DESIGN GROUP, PA

Engineering | Consulting

Date: March 17th, 2025 PDG Project No: 673-23

Table of Contents

I.	Introduction	4
II.	Project Data	4
III.	Site History and Site Description	4
IV.	Project Description	5
V.	Quantifying Land Disturbance and Changes in Impervious Surface	5
VI.	Watershed Protection Overlay	5
VII.	Streams	5
VIII.	Floodplains and Flood Hazard Soils	5
IX.	Applicable Requirements	5
	Peak Runoff Requirements and Development Standards for High-density Development	5
	Downstream Impact Analysis (DIA)	6
	Water Quality (nitrogen, phosphorous, and TSS) Requirements	7
	Nitrogen	7
	Phosphorous	7
	TSS	7
	On-site Percentage Removal for Nitrogen and Phosphorous	7
	TMDLs	7
х.	Methodology	7
XI.	Conclusion	8
XII.	Wake County Stormwater Tool	9
XIII.	NOAA Precipitation Frequency & Intensity Charts	10
XIV.	Web Soil Survey and HSG Classifications	11
XV.	Wake County Soil Survey Map	12
XVI.	USGS Map	13
XVII.	FEMA FIRM Map	14
XVIII.	SCM Design Calculations	15
XIX.	Drainage Area Maps	16

3

I. Introduction

Pabst Design Group, PA (PDG) of Raleigh, NC has been contracted by Eastwood Homes (the Client) to provide this analysis, along with supporting calculations, to Wake County for their review. The information contained within will assist Wake County with their evaluation of site development for the subject property as it relates to specific Town of Zebulon and State regulations.

II. Project Data

Project Data Table	
Project Name:	Bennett Bunn Plantation Subdivision
Parcel Identification Number(s):	2715-29-0916 (1915 Old Bunn Road)
	2716-21-5371 (1917 Old Bunn Road)
Parcel Address(es):	1915 & 1917 Old Bunn Road, Zebulon, NC 27597
Previous Rezoning or Site Plan Case Number(s):	1555968
Drainage Basin:	Upper Moccasin Creek
River Basin:	Neuse
Pre-Developed Impervious Area:	112,840 Square Feet
Post-Developed Impervious Area:	2,606,694 Square Feet
Total Maximum Daily Discharge Limit (TMDLs):	None
Watershed Protection Overlay:	None

III. Site History and Site Description

Based on Wake County GIS Aerials from 1999, the primary land cover is impervious and open space.

Applicable baseline dates that must be considered for peak runoff, water quality, and watershed protection overlay as they relate to historical development on the site are as follows:

- 1. Watershed protection overlay requirements, not applicable,
- 2. 2- and 10-year peak flow requirements, not applicable,
- 3. 1-year peak flow requirements, not applicable,
- 4. Nitrogen requirements, **not applicable**.

The subject property, which is located at 1915 & 1917 Old Bunn Road in Zebulon, North Carolina, and is zoned Residential-30 (R-30) and will be rezoned to Planned Development (PD) District. The property on the existing parcels are listed as two Heated SF Conventional Frame with several existing buildings. Six discharge points are used as the points of analysis.

For the purpose of this report, these site conditions are herein referred to as **pre-developed site conditions**.

IV. Project Description

The proposed development includes the construction of 622 residential lots, as well as associated driveways and parking lots. Infrastructure improvements include, but are not limited to, the construction of sanitary sewer services, water services, stormwater conveyance, and stormwater control measure(s). Approximately 2,493,854.26 SF of impervious is being added to the site for a final built upon area of 37.5%. The project will disturb approximately 159.72-acres.

The site will be graded to the maximum extent possible to maintain the existing drainage patterns of the site. Most of the runoff will be treated by the six proposed wet ponds. The controlled runoff will discharged into the perennial stream which flows through the site from south to north.

Refer to plan sheet C-4.0 within the submitted administrative site review plans and the drainage area maps included within this report.

For the purpose of this report, these site conditions are herein referred to as **post-developed site conditions**.

V. Quantifying Land Disturbance and Changes in Impervious Surface

As noted within Section III above, the property is currently open space and impervious. Land disturbance associated with building and site improvements will total 159.72-acres. There is 112,840 SF of existing impervious on site, and the proposed impervious surface totals 2,606,694.26 SF onsite, with a final built upon area of 37.5%. Refer to plan sheets C-1.0 and C-4.0 within the submitted administrative site review plans for reference. The proposed development does not meet any exemption thresholds based on land disturbance or impervious surface.

VI. Watershed Protection Overlay

The subject site is **not** located within a watershed protection overlay district per the ToZ's Official Zoning Map.

VII. Streams

There are two streams on or within 150 feet of the property boundary, per wake county soil survey map and USGS Quad map.

VIII. Floodplains and Flood Hazard Soils

According to FEMA's Flood Insurance Rate Map, identified by Map Number 3720271600L, the subject site is located within a Flood Zone. There are flood hazard soils located on site per Wake County Soil Survey and are located within the stream buffered area. However, no grading or development is planned within those areas.

IX. Applicable Requirements

Peak Runoff Requirements and Development Standards for High-density Development

Per the Town of Zebulon's Unified Development Ordinance (UDO) Section 151.35.D.(4):

- (1) The measures shall control and treat runoff from the first inch of rain. Runoff volume drawdown time shall be a minimum of 48 hours, but not more than 120 hours.
- (2) All structural stormwater treatment systems used to meet these requirements shall be designed to have a minimum of 85% average annual removal for total suspended solids (TSS).
- (3) All development and redevelopment projects shall provide permanent on-site BMPs to lower the nitrogen export amounts as part of the stormwater management plan and accompany the land-disturbing plan submittal. BMPs are to be in accordance with and as specified in the Design Manual.
- (4) Structural and non-structural BMPs shall be used to ensure there is no net increase in peak flow leaving the site from the pre-development conditions for the one-year, 24-hour storm. Runoff volume drawdown time shall be a minimum of 48 hours, but not more than 120 hours.
- (5) General engineering design criteria for all projects shall be in accordance with 15A NCAC 2H .1008(c), as explained in the Design Manual.
- (6) All development and redevelopment shall be located outside the riparian buffer zone and the flood protection zone. These zones shall be in accordance with the following provisions:
- (a) Except where other applicable buffer standards are more restrictive, the riparian buffer zone shall extend a minimum of 50 feet landward of all perennial and intermittent surface waters. The most restrictive standards shall apply.
 - (b) The riparian buffer zone shall remain undisturbed unless otherwise permitted by this section.
- (c) The flood protection zone shall extend throughout the FEMA 100-year floodplain as identified on the current Flood Insurance Rate Map (FIRM) published by FEMA. The flood protection zone shall remain undisturbed unless otherwise permitted by this section.
- (d) No development or redevelopment is permitted within the riparian buffer zone or the flood protection zone except for stream bank or shoreline restoration or stabilization, water dependent structures, and public or private projects such as road crossings and installations, utility crossings and installations, and greenways, where no practical alternatives exist.
- (e) Permitted activities within the riparian buffer zone and the flood protection zone shall minimize impervious coverage, direct runoff away from surface waters to achieve diffuse flow, and maximize the utilization of non-structural BMPs.
- (f) Where the riparian buffer zone and the flood protection zone both are present adjacent to surface waters, the more restrictive shall apply.
- (7) The approval of the stormwater permit shall require an enforceable restriction on property usage that runs with the land, such as recorded deed restrictions or protective covenants, to ensure that future development and redevelopment maintains the site consistent with the approved project plans. Buffer widths and locations shall be clearly delineated on all plans, final plat, and as-builts.

There's no increase in peak flow for DA-2 through DA-6, and therefore detention is not required. 6 wet ponds were provided to provide TSS removal only. DA-1 has a large watershed of 2,568 ac and therefore was assumed to have no increase between pre and post conditions. Refer to plan sheet(s) C-4.0 within the submitted plans, as well as the pre- and post-development drainage area maps within this report for reference.

Downstream Impact Analysis (DIA)

The Town of Zebulon requires a DIA to be performed with the 10% rule.

- (A) Downstream impact analysis.
- (1) The downstream impact analysis must be performed in accordance with the "10% rule," and a copy of the analysis must be provided with the permit application. The purpose of the downstream impact analysis is to

Pabst Design Group, PA 107 Fayetteville St, Suite 200 Raleigh, NC 27601

1915 & 1917 Old Bunn Road Zebulon, North Carolina 27597

PDG Project No.: 673-23

determine if the project will cause any impacts on flooding or channel degradation downstream of the project site. The analysis must include the assumptions, results and supporting calculations to show safe passage of post-development design flows downstream. This analysis shall be performed at the outlet(s) of the site, and downstream at each tributary junction to the point(s) in the conveyance system where the area of the portion of the site draining into the system is less than or equal to 10% of the total drainage area above that point.

(2) The typical steps in the application of the 10% rule are:

(a) Using a topographic map, determine the point downstream where the proposed site equals 10% of the total drainage area, called the 10% point. Identify all tributary junctions between the downstream site boundary and the 10% point. All points identified, as well as the outlet of the site, are known as 10% rule comparison points.

The entire drainage area to the POI is 2,568 acres and the area in review is approximately 1,620 acres and the project site encompasses 162.32 acres. Therefore, the DIA is not required for this project given the size of the watershed.

Water Quality (nitrogen, phosphorous, and TSS) Requirements

Nitrogen

Subject site is not subject to nitrogen removal.

Phosphorous

Subject site is not subject to phosphorous removal.

TSS

Subject site is required to have a minimum of 85% average removal for TSS per Town of Zebulon's UDO Section 151.35.

On-site Percentage Removal for Nitrogen and Phosphorous

Subject site is located within the Upper Neuse River Basin and is not subject to on-site percentage removal for nitrogen and phosphorous.

TMDLs

Subject site is located within the Upper Neuse River Basin and is not subject to TMDLs.

X. Methodology

 Runoff Rates for pre-development and post-development for DA-2 to DA-6 were calculated using Wake County's Stormwater Design Tool.

- Drainage area has runoff curve number calculated for it based on cover type within the drainage area, as
 per Wake County's Stormwater Design Tool. Land cover for areas not surveyed is approximated based on
 Wake County GIS and aerial imagery. The residential lots were assumed to have 40% of impervious and 60%
 pervious.
- A time of concentration of 5 minutes was assumed for DA-2 through DA-6. The time of concentration for DA-1 was not calculated, as it was assumed that there would be no increase in runoff between pre- and post-development conditions due to the size of the watershed.
- Hydrologic Soil Groups are classified based on and USDA Web Soil Survey, provided in Section XIV of this report. Soil Group delineation provided by Wake County GIS and USDA Web Soil Survey.
- Boundary and topographic survey information was provided by Newcomb Land Surveyors, LLC.

XI. Conclusion

PDG's peak runoff analyses compared the pre-, post-development conditions at each point of analysis for stormwater runoff leaving the site for the 1-yr storm. There's no increase in peak flow for DA-2 through DA-6. Analysis for DA-1 will not be provided given the size of the drainage area and will be assumed to have no increase between pre and post-development condition.

Summary results are below.

Peak Flow Summary Table for the 1-year Storm Event

1-year	Pre-Development (cfs)	Post w/out Detention (cfs)	% Increase
DA-1	-	-	-
DA-2	2.68	0	Decrease
DA-3	6.88	0.15	Decrease
DA-4	2.95	0.14	Decrease
DA-5	4.72	3.45	Decrease
DA-6	2.95	0.58	Decrease

Pabst Design Group, PA 107 Fayetteville St, Suite 200 Raleigh, NC 27601

1915 & 1917 Old Bunn Road Zebulon, North Carolina 27597 PDG Project No.: 673-23

XII. Wake County Stormwater Tool

SITE DATA

		Project Information
	Project Name:	Bennett Bunn Plantation Subdivision
	Applicant:	Billy Guillet
	Applicant Contact Name:	Eastwood Homes, Inc
	Applicant Contact Number:	919-675-8769
	Contact Email:	bguillet@eastwoodhomes.com
	Municipal Jurisdiction (Select from dropdown menu):	Zebulon
	Last Updated:	Monday, March 17, 2025
		Site Data:
	Total Site Area (Ac):	159.72
	Existing Lake/Pond Area (Ac):	3.07
	Proposed Disturbed Area (Ac):	159.72
	Impervious Surface Area (acre):	59.84
Type of Development (Select from Dropdown menu):		Residential
	Percent Built Upon Area (BUA):	37%
	Project Density:	High
	Is the proposed project a site expansion?	No
	Number of Drainage Areas on Site:	6
	1-Year, 24-Hour Storm (inches) (See NOAA Website):	2.85
NOAA	2-Year, 24-Hour Storm (inches) (See NOAA Website):	3.45
	10-Year, 24-Hour Storm (inches) (See NOAA Website):	5.14
		Lot Data (if applicable):
	Total Acreage in Lots:	126.06
	Number of Lots:	617
	Average Lot Size (SF):	8899.80
	Total Impervious Surface Area on Lots (SF):	2196469.44
	Average Impervious Surface Area Per Lot (SF):	3559.92
	Stormwater Narrative (limit to 1,200	characters - attach additional pages with submittal if necessary):

Please note that, per our meeting with Carrie Mitchell on 1/17/2025, DA-1 will not be analyzed. It is assumed that there will be no increase in runoff between pre- and post-development conditions due to the size of the watershed (2,568 acres). As a result, no data will be entered in the DA-1 tab, and the calculations in this sheet may not reflect DA-1.

SITE DATA Page 1

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

AND USE & SITE DATA	P	RE-DEVE	LOPMEN	١T	P	POST-DEVELOPMENT					
Drainage Area (Acres)=											
Site Acreage within Drainage=											
One-year, 24-hour rainfall (in)=				2.							
Two-year, 24-hour rainfall (in)=				3.							
Ten-year, 24-hour storm (in)=				5.	14						
Total Lake/Pond Area (Acres)=											
Lake/Pond Area not in the Tc flow path (Acres)=											
Site Land Use (acres):	Α	В	С	D	A B C I						
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair condition											
Open Space, Good Condition											
Reforestation (in dedicated OS)											
Connected Impervious											
Disconnected Impervious											
TE FLOW	PR	RE-DEVE	.OPMEN	I T _c	POS	ST-DEVE	LOPMEN	ır Tc			
Sheet Flow											
Length (ft)=											
Slope (ft/ft)=											
Surface Cover:											
n-value=											
T _t (hrs)=											
Snallow Flow Length (ft)=											
Lengtn (π)= Slope (ft/ft)=											
Siope (tr/tt)= Surface Cover:											
Average Velocity (ft/sec)=											
Average velocity (tr/sec)= T _t (hrs)=											
Channel Flow 1											
Length (ft)=											
Slope (ft/ft)=											
Cross Sectional Flow Area (ft²)=											
Wetted Perimeter (ft)=											
Channel Lining:											
n-value=											
Hydraulic Radius (ft)=											
Average Velocity (ft/sec)=		#VA	LUE!			#VA	LUE!				
T _t (hrs)=			LUE!		#VALUE!						
Channel Flow 2											
Length (ft)=											
Slope (ft/ft)=											
Cross Sectional Flow Area (ft²)=											
Wetted Perimeter (ft)=											
Channel Lining:											
n-value=											
Hydraulic Radius (ft)=											
Average Velocity (ft/sec)=			LUE!				LUE!				
T _t (hrs)=		#VA	LUE!			#VA	LUE!				
Channel Flow 3											
Length (ft)=											
Slope (ft/ft)=											
Cross Sectional Flow Area (ft ²)=											
Wetted Perimeter (ft)=											
Channel Lining:											
n-value=											
Hydraulic Radius (ft)=											
Average Velocity (ft/sec)=							LUE!				
T _t (hrs)=		#\/^	LUE!				LUE!				
ESULTS	_				-						
Composite Curve Number=	Р	RE-DEVE	LOPMEN	41	P	OST-DEV	ELOPME	:N I			
Disconnected Impervious Adjustment											
Disconnected impervious area (acre) =											
CN _{adjusted (1-year)} =											
High Density Only											
Volume of runoff from 1" rainfall for DA											
HIGH DENSITY REQUIREMENT = (ft3) =											
1-year, 24-hour storm (Peak Flow)											
Runoff (inches) = Q* _{1-year} =											
Volume of runoff (ft ³) =											
Volume change (ft ³) =											
Peak Discharge (cfs)= ○ =											
Peak Discharge (cfs)= Q _{1-year} =											
2-year, 24-hour storm (LID)											
2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =											
2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) =											
2-year, 24-hour storm (LID) Runoff (inches) = $Q^*_{2 \cdot pear}$ Volume of runoff (R^2) = Peak Discharge (cfs) = $Q_{2 \cdot pear}$											
2-year, 24-hour storm (LID) Runoff (inches) = $Q^*_{2\cdot year}$ Volume of runoff ($\hat{\Pi}^*$) = Peak Discharge (cfs)= $Q_{2\cdot year}$ = 10-year, 24-hour storm (DIA)											
2-year, 24-hour storm (LID) Runoff (inches) = $Q^*_{2 \cdot pear}$ Volume of runoff (R^2) = Peak Discharge (cfs) = $Q_{2 \cdot pear}$											

DA1 Page 1

* Proje	ect Name:		Be	nnett Buni	n Plantatio	n Subdivis	ion		
WAKE STORM		INAGE A	REA 2 T CALCU	LATIONS					
LAND USE & SITE DATA	ITE DATA PRE-DEVELOPMENT POST-DEVELOPMENT								
Drainage Area (Acres)=			.07	-			00		
Site Acreage within Drainage=		2.	.07			0.	00		
One-year, 24-hour rainfall (in)=				2.	85				
Two-year, 24-hour rainfall (in)=				3.	45				
Ten-year, 24-hour storm (in)=				5.	14				
Total Lake/Pond Area (Acres)=		0.	.00			0.	00		
Lake/Pond Area not in the Tc flow path (Acres)=		0.	.00			0.	00		
Site Land Use (acres):	Α	В	С	D	А	В	С	D	
Pasture	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Woods, Poor Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Woods, Fair Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Woods, Good Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Open Space, Poor Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Open Space, Fair condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Open Space, Good Condition	0.00	0.00	2.07	0.00	0.00	0.00	0.00	0.00	
Reforestation (in dedicated OS)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Connected Impervious	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Disconnected Impervious	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
SITE FLOW	PR	E-DEVE	OPMENT	T _c	POST-DEVELOPMENT To				
Sheet Flow									
Length (ft)=		0.	.00			0.	00		
Slope (ft/ft)=		0.0	000			0.0	000		
Surface Cover:	Pa	aved, Grave	el, or Bare S	ioil	Pa	aved, Grave	al, or Bare S	ioil	
n-value=		0.0	011			0.0	011		
T _t (hrs)=									
Shallow Flow									
Length (ft)=		0.	.00			0.	00		
Slope (ft/ft)=		0.0	000			0.0	000		
Surface Cover:		Unp	aved			Unp	aved		
Average Velocity (ft/sec)=									
T _t (hrs)=									

SITE FLOW	PRE-DEVELOPMENT I _c	POST-DEVELOPMENT IC
Sheet Flow		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
Surface Cover:	Paved, Gravel, or Bare Soil	Paved, Gravel, or Bare Soil
n-value=	0.011	0.011
T _t (hrs)=		
Shallow Flow		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
Surface Cover:	Unpaved	Unpaved
Average Velocity (ft/sec)=	5.42.12	5,4,2,2
T _t (hrs)=		
Channel Flow 1		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
	0.000	0.000
Cross Sectional Flow Area (ft²)=	***	1.11
Wetted Perimeter (ft)=	0.00	0.00
Channel Lining:	Asphalt	Asphalt
n-value=	0.016	0.016
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 2		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
Cross Sectional Flow Area (ft ²)=	0.00	0.00
Wetted Perimeter (ft)=	0.00	0.00
Channel Lining:	Concrete, finished	Asphalt
n-value=	0.012	0.016
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
Cross Sectional Flow Area (ft²)=	0.00	0.00
	0.00	0.00
Wetted Perimeter (ft)= Channel Lining:	Concrete, finished	Asphalt
n-value=	0.012	0.016
Hydraulic Radius (ft)=	0.012	0.010
Average Velocity (ft/sec)=		
T ₁ (hrs)=		
Tc (hrs)=	0.08	0.08
RESULTS		
Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
	74	POST-DEVELOPMENT
Disconnected Impervious Adjustment		POST-DEVELOPMENT
Disconnected impervious area (acre) =		POST-DEVELOPMENT
Disconnected impervious area (acre) = $CN_{adjusted (1.year)}$ =		POST-DEVELOPMENT
Disconnected impervious area (acre) =		POST-DEVELOPMENT
Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA		POST-DEVELOPMENT
Disconnected impervious area (acre) =		POST-DEVELOPMENT
Disconnected impervious area (acre) = CN aquated (1-year) = High Density Only Volume of runoff from 1* rainfall for DA HIGH DENSITY RECUREEMENT = (ft ²) = 1-year, 24-hour storm (Peak Flow)	74	POST-DEVELOPMENT
Disconnected impervious area (acre) = $CN_{adjusted}(t_{paur})^{2}$ High Density Only Volume of runoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = $(t^{h})^{2}$ 1-year, 24-hour storm (Peak Flow) Runoff (inches) = $C^{*}_{-t_{plaur}}$	74	POST-DEVELOPMENT
Disconnected impervious area (acre) = $CN_{adjunted}(t_{paur})^{2}$ High Density Only Volume of runoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = $(h^{2})^{2}$ 1-year, 24-hour storm (Peak Flow) Runoff (inches) = $C^{*}_{-1,yout}$ Volume of runoff $(h^{2})^{2}$	74	POST-DEVELOPMENT
Disconnected impervious area (acre) = $CN_{adjusted}(t_{paur})^{2}$ High Density Only Volume of runoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = $(t^{h})^{2}$ 1-year, 24-hour storm (Peak Flow) Runoff (inches) = $C^{*}_{-t_{plaur}}$	74	POST-DEVELOPMENT
Disconnected impervious area (acre) = $CN_{adjunted}(t_{paur})^{2}$ High Density Only Volume of runoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = $(h^{2})^{2}$ 1-year, 24-hour storm (Peak Flow) Runoff (inches) = $C^{*}_{-1,yout}$ Volume of runoff $(h^{2})^{2}$	74	POST-DEVELOPMENT
Disconnected impervious area (acro) = $\frac{\text{CN adjusted (t-peur)}^n}{\text{NIgh Density Only}}$ High Density Only $\text{Volume of runoff from 1}^n \text{ rainfall for DA} \\ \text{HIGH DENSITY REQUIREMENT = (\mathbf{\hat{r}}^h) = 1\text{-year, 24-hour storm (Peak Flow)} Runoff (inches) = \mathbf{O}^n , year \text{Volume of runoff } (\mathbf{\hat{r}}^h) = \text{Volume change } (\mathbf{\hat{r}}^h)$	74 0.81 6.120	POST-DEVELOPMENT
Disconnected impervious area (acre) =	74 0.81 6.120	POST-DEVELOPMENT
Disconnected impervious area (acre) =	74 0.81 6,120 2.683	POST-DEVELOPMENT
Disconnected impervious area (acro) = $ \frac{\text{CN adjusted (1-peut)}^2}{\text{NM pensity Only}} $ High Density Only $ \frac{\text{Volume of nunoff from 1}^* \text{ rainfall for DA}}{\text{HIGH DENSITY REQUIREMENT } \text$	0.81 6.120 2.683	POST-DEVELOPMENT
Disconnected impervious area (acro) = $O(N_{abpated}(t_{1+pear})^{2})$ High Density Only High Density Only Volume of runoff from 1* rainfall for DA HIGH DENSITY REGUIREMENT = (R^{h}) = 1-year, 24-hour storm (Park Flow) Runoff (inches) = O^{*}_{1+pear} = Volume of runoff (R^{h}) = Volume of runoff (R^{h}) = 2-year, 24-hour storm (LID) Runoff (inches) = O^{*}_{2+pear} = Volume of runoff (R^{h}) = 1-year, 24-hour storm (LID) Runoff (inches) = O^{*}_{2+pear} = Volume of runoff (R^{h}) = 1-year Discharge (cfs) = O^{*}_{2+pear}	74 0.81 6,120 2,683 1.21 9,059	POST-DEVELOPMENT
Disconnected impervious area (acre) =	74 0.81 6,120 2,683 1.21 9,059	POST-DEVELOPMENT
Disconnected impervious area (acro) = $O(N_{abpated}(t_{1+pear})^{2})$ High Density Only High Density Only Volume of runoff from 1* rainfall for DA HIGH DENSITY REGUIREMENT = (R^{h}) = 1-year, 24-hour storm (Park Flow) Runoff (inches) = O^{*}_{1+pear} = Volume of runoff (R^{h}) = Volume of runoff (R^{h}) = 2-year, 24-hour storm (LID) Runoff (inches) = O^{*}_{2+pear} = Volume of runoff (R^{h}) = 1-year, 24-hour storm (LID) Runoff (inches) = O^{*}_{2+pear} = Volume of runoff (R^{h}) = 1-year Discharge (cfs) = O^{*}_{2+pear}	0.81 6.120 2.683 1.21 9.059 3.971	POST-DEVELOPMENT

DA2 Page 1

DRAINAGE AREA 3 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA Drainage Area (Acres)=	Р		.21	41	P		0.41				
Site Acreage within Drainage=			.21		0.41						
One-year, 24-hour rainfall (in)=				35							
Two-year, 24-hour rainfall (in)=				3.	45						
Ten-year, 24-hour storm (in)=				5.	14						
Total Lake/Pond Area (Acres)=			.00			0.					
Lake/Pond Area not in the Tc flow path (Acres)= Site Land Use (acres):	A	В.	.00	D	A	В.	00	D			
Pasture	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Woods, Poor Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Woods, Fair Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Woods, Good Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Open Space, Poor Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Open Space, Fair condition Open Space, Good Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Reforestation (in dedicated OS)	0.00	7.54	3.56 0.00	0.00	0.00	0.41	0.00	0.00			
Connected Impervious	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Disconnected Impervious	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
ITE FLOW	PR	E-DEVE	OPMEN	ГΤς	PO	ST-DEVE	LOPMEN	T Tc			
Sheet Flow											
Length (ft)=											
Slope (ft/ft)=											
Surface Cover:											
T _t (hrs)=											
Shallow Flow											
Length (ft)=											
Slope (ft/ft)=											
Surface Cover:											
Average Velocity (ft/sec)=					<u> </u>						
T ₁ (hrs)=											
Length (ft)=											
Slope (ft/ft)=											
Cross Sectional Flow Area (ft²)=											
Wetted Perimeter (ft)=											
Channel Lining:											
n-value=											
Hydraulic Radius (ft)=											
Average Velocity (ft/sec)= T ₁ (hrs)=											
Channel Flow 2											
Length (ft)=											
Slope (ft/ft)=											
Cross Sectional Flow Area (ft ²)=											
Wetted Perimeter (ft)=											
Channel Lining:											
Hydraulic Radius (ft)=											
Average Velocity (ft/sec)=											
T _t (hrs)=											
Channel Flow 3											
Length (ft)=											
Slope (ft/ft)=											
Cross Sectional Flow Area (ft²)=											
Wetted Perimeter (ft)= Channel Lining:											
n-value=											
Hydraulic Radius (ft)=											
Average Velocity (ft/sec)=											
T _t (hrs)=											
Tc (hrs)=			.08				80				
RESULTS Composite Curve Number=	P		ELOPMEN 35	۱T	P	OST-DEV	ELOPME	NT			
Disconnected Impervious Adjustment		,			_						
Disconnected impervious area (acre) =											
CN _{adjusted (1-year)} =				6	51						
High Density Only											
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =				7	4						
1-year, 24-hour storm (Peak Flow)											
Runoff (inches) = Q* _{1-year} =		0	45		l	0.	31				
Volume of runoff (ft ³) =		18	,116			4	61				
Volume change (ft ³) =		_	_		_						
Peak Discharge (cfs)= Q _{1-year} =		6.	877			0.	151				
2-year, 24-hour storm (LID)					_						
Runoff (inches) = Q* _{2-year} =		0	.73			0.	55				
Volume of runoff (ft ³) =			863			8					
Peak Discharge (cfs)= Q _{2-year} =		11.	336			0.2	269				
10-year, 24-hour storm (DIA)			.76				45				
						1.					
Runoff (inches) = Q* _{10-year} =											
Runoff (inches) = Q* _{10-year} = Volume of runoff (ft ³) = Peak Discharge (cfs)= Q _{10-year} =		71,	629			59,	164				

DA3 Page 1

<u>DRAINAGE AREA 4</u> STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA Drainage Area (Acres)=	PRE-DEVELOPMENT POST-DEVELOPME						NT		
Drainage Area (Acres)= Site Acreage within Drainage=			38		0.37				
One-year, 24-hour rainfall (in)=				2.	.85				
Two-year, 24-hour rainfall (in)=				3.	45				
Ten-year, 24-hour storm (in)=				5.	14				
Total Lake/Pond Area (Acres)=			00			0.			
Lake/Pond Area not in the Tc flow path (Acres)= Site Land Use (acres):			00				00		
Pasture	0.00	0.00	0.00	D 0.00	0.00	0.00	0.00	0.00	
Woods, Poor Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Woods, Fair Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Woods, Good Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Open Space, Poor Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Open Space, Fair condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Open Space, Good Condition Reforestation (in dedicated OS)	0.00	7.21	0.00	0.00	0.00	0.37	0.00	0.00	
Connected Impervious	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Disconnected Impervious	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
SITE FLOW	PR	E-DEVEL	OPMEN	ГΤα	POS	ST-DEVE	LOPMEN	T Tc	
Sheet Flow									
Length (ft)=									
Slope (ft/ft)= Surface Cover:									
n-value=									
T _t (hrs)=									
Shallow Flow									
Length (ft)=									
Slope (ft/ft)=									
Surface Cover: Average Velocity (ft/sec)=									
Average Velocity (tt/sec)= T _t (hrs)=					 				
Channel Flow 1									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)= Wetted Perimeter (ft)=									
Wetted Perimeter (π)= Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T _t (hrs)=					L				
Channel Flow 2 Length (ft)=					_				
Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)=									
Wetted Perimeter (ft)=									
Channel Lining:									
n-value=									
Hydraulic Radius (ft)= Average Velocity (ft/sec)=									
T _t (hrs)=									
Channel Flow 3									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)=									
Wetted Perimeter (ft)= Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T _t (hrs)= Tc (hrs)=			08			_	08		
RESULTS				ı.T	D/			NIT	
Composite Curve Number=		RE-DEVE	2	• 1	F 70	OST-DEV		141	
Disconnected Impervious Adjustment									
Disconnected impervious area (acre) =									
	1				51				
CN _{adjusted (1-year)} =									
					:7				
$CN_{adjusted\ (1-year)}^{}$ High Density Only Volume of runoff from 1° rainfall for DA HIGH DENSITY REQUIREMENT = (f^3) =					57				
CN _{adjusted} (1-yeur)= High Density Only Volume of runoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = (ft ²) = 1-year, 24-hour storm (Peak Flow)		^	34	6	57	^	31		
$ \begin{aligned} & CN_{adjusted} (t\text{-}yasu)^{\text{t}} \\ & \text{High Density Only} \\ & \text{Volume of nunoff from 1" rainfall for DA} \\ & \text{HIGH DENSITY REQUIREMENT} = (\hat{\pi}^{\hat{\pi}}) = \\ & \textbf{1-year, 24-hour storm (Peak Flow)} \\ & \text{Runoff (inches)} = Q^*_{-\text{syster}}. \end{aligned} $			34	6	57		31		
CN_aquated (1-year)* High Density Only Volume of runoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = (ft*) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q** _{1-year} * Volume of runoff (ft*) =				(57				
$ \begin{aligned} & CN_{adjusted (1-year)^{th}} \\ & High Density Only \\ & Volume of nunoff from 1^t rainfall for DA \\ & HIGH DENSITY REQUIREMENT = (t^{th}) = 1 - year, 24 - hour storm (Peak Flow) \\ & Runoff (inches) = 0^*_{1-year} \\ & Volume of nunoff (t^{th}) = 1 - year, 24 - year, 24$		8,8	991	6	57	4	16		
$ \begin{aligned} & CN_{abjusted (1-year)} \\ & High Density Only \\ & Volume of nunoff from 1^* rainfall for DA \\ & HIGH DENSITY REGUIREMENT = (ft)^* = \\ & 1-year, 24-hour storm (Peak Flow) \\ & Runoff (inches) = O^*_{1-year} = \\ & Volume of nunoff (ft)^* = \\ & Volume change (ft)^* = \\ & Peak Discharge (ofs) = O_{1-year} = \\ \end{aligned} $		8,8		6	57		16		
CN_abpated (1-year)* High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft)* 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year* Volume of runoff (ft)* Volume of change (ft)* = Peak Discharge (cfs)= Q _{1-year} * 2-year, 24-hour storm (LID)		2.6	991 949	6	57	0.	16		
CNapated (1-year)* High Density Only Volume of nunoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = (ft) = 1-year, 24-hour storm (Peak Flow) Volume of runoff (ft) = Volume of runoff (ft) = Volume change (ft) = Peak Discharge (cb) = O _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = O _{2-year}		2.6	991	E	57	0.	16		
CN_abpated (1-year)* High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft)* 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year* Volume of runoff (ft)* Volume of change (ft)* = Peak Discharge (cfs)= Q _{1-year} * 2-year, 24-hour storm (LID)		2.5	991	€	57	0.	16		
CN_equated (1-year)* High Density Only Volume of nunoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = (th*) = 1-year, 24-hour storm (Peak Flow) Volume of runoff (th*) = Volume of runoff (th*) = Peak Discharge (cfs) = O _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = O [*] _{2-year} Volume of runoff (th*) = Peak Discharge (cfs) = O _{2-year} 10-year, 24-hour storm (DIA)		2.9 0. 15,	991 949 59 695	E	57	0 0 7: 0.2	137 55 39 242		
$ \begin{aligned} & CN_{abjusted}\left(t,y_{aux}\right)^2 \\ & High Density Only \\ & \text{Volume of nunoff from 1" rainfall for DA} \\ & HIGH DENSITY REQUIREMENT = (th)^2 = 1 \\ & -y_{ear}, 24-hour storm (Peak Flow) \\ & Runoff (inches) = 0^*_{t,y_{max}} = 0 \\ & \text{Volume of nunoff } (th)^2 = 0 \\ & \text{Volume change } (th)^2 = 0 \\ & \text{Peak Discharge } (chs) = O_{t,y_{max}} = 0 \\ & 2 \cdot y_{ear}, 24-hour storm (LID) \\ & \text{Runoff (inches)} = 0^*_{2 \cdot y_{emx}} = 0 \\ & \text{Volume of nunoff } (th)^2 = 0 \\ & \text{Peak Discharge } (chs) = O_{3 \cdot y_{emx}} = 0 \\ & \text{Peak Discharge } (chs) = O_{3 \cdot y_{emx}} = 0 \end{aligned} $		0. 15. 1.	991 949 59 695	•	57	0. 0. 7. 0.2	16 137 55 39		

DA4 Page 1

DRAINAGE AREA 5 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA Drainage Area (Acres)=	P	RE-DEVE	LOPMEN 72	e i	P	OST-DEV		NT	
					2.92 2.92 85				
Site Acreage within Drainage=		4.	72						
One-year, 24-hour rainfall (in)= Two-year, 24-hour rainfall (in)=	-								
Ten-year, 24-hour raintail (in)=	!			5.1					
				5.	14				
Total Lake/Pond Area (Acres)= Lake/Pond Area not in the Tc flow path (Acres)=									
Site Land Use (acres):		В		D		В		D	
Pasture	A	- B	С	В	A	В	С		
Woods, Poor Condition									
Woods, Fair Condition									
Woods, Good Condition									
Open Space, Poor Condition									
Open Space, Fair condition									
Open Space, Good Condition		2.97		1.21		1.90		0.20	
Reforestation (in dedicated OS)									
Connected Impervious		0.54				0.82			
Disconnected Impervious									
SITE FLOW	PF	RE-DEVEL	OPMEN	ГΤα	PO	ST-DEVE	LOPMEN	T Tc	
Sheet Flow									
Length (ft)=									
Slope (ft/ft)=									
Surface Cover:									
n-value=	<u> </u>								
T _t (hrs)=	<u> </u>								
Shallow Flow									
Length (ft)=									
Slope (ft/ft)= Surface Cover:									
Surface Cover: Average Velocity (ft/sec)=									
Average Velocity (tt/sec)= T _t (hrs)=	 								
Channel Flow 1									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)=									
Wetted Perimeter (ft)=									
Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T _t (hrs)=									
Channel Flow 2									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)=									
Wetted Perimeter (ft)=									
Channel Lining:									
n-value=	-								
Hydraulic Radius (ft)= Average Velocity (ft/sec)=	-								
T _t (hrs)=	-								
Channel Flow 3									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)=									
Wetted Perimeter (ft)=									
Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T _t (hrs)=									
Tc (hrs)=		0.	80			0.	.08		
RESULTS	P	RE-DEVE		1T	P	OST-DEV		NT	
Composite Curve Number=	Щ_	7	0			-	r3		
Disconnected Impervious Adjustment Disconnected impervious area (acre) =									
CN _{adjusted} (1-year)=				7	3				
High Density Only	_								
Volume of runoff from 1* rainfall for DA				3,2	100				
HIGH DENSITY REQUIREMENT = (ft3) =	<u> </u>			3,2					
1-year, 24-hour storm (Peak Flow)									
Runoff (inches) = Q* _{1-year} =	<u> </u>		64				.75		
Volume of runoff (ft ³) =	<u> </u>	10,	910			7,	972		
Volume change (ft ³) =	1								
Peak Discharge (cfs)= Q _{1-year} =		4.7	719			3.	448		
2-year, 24-hour storm (LID)									
Runoff (inches) = Q* _{2-year} =		0.	98			1.	.13		
Volume of runoff (ft ³) =			838				957		
Peak Discharge (cfs)= Q _{2-year} =			283				171		
10-year, 24-hour storm (DIA)									
10-year, 24-hour storm (DIA) Runoff (inches) = Q* _{10-year} =		2.	15	l		2	.36		
		36,	15 818 924			40	.36 .511 .839		

DA5 Page 1

DRAINAGE AREA 6 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT POST-DEVELOPMENT							NT	
Drainage Area (Acres)=		3.	.91	.,		0.58			
Site Acreage within Drainage=	3.91 0.58								
One-year, 24-hour rainfall (in)=				2.	85 45				
Two-year, 24-hour rainfall (in)= Ten-year, 24-hour storm (in)=					14				
Total Lake/Pond Area (Acres)=				5.	.,				
Lake/Pond Area not in the Tc flow path (Acres)=									
Site Land Use (acres):	А	В	С	D	Α	В	С	D	
Pasture									
Woods, Poor Condition Woods, Fair Condition									
Woods, Fair Condition									
Open Space, Poor Condition									
Open Space, Fair condition									
Open Space, Good Condition		2.79		1.05		0.37		0.14	
Reforestation (in dedicated OS)									
Connected Impervious Disconnected Impervious		0.07				0.07			
SITE FLOW	PF	RE-DEVE	LOPMEN	T T _c	PO	ST-DEVE	LOPMEN	T Tc	
Sheet Flow				-					
Length (ft)=									
Slope (ft/ft)=									
Surface Cover:									
n-value= T _t (hrs)=									
Shallow Flow									
Length (ft)=									
Slope (ft/ft)=									
Surface Cover:									
Average Velocity (ft/sec)= T _t (hrs)=									
Channel Flow 1									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft ²)=									
Wetted Perimeter (ft)= Channel Lining:									
Channel Lining: n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T _t (hrs)=									
Channel Flow 2									
Length (ft)= Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)=									
Wetted Perimeter (ft)=									
Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)= T _t (hrs)=	_								
Channel Flow 3									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)=									
Wetted Perimeter (ft)= Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T _t (hrs)=									
Tc (hrs)=			.08				.08		
RESULTS Composite Curve Number=	P	RE-DEVE	ELOPMEN 87	NT	P	OST-DEV	ro TO	NT	
Disconnected Impervious Adjustment							_		
Disconnected impervious area (acre) =									
CN _{adjusted (1-year)} =				7	0				
High Density Only Volume of runoff from 1" rainfall for DA									
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	L			3:	34		_	_	
1-year, 24-hour storm (Peak Flow)									
Runoff (inches) = Q* _{1-year} =			.50				.63		
Volume of runoff (ft ³) =		7,	141			1,	336		
Volume change (ft ³) =	<u></u>								
Peak Discharge (cfs)= Q _{1-year} =		2.	947			0.	578		
2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =			04				00		
Runott (inches) = Q* _{2,veor} =			.81		-		.98		
			746				892		
Volume of runoff (ft ³) =		4.							
		4.	740						
Volume of runoff (ft ³) = Peak Discharge (cfs)= Q _{2-year} =			.88			2	.14		
Volume of runoff (ft ³) = Peak Discharge (cfs)= Q _{2-year} = 10-year, 24-hour storm (DIA)		1.				30	.14 .442 .953		

DA6 Page 1

<u>DA SITE SUMMARY</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

	SITE	SUMMAR	Y							
DRAINAGE AREA SUMMARIES			-							
DRAINAGE AREA: DA1	A1 DA2 DA3 DA4				DA6	DA6 DA7		DA9	DA10	
	Developmen	t (1-year, 24	hour stor	m)						
Runoff (in) = Q _{pre,1-year} =	0.81	0.45	0.34	0.64	0.50					
Peak Flow (cfs)=Q _{1-year} =	2.683	6.877	2.949	4.719	2.947					
Post	Developmen	nt (1-year, 24	-hour stor	rm)						
Proposed Impervious Surface (acre) =		0.00	0.00	0.82	0.07					
Runoff (in)=Q _{1-year} =		0.31	0.75	0.63						
Peak Flow (cfs)=Q _{1-year} =		0.151	0.137	3.448	0.578					
Increase in volume per DA (ft³)_1-yr storm=										
Minimum Volume to be Managed for DA HIGH DENSITY REQUIREMENT = (ft^3) =	NA	NA	NA	NA	NA	NA	NA	NA	NA	
TARGET CURVE NUMBER (TCN)										
	5	Site Data								
	SITE \SOI	L COMPOSI	TION							
HYDROLOGIC SOIL GROUP			Site	Area	-	<u>%</u>		Target CN	Ī	
A			0.	.00	0	%		48		
В			3.	94	92	2%		66		
С			0.	.00	0	%		78		
D	0.34 8%						6 83			
	Total Site Area (acres) = 4.28									
Percent BUA (Inc	Percent BUA (Includes Existing Lakes/Pond Areas) = 21%									
	Project Density =						ow			
	Target		67							
		CN _{adju}	sted (1-year)=							
Minimum Volume to be Managed (To	al Site) Per T	CN Requirer	nent= ft ³ =							
	Site Nitro	gen Loading	Data							
HSG	TN export coefficient (lbs/ac/yr)				Site Acreage			N Export		
Pasture		1.2		0.00			0.00			
Woods, Poor Condition		1.6		0.00				0.00		
Woods, Fair Condition		1.2		0.00			0.00			
Woods, Good Condition		0.8		0.00						
Open Space, Poor Condition		1.0		0.00						
Open Space, Fair Condition		0.8		0.00				0.00		
Open Space, Good Condition		0.6			3.39			2.03		
Reforestation (in dedicated OS)		0.6			0.00		0.00			
Impervious		21.2			0.89			18.87		
SITE NITROGEN LOADING RATE (lbs/ac/	r)=				4.88					
Nitrogen Load (lbs/	r)=				20.90					
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)_Wendell Or	ly=				5.49					
Site Nitr	ogen Loadin	g Data For E	xpansion	s Only						
		Existing					New			
	NA NA						NA			
Impervious(acres)=										
Impervious(acres)= "Expansion Area" (acres=)										
		NA					NA			
"Expansion Area" (acres=)		NA NA					NA NA			
"Expansion Area" (acres=) Nitrogen Load (lbs/yr)=										

SITE SUMMARY Page 1

Pabst Design Group, PA 107 Fayetteville St, Suite 200 Raleigh, NC 27601

1915 & 1917 Old Bunn Road Zebulon, North Carolina 27597 PDG Project No.: 673-23

XIII. NOAA Precipitation Frequency & Intensity Charts

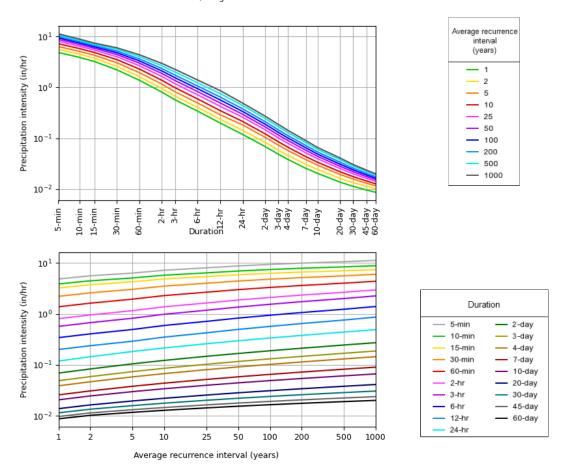
NOAA Atlas 14, Volume 2, Version 3 Location name: Zebulon, North Carolina, USA* Latitude: 35.833°, Longitude: -78.2821° Elevation: 325 ft** *source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	4.85 (4.43-5.33)	5.60 (5.12-6.13)	6.34 (5.80-6.94)	7.20 (6.56-7.88)	8.04 (7.30-8.78)	8.75 (7.91-9.56)	9.37 (8.42-10.2)	9.95 (8.89-10.9)	10.6 (9.40-11.6)	11.2 (9.86-12.3)
10-min	3.88 (3.53-4.26)	4.48 (4.10-4.91)	5.08 (4.64-5.56)	5.76 (5.24-6.30)	6.40 (5.81-7.00)	6.96 (6.29-7.61)	7.45 (6.69-8.14)	7.89 (7.04-8.63)	8.39 (7.43-9.19)	8.85 (7.77-9.71)
15-min	3.23 (2.95-3.55)	3.75 (3.43-4.11)	4.28 (3.92-4.69)	4.86 (4.42-5.31)	5.41 (4.91-5.92)	5.88 (5.31-6.43)	6.28 (5.64-6.86)	6.64 (5.93-7.26)	7.04 (6.24-7.71)	7.40 (6.50-8.13)
30-min	2.21 (2.02-2.43)	2.59 (2.37-2.84)	3.04 (2.78-3.33)	3.52 (3.21-3.85)	4.01 (3.64-4.38)	4.43 (4.00-4.84)	4.81 (4.32-5.25)	5.16 (4.61-5.65)	5.60 (4.96-6.14)	6.00 (5.26-6.58)
60-min	1.38 (1.26-1.52)	1.63 (1.49-1.78)	1.95 (1.78-2.13)	2.29 (2.09-2.51)	2.67 (2.42-2.92)	3.00 (2.71-3.28)	3.31 (2.97-3.62)	3.62 (3.24-3.96)	4.02 (3.56-4.40)	4.38 (3.84-4.80)
2-hr	0.806 (0.730-0.893)	0.954 (0.868-1.05)	1.16 (1.05-1.27)	1.38 (1.25-1.51)	1.64 (1.47-1.80)	1.87 (1.68-2.05)	2.10 (1.87-2.30)	2.35 (2.07-2.57)	2.66 (2.33-2.92)	2.96 (2.57-3.25)
3-hr	0.569 (0.515-0.633)	0.673 (0.613-0.745)	0.820 (0.745-0.908)	0.984 (0.890-1.08)	1.18 (1.06-1.30)	1.36 (1.22-1.50)	1.54 (1.37-1.70)	1.74 (1.53-1.91)	2.00 (1.74-2.20)	2.26 (1.94-2.49)
6-hr	0.341 (0.311-0.378)	0.405 (0.369-0.447)	0.493 (0.449-0.544)	0.592 (0.537-0.652)	0.713 (0.642-0.782)	0.827 (0.740-0.906)	0.942 (0.836-1.03)	1.06 (0.936-1.16)	1.23 (1.07-1.35)	1.40 (1.20-1.53)
12-hr	0.200 (0.182-0.220)	0.237 (0.217-0.260)	0.290 (0.265-0.319)	0.350 (0.318-0.384)	0.424 (0.383-0.464)	0.495 (0.444-0.540)	0.568 (0.503-0.619)	0.647 (0.567-0.704)	0.757 (0.653-0.824)	0.864 (0.734-0.942
24-hr	0.118 (0.110-0.128)	0.143 (0.133-0.155)	0.182 (0.169-0.197)	0.214 (0.198-0.231)	0.259 (0.238-0.280)	0.296 (0.271-0.320)	0.336 (0.305-0.363)	0.378 (0.342-0.409)	0.440 (0.393-0.477)	0.490 (0.435-0.534
2-day	0.068 (0.063-0.074)	0.082 (0.077-0.089)	0.104 (0.097-0.112)	0.122 (0.113-0.131)	0.146 (0.135-0.158)	0.167 (0.153-0.180)	0.188 (0.172-0.204)	0.211 (0.191-0.229)	0.244 (0.219-0.266)	0.272 (0.241-0.297
3-day	0.048 (0.045-0.052)	0.058 (0.054-0.063)	0.073 (0.068-0.079)	0.085 (0.079-0.091)	0.102 (0.094-0.110)	0.116 (0.107-0.125)	0.130 (0.119-0.141)	0.146 (0.133-0.158)	0.168 (0.151-0.182)	0.186 (0.166-0.203
4-day	0.038 (0.036-0.041)	0.046 (0.043-0.049)	0.057 (0.054-0.062)	0.067 (0.062-0.071)	0.080 (0.074-0.085)	0.090 (0.083-0.097)	0.102 (0.093-0.109)	0.113 (0.103-0.122)	0.130 (0.117-0.140)	0.144 (0.129-0.156
7-day	0.025 (0.023-0.027)	0.030 (0.028-0.032)	0.037 (0.035-0.040)	0.043 (0.040-0.046)	0.051 (0.047-0.055)	0.058 (0.053-0.062)	0.064 (0.059-0.069)	0.072 (0.065-0.077)	0.081 (0.074-0.088)	0.090 (0.081-0.097
10-day	0.020 (0.019-0.021)	0.024 (0.022-0.026)	0.029 (0.027-0.031)	0.033 (0.031-0.036)	0.039 (0.036-0.042)	0.044 (0.041-0.047)	0.048 (0.045-0.052)	0.053 (0.049-0.057)	0.060 (0.055-0.065)	0.066 (0.060-0.071
20-day	0.013 (0.012-0.014)	0.016 (0.015-0.017)	0.019 (0.018-0.020)	0.022 (0.020-0.023)	0.025 (0.023-0.027)	0.028 (0.026-0.030)	0.031 (0.028-0.033)	0.033 (0.031-0.036)	0.037 (0.034-0.040)	0.041 (0.037-0.044
30-day	0.011 (0.010-0.012)	0.013 (0.012-0.014)	0.015 (0.014-0.016)	0.017 (0.016-0.018)	0.020 (0.018-0.021)	0.022 (0.020-0.023)	0.023 (0.022-0.025)	0.025 (0.024-0.027)	0.028 (0.026-0.030)	0.030 (0.028-0.032
45-day	0.009 (0.009-0.010)	0.011 (0.010-0.011)	0.013 (0.012-0.013)	0.014 (0.013-0.015)	0.016 (0.015-0.017)	0.017 (0.016-0.018)	0.019 (0.017-0.020)	0.020 (0.019-0.021)	0.022 (0.020-0.023)	0.023 (0.022-0.025
60-day	0.008	0.010	0.011	0.012	0.014 (0.013-0.015)	0.015	0.016	0.017	0.018	0.020

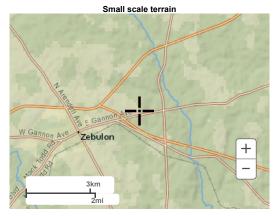

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

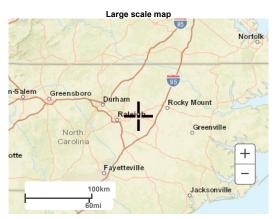
PF graphical

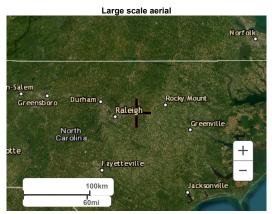
PDS-based intensity-duration-frequency (IDF) curves Latitude: 35.8330°, Longitude: -78.2821°



NOAA Atlas 14, Volume 2, Version 3

Created (GMT): Fri Feb 14 16:16:02 2025


Back to Top


Maps & aerials

Large scale terrain

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

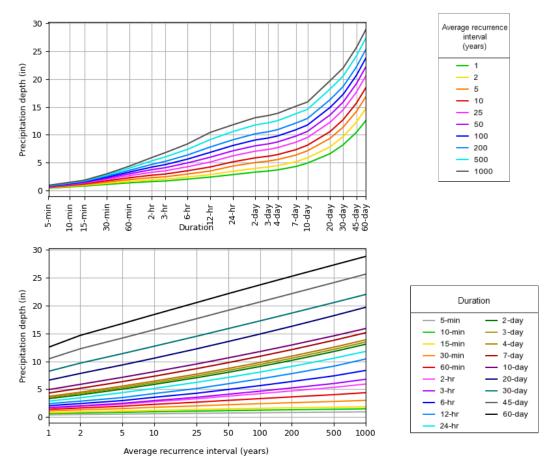
NOAA Atlas 14, Volume 2, Version 3 Location name: Zebulon, North Carolina, USA* Latitude: 35.833°, Longitude: -78.2821° Elevation: 325 ft** *source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									nes) ¹
Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.404 (0.369-0.444)	0.467 (0.427-0.511)	0.528 (0.483-0.578)	0.600 (0.547-0.657)	0.670 (0.608-0.732)	0.729 (0.659-0.797)	0.781 (0.702-0.853)	0.829 (0.741-0.908)	0.884 (0.783-0.968)	0.937 (0.822-1.03)
10-min	0.646 (0.589-0.710)	0.746 (0.683-0.818)	0.846 (0.774-0.926)	0.960 (0.874-1.05)	1.07 (0.969-1.17)	1.16 (1.05-1.27)	1.24 (1.12-1.36)	1.32 (1.17-1.44)	1.40 (1.24-1.53)	1.48 (1.30-1.62)
15-min	0.807 (0.737-0.887)	0.938 (0.858-1.03)	1.07 (0.979-1.17)	1.21 (1.11-1.33)	1.35 (1.23-1.48)	1.47 (1.33-1.61)	1.57 (1.41-1.71)	1.66 (1.48-1.82)	1.76 (1.56-1.93)	1.85 (1.63-2.03)
30-min	1.11 (1.01-1.22)	1.30 (1.18-1.42)	1.52 (1.39-1.66)	1.76 (1.60-1.92)	2.00 (1.82-2.19)	2.21 (2.00-2.42)	2.40 (2.16-2.62)	2.58 (2.31-2.83)	2.80 (2.48-3.07)	3.00 (2.63-3.29)
60-min	1.38 (1.26-1.52)	1.63 (1.49-1.78)	1.95 (1.78-2.13)	2.29 (2.09-2.51)	2.67 (2.42-2.92)	3.00 (2.71-3.28)	3.31 (2.97-3.62)	3.62 (3.24-3.96)	4.02 (3.56-4.40)	4.38 (3.84-4.80)
2-hr	1.61 (1.46-1.79)	1.91 (1.74-2.10)	2.32 (2.10-2.55)	2.76 (2.50-3.03)	3.27 (2.94-3.59)	3.75 (3.36-4.11)	4.21 (3.74-4.61)	4.69 (4.15-5.14)	5.33 (4.67-5.84)	5.92 (5.14-6.51)
3-hr	1.71 (1.55-1.90)	2.02 (1.84-2.24)	2.46 (2.24-2.73)	2.96 (2.68-3.26)	3.54 (3.18-3.90)	4.09 (3.66-4.50)	4.64 (4.12-5.10)	5.23 (4.60-5.74)	6.02 (5.24-6.62)	6.78 (5.83-7.48)
6-hr	2.05 (1.86-2.27)	2.43 (2.21-2.68)	2.96 (2.69-3.26)	3.55 (3.22-3.90)	4.27 (3.85-4.69)	4.95 (4.44-5.43)	5.64 (5.01-6.17)	6.38 (5.61-6.97)	7.39 (6.42-8.08)	8.37 (7.16-9.17)
12-hr	2.41 (2.20-2.66)	2.86 (2.62-3.14)	3.50 (3.19-3.84)	4.22 (3.84-4.64)	5.11 (4.62-5.60)	5.97 (5.35-6.52)	6.84 (6.07-7.46)	7.80 (6.84-8.49)	9.13 (7.88-9.94)	10.4 (8.85-11.4)
24-hr	2.85 (2.65-3.08)	3.45 (3.21-3.73)	4.38 (4.07-4.74)	5.14 (4.76-5.56)	6.22 (5.73-6.72)	7.11 (6.52-7.68)	8.07 (7.34-8.72)	9.09 (8.22-9.83)	10.6 (9.45-11.5)	11.8 (10.4-12.8)
2-day	3.30 (3.07-3.56)	3.98 (3.71-4.30)	5.02 (4.66-5.42)	5.86 (5.43-6.32)	7.05 (6.50-7.61)	8.02 (7.37-8.66)	9.06 (8.27-9.79)	10.2 (9.22-11.0)	11.8 (10.5-12.8)	13.1 (11.6-14.3)
3-day	3.50 (3.26-3.77)	4.22 (3.93-4.54)	5.29 (4.92-5.69)	6.16 (5.72-6.62)	7.38 (6.82-7.93)	8.37 (7.70-9.01)	9.43 (8.62-10.2)	10.6 (9.59-11.4)	12.1 (10.9-13.2)	13.5 (12.0-14.6)
4-day	3.71 (3.46-3.98)	4.46 (4.16-4.78)	5.56 (5.19-5.96)	6.45 (6.00-6.91)	7.70 (7.13-8.25)	8.72 (8.04-9.35)	9.79 (8.98-10.5)	10.9 (9.96-11.8)	12.5 (11.3-13.5)	13.8 (12.4-15.0)
7-day	4.31 (4.03-4.61)	5.16 (4.82-5.52)	6.36 (5.94-6.81)	7.33 (6.83-7.84)	8.68 (8.06-9.28)	9.76 (9.03-10.5)	10.9 (10.0-11.7)	12.1 (11.1-13.0)	13.8 (12.5-14.9)	15.1 (13.6-16.4)
10-day	4.92 (4.61-5.25)	5.87 (5.50-6.26)	7.13 (6.68-7.60)	8.13 (7.61-8.66)	9.51 (8.87-10.1)	10.6 (9.86-11.3)	11.8 (10.9-12.6)	12.9 (11.9-13.8)	14.6 (13.3-15.7)	15.9 (14.4-17.1)
20-day	6.61 (6.22-7.03)	7.83 (7.36-8.33)	9.35 (8.79-9.94)	10.6 (9.91-11.2)	12.2 (11.4-13.0)	13.5 (12.6-14.4)	14.9 (13.8-15.9)	16.3 (15.1-17.4)	18.2 (16.7-19.5)	19.7 (18.0-21.1)
30-day	8.20 (7.74-8.70)	9.68 (9.14-10.3)	11.4 (10.7-12.1)	12.7 (12.0-13.5)	14.5 (13.6-15.4)	15.9 (14.8-16.8)	17.3 (16.1-18.3)	18.7 (17.3-19.9)	20.5 (19.0-21.9)	22.0 (20.3-23.6)
45-day	10.4 (9.90-11.0)	12.3 (11.6-12.9)	14.2 (13.4-15.0)	15.7 (14.8-16.5)	17.6 (16.7-18.6)	19.1 (18.0-20.2)	20.6 (19.4-21.8)	22.1 (20.7-23.5)	24.1 (22.5-25.6)	25.6 (23.8-27.3)
60-day	12.5 (11.9-13.2)	14.7 (13.9-15.4)	16.8 (15.9-17.6)	18.4 (17.4-19.4)	20.5 (19.4-21.6)	22.1 (20.9-23.3)	23.7 (22.3-25.0)	25.3 (23.7-26.7)	27.3 (25.6-28.9)	28.8 (26.9-30.6)

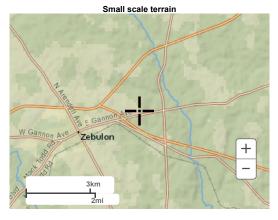

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

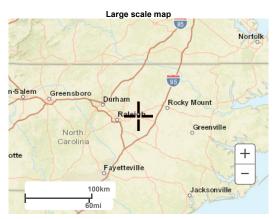
PF graphical

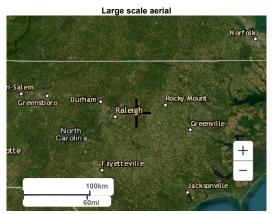
PDS-based depth-duration-frequency (DDF) curves Latitude: 35.8330°, Longitude: -78.2821°



NOAA Atlas 14, Volume 2, Version 3

Created (GMT): Fri Feb 14 16:15:29 2025


Back to Top


Maps & aerials

Large scale terrain

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

Pabst Design Group, PA 107 Fayetteville St, Suite 200 Raleigh, NC 27601

1915 & 1917 Old Bunn Road Zebulon, North Carolina 27597 PDG Project No.: 673-23

XIV. Web Soil Survey and HSG Classifications

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Wake County, North Carolina

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	12
Wake County, North Carolina	
AaA—Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded	14
ChA—Chewacla and Wehadkee soils, 0 to 2 percent slopes,	
frequently flooded	
DoB—Dothan loamy sand, 2 to 6 percent slopes	
GeB—Georgeville silt loam, 2 to 6 percent slopes	
GeC—Georgeville silt loam, 6 to 10 percent slopes	
GrC—Gritney sandy loam, 6 to 10 percent slopes	
HeB—Helena sandy loam, 2 to 6 percent slopes	
HrB—Herndon silt loam, 2 to 6 percent slopes	
HrC—Herndon silt loam, 6 to 10 percent slopes	
NaD—Nanford silt loam, 10 to 15 percent slopes	
NaE—Nanford silt loam, 15 to 25 percent slopes	
RgB—Rawlings-Rion complex, 2 to 6 percent slopes	
RgC—Rawlings-Rion complex, 6 to 10 percent slopes	
RgD—Rawlings-Rion complex, 10 to 15 percent slopes	
VaB—Vance sandy loam, 2 to 6 percent slopes	
W—Water	
WaD—Wake-Rolesville complex, 10 to 15 percent slopes, very rocky	
WeB—Wedowee sandy loam, 2 to 6 percent slopes	
WeC—Wedowee sandy loam, 6 to 10 percent slopes	
WeD—Wedowee sandy loam, 10 to 15 percent slopes	
WfB—Wedowee-Saw complex, 2 to 6 percent slopes	
References	38

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

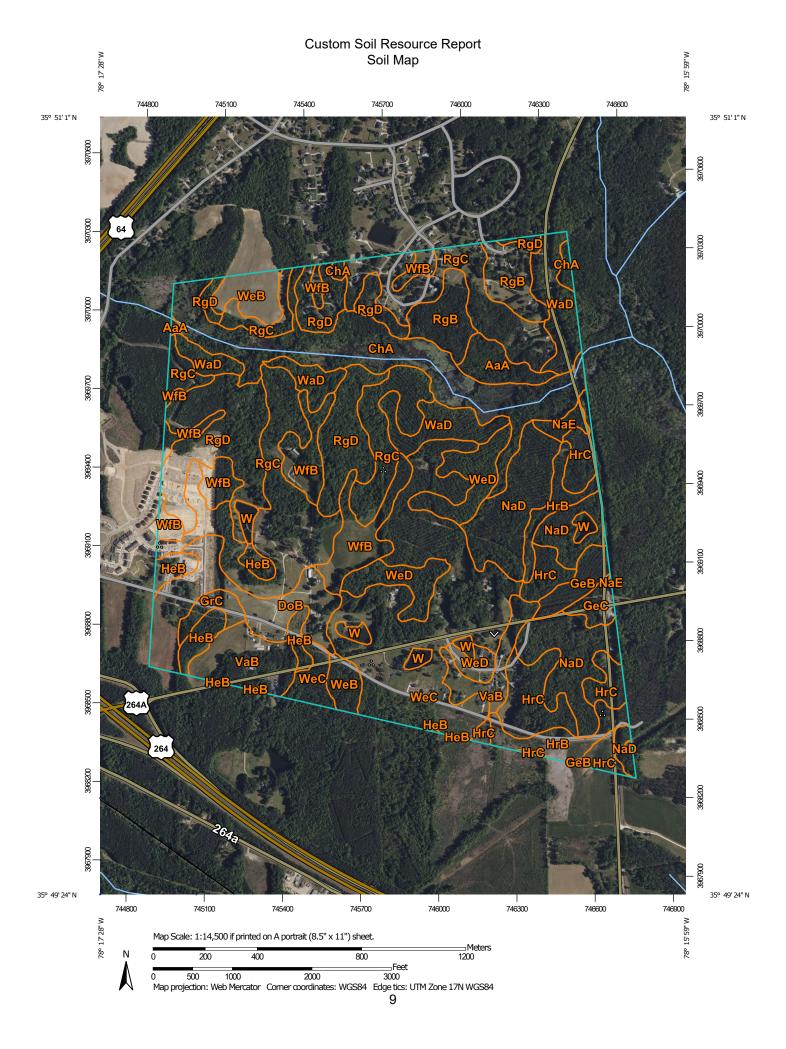
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

 \odot

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sodic Spot

Sinkhole

Slide or Slip

å

Spoil Area Stony Spot

Very Stony Spot

Ŷ

Wet Spot Other

Δ

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

 \sim

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Wake County, North Carolina Survey Area Data: Version 26, Sep 9, 2024

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 24, 2022—May 9, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
AaA	Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded	9.8	1.3%	
ChA	Chewacla and Wehadkee soils, 0 to 2 percent slopes, frequently flooded	67.8	9.2%	
DoB	Dothan loamy sand, 2 to 6 percent slopes	33.1	4.5%	
GeB	Georgeville silt loam, 2 to 6 percent slopes	8.2	1.1%	
GeC	Georgeville silt loam, 6 to 10 percent slopes	5.1	0.7%	
GrC	Gritney sandy loam, 6 to 10 percent slopes	5.4	0.7%	
HeB	Helena sandy loam, 2 to 6 percent slopes	14.9	2.0%	
HrB	Herndon silt loam, 2 to 6 percent slopes	18.9	2.5%	
HrC	Herndon silt loam, 6 to 10 percent slopes	39.7	5.4%	
NaD	Nanford silt loam, 10 to 15 percent slopes	62.3	8.4%	
NaE	Nanford silt loam, 15 to 25 percent slopes	3.4	0.5%	
RgB	Rawlings-Rion complex, 2 to 6 percent slopes	25.3	3.4%	
RgC	Rawlings-Rion complex, 6 to 10 percent slopes	112.2	15.2%	
RgD	Rawlings-Rion complex, 10 to 15 percent slopes	72.8	9.8%	
VaB	Vance sandy loam, 2 to 6 percent slopes	29.6	4.0%	
W	Water	8.0	1.1%	
WaD	Wake-Rolesville complex, 10 to 15 percent slopes, very rocky	39.0	5.3%	
WeB	Wedowee sandy loam, 2 to 6 percent slopes	15.3	2.1%	
WeC	Wedowee sandy loam, 6 to 10 percent slopes	100.0	13.5%	
WeD	Wedowee sandy loam, 10 to 15 percent slopes	28.8	3.9%	
WfB	Wedowee-Saw complex, 2 to 6 percent slopes	40.8	5.5%	
Totals for Area of Interest		740.4	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas

shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Wake County, North Carolina

AaA—Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded

Map Unit Setting

National map unit symbol: 2xh95

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Altavista, rarely flooded, and similar soils: 95 percent

Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Altavista, Rarely Flooded

Setting

Landform: Stream terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Old loamy alluvium derived from igneous and metamorphic rock

Typical profile

Ap - 0 to 8 inches: fine sandy loam
E - 8 to 12 inches: fine sandy loam
BE - 12 to 15 inches: sandy clay loam
Bt - 15 to 35 inches: clay loam
BC - 35 to 42 inches: sandy loam
C - 42 to 80 inches: coarse sandy loam

Properties and qualities

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: Rare Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: F136XY660NC - High terraces, very rare inundation

Minor Components

Roanoke, occasionally flooded, undrained

Percent of map unit: 2 percent Landform: Stream terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

ChA—Chewacla and Wehadkee soils, 0 to 2 percent slopes, frequently flooded

Map Unit Setting

National map unit symbol: 2qwpj

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Prime farmland if drained and either protected from flooding

or not frequently flooded during the growing season

Map Unit Composition

Chewacla, frequently flooded, and similar soils: 50 percent Wehadkee, frequently flooded, and similar soils: 45 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chewacla, Frequently Flooded

Settina

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy alluvium derived from igneous and metamorphic rock

Typical profile

A - 0 to 4 inches: loam

Bw1 - 4 to 26 inches: silty clay loam

Bw2 - 26 to 38 inches: loam Bw3 - 38 to 60 inches: clay loam C - 60 to 80 inches: loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 6 to 24 inches

Frequency of flooding: Frequent Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 10.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: B/D

Ecological site: F136XY610GA - Flood plain forest, wet

Hydric soil rating: No

Description of Wehadkee, Frequently Flooded

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy alluvium derived from igneous and metamorphic rock

Typical profile

A - 0 to 7 inches: silt loam

Bg - 7 to 49 inches: clay loam

Cg - 49 to 80 inches: clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 1.98 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: Frequent Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 11.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6w

Hydrologic Soil Group: B/D

Ecological site: F136XY600NC - Flood plain forest, very wet

Hydric soil rating: Yes

DoB—Dothan loamy sand, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2spp1

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Dothan and similar soils: 92 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dothan

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Loamy marine deposits

Typical profile

Ap - 0 to 12 inches: loamy sand Bt - 12 to 40 inches: sandy clay loam Btv - 40 to 80 inches: sandy clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 35 to 43 inches to plinthite

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 34 to 40 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C Hydric soil rating: No

GeB—Georgeville silt loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2qqqb

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Georgeville and similar soils: 95 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Georgeville

Setting

Landform: Interfluves

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite residuum weathered from argillite and/or saprolite

residuum weathered from metavolcanics

Typical profile

Ap - 0 to 8 inches: silt loam Bt - 8 to 50 inches: clay

BC - 50 to 62 inches: clay loam C - 62 to 80 inches: silt loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 10.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

GeC—Georgeville silt loam, 6 to 10 percent slopes

Map Unit Setting

National map unit symbol: 2qqgd

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Georgeville and similar soils: 95 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Georgeville

Setting

Landform: Interfluves

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite residuum weathered from argillite and/or saprolite

residuum weathered from metavolcanics

Typical profile

Ap - 0 to 8 inches: silt loam

Bt - 8 to 50 inches: clay

BC - 50 to 62 inches: clay loam

C - 62 to 80 inches: silt loam

Properties and qualities

Slope: 6 to 10 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 10.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: C

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

GrC—Gritney sandy loam, 6 to 10 percent slopes

Map Unit Setting

National map unit symbol: 2xh9x

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Gritney and similar soils: 94 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gritney

Setting

Landform: Interfluves

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Loamy marine deposits

Typical profile

Ap - 0 to 5 inches: sandy loam Bt - 5 to 43 inches: clay

BC - 43 to 50 inches: sandy clay loam C - 50 to 80 inches: sandy loam

Properties and qualities

Slope: 6 to 10 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 18 to 36 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: D Hydric soil rating: No

HeB—Helena sandy loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2qqgq

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Helena and similar soils: 92 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Helena

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 12 inches: sandy loam BE - 12 to 19 inches: sandy clay loam

Bt1 - 19 to 39 inches: clay Bt2 - 39 to 43 inches: clay loam BCg - 43 to 46 inches: clay loam C - 46 to 80 inches: sandy loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: D

Ecological site: F136XY810SC - Acidic upland forest, seasonally wet

Hydric soil rating: No

HrB—Herndon silt loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2qqgx

Elevation: 70 to 980 feet

Mean annual precipitation: 39 to 47 inches

Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Herndon and similar soils: 90 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Herndon

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Convex

Across-slope shape: Convex

Parent material: Residuum weathered from phyllite

Typical profile

Ap - 0 to 8 inches: silt loam

Bt1 - 8 to 12 inches: silty clay loam

Bt2 - 12 to 44 inches: clay C - 44 to 80 inches: silt loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 8.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

HrC—Herndon silt loam, 6 to 10 percent slopes

Map Unit Setting

National map unit symbol: 2qqqz

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Herndon and similar soils: 90 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Herndon

Setting

Landform: Interfluves

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from phyllite

Typical profile

Ap - 0 to 8 inches: silt loam

Bt1 - 8 to 12 inches: silty clay loam

Bt2 - 12 to 44 inches: clay C - 44 to 80 inches: silt loam

Properties and qualities

Slope: 6 to 10 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 8.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

NaD-Nanford silt loam, 10 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2spp5

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Nanford and similar soils: 95 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Nanford

Setting

Landform: Interfluves

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from metavolcanics and/or argillite

Typical profile

A - 0 to 7 inches: silt loam Bt - 7 to 27 inches: silty clay

BC - 27 to 38 inches: silty clay loam

C - 38 to 57 inches: loam Cr - 57 to 80 inches: bedrock

Properties and qualities

Slope: 10 to 15 percent

Depth to restrictive feature: 40 to 60 inches to paralithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 9.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

NaE—Nanford silt loam, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2qqlt

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Not prime farmland

Map Unit Composition

Nanford and similar soils: 95 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Nanford

Settina

Landform: Interfluves

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from metavolcanics and/or argillite

Typical profile

A - 0 to 7 inches: silt loam Bt - 7 to 27 inches: silty clay

BC - 27 to 38 inches: silty clay loam

C - 38 to 57 inches: loam Cr - 57 to 80 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 40 to 60 inches to paralithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

high (0.00 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 9.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

RgB—Rawlings-Rion complex, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2xhb9

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Rawlings and similar soils: 55 percent Rion and similar soils: 35 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rawlings

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt - 8 to 20 inches: sandy clay loam

C - 20 to 40 inches: gravelly sandy loam

R - 40 to 80 inches: bedrock

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist

Hydric soil rating: No

Description of Rion

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite derived from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam
Bt1 - 8 to 17 inches: sandy clay loam
Bt2 - 17 to 38 inches: sandy loam
C - 38 to 80 inches: sandy loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

RgC—Rawlings-Rion complex, 6 to 10 percent slopes

Map Unit Setting

National map unit symbol: 2xhbb

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Rawlings and similar soils: 55 percent Rion and similar soils: 35 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rawlings

Setting

Landform: Interfluves

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt - 8 to 20 inches: sandy clay loam

C - 20 to 40 inches: gravelly sandy loam

R - 40 to 80 inches: bedrock

Properties and qualities

Slope: 6 to 10 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: C

Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist

Description of Rion

Setting

Landform: Interfluves

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite derived from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam
Bt1 - 8 to 17 inches: sandy clay loam
Bt2 - 17 to 38 inches: sandy loam
C - 38 to 80 inches: sandy loam

Properties and qualities

Slope: 6 to 10 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

RgD—Rawlings-Rion complex, 10 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2xhb8

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Rawlings and similar soils: 55 percent Rion and similar soils: 35 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rawlings

Setting

Landform: Interfluves

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt - 8 to 20 inches: sandy clay loam

C - 20 to 40 inches: gravelly sandy loam

R - 40 to 80 inches: bedrock

Properties and qualities

Slope: 10 to 15 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist

Hydric soil rating: No

Description of Rion

Setting

Landform: Interfluves

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite derived from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt1 - 8 to 17 inches: sandy clay loam

Bt2 - 17 to 38 inches: sandy loam

C - 38 to 80 inches: sandy loam

Properties and qualities

Slope: 10 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

VaB—Vance sandy loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2qqjj

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Vance and similar soils: 85 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Vance

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 5 inches: sandy loam Bt1 - 5 to 23 inches: clay Bt2 - 23 to 29 inches: clay loam C - 29 to 80 inches: loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00

to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 9.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: D

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

W-Water

Map Unit Setting

National map unit symbol: 2qqjv

Elevation: 70 to 450 feet

Mean annual precipitation: 39 to 51 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Water

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: No

WaD—Wake-Rolesville complex, 10 to 15 percent slopes, very rocky

Map Unit Setting

National map unit symbol: 2xhbf

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Not prime farmland

Map Unit Composition

Wake, very rocky, and similar soils: 50 percent Rolesville, very rocky, and similar soils: 40 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wake, Very Rocky

Setting

Landform: Interfluves

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 7 inches: gravelly loamy coarse sand C - 7 to 11 inches: gravelly loamy sand

R - 11 to 80 inches: bedrock

Properties and qualities

Slope: 10 to 15 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to

0.01 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 1.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4s

Hydrologic Soil Group: D

Ecological site: F136XY870GA - Lower piedmont acidic upland woodland, depth

restriction, dry *Hydric soil rating:* No

Description of Rolesville, Very Rocky

Settina

Landform: Interfluves

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 12 inches: loamy sand Bw - 12 to 26 inches: loamy sand C - 26 to 32 inches: loamy coarse sand

Cr - 32 to 38 inches: bedrock R - 38 to 80 inches: bedrock

Properties and qualities

Slope: 10 to 15 percent

Depth to restrictive feature: 20 to 40 inches to paralithic bedrock; 20 to 80 inches

to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to

0.01 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: F136XY870GA - Lower piedmont acidic upland woodland, depth

restriction, dry *Hydric soil rating:* No

WeB—Wedowee sandy loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2xn40

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Wedowee and similar soils: 94 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wedowee

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite residuum weathered from granite and gneiss and/or

saprolite residuum weathered from schist

Typical profile

Ap - 0 to 4 inches: sandy loam
E - 4 to 7 inches: sandy loam
BC - 23 to 35 inches: clay loam
C - 35 to 80 inches: sandy clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

WeC-Wedowee sandy loam, 6 to 10 percent slopes

Map Unit Setting

National map unit symbol: 2xn41

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Wedowee and similar soils: 94 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wedowee

Setting

Landform: Interfluves

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite residuum weathered from granite and gneiss and/or

saprolite residuum weathered from schist

Typical profile

Ap - 0 to 4 inches: sandy loam
E - 4 to 7 inches: sandy loam
BC - 23 to 35 inches: clay loam
C - 35 to 80 inches: sandy clay loam

Properties and qualities

Slope: 6 to 10 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

WeD—Wedowee sandy loam, 10 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2xn3y

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Wedowee and similar soils: 94 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wedowee

Setting

Landform: Interfluves

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite residuum weathered from granite and gneiss and/or

saprolite residuum weathered from schist

Typical profile

Ap - 0 to 4 inches: sandy loam
E - 4 to 7 inches: sandy loam
BC - 23 to 35 inches: clay loam
C - 35 to 80 inches: sandy clay loam

Properties and qualities

Slope: 10 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

WfB-Wedowee-Saw complex, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2xn42

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Wedowee and similar soils: 60 percent Saw and similar soils: 35 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wedowee

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite residuum weathered from granite and gneiss and/or

saprolite residuum weathered from schist

Typical profile

Ap - 0 to 4 inches: sandy loam
E - 4 to 7 inches: sandy loam
BC - 23 to 35 inches: clay loam
C - 35 to 80 inches: sandy clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Description of Saw

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam Bt - 8 to 20 inches: clay

BC - 20 to 26 inches: sandy clay loam C - 26 to 29 inches: sandy loam

R - 29 to 80 inches: bedrock

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to

0.01 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

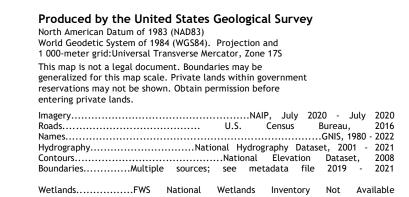
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

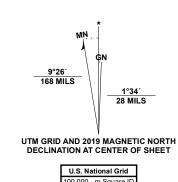
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Pabst Design Group, PA 107 Fayetteville St, Suite 200 Raleigh, NC 27601

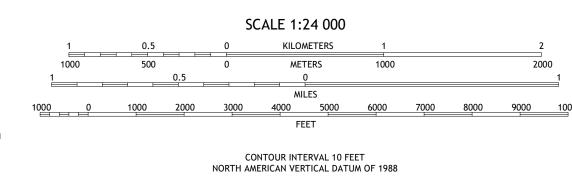
1915 & 1917 Old Bunn Road Zebulon, North Carolina 27597 PDG Project No.: 673-23

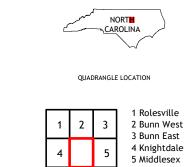
XV. Wake County Soil Survey Map


Pabst Design Group, PA 107 Fayetteville St, Suite 200 Raleigh, NC 27601


1915 & 1917 Old Bunn Road Zebulon, North Carolina 27597 PDG Project No.: 673-23

XVI. USGS Map



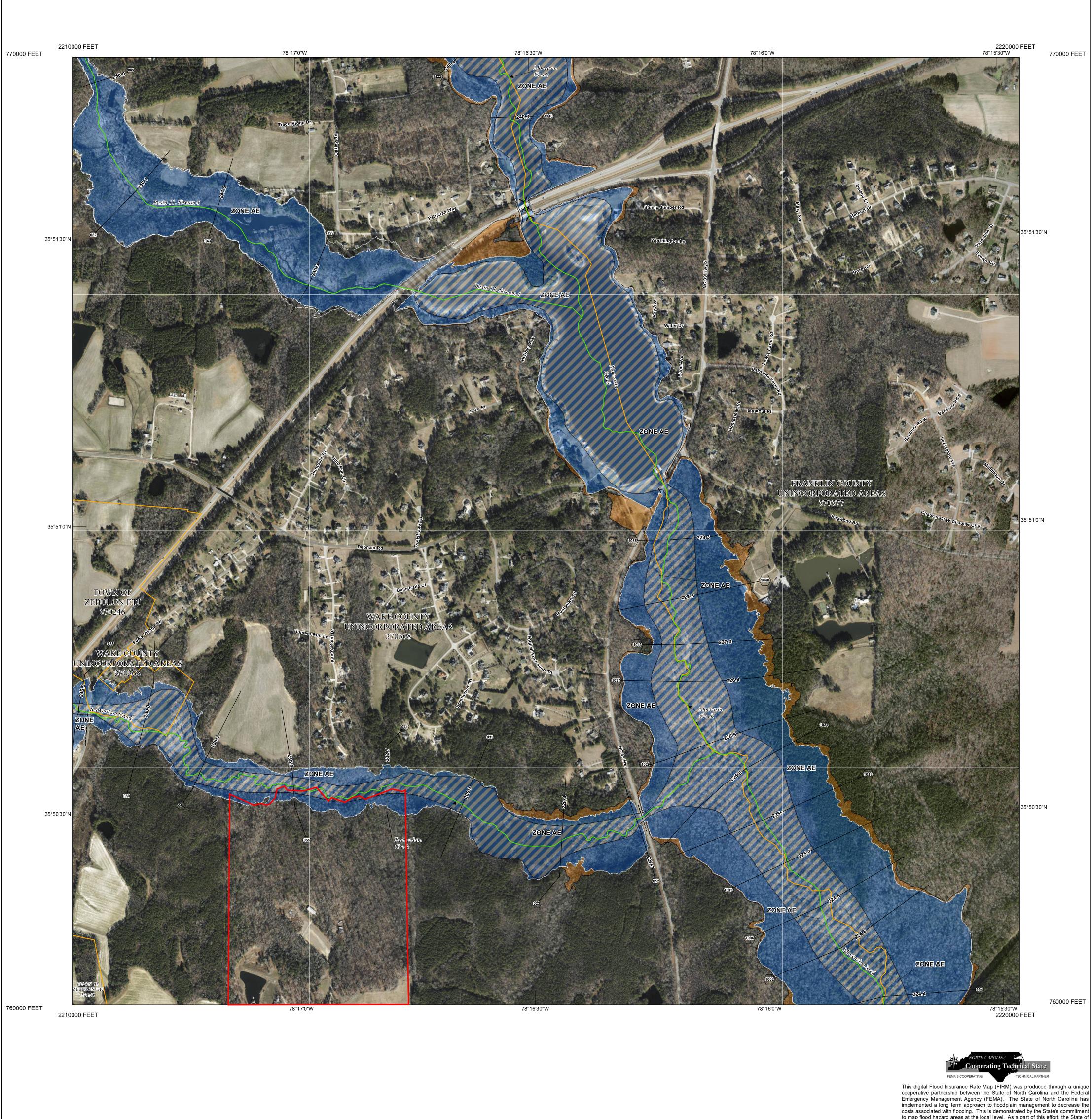


QV

Grid Zone Designation 17S

This map was produced to conform with the National Geospatial Program US Topo Product Standard.

ADJOINING QUADRANGLES


6 Clayton 7 Flowers 8 Stancils Chapel

Pabst Design Group, PA 107 Fayetteville St, Suite 200 Raleigh, NC 27601

1915 & 1917 Old Bunn Road Zebulon, North Carolina 27597 PDG Project No.: 673-23

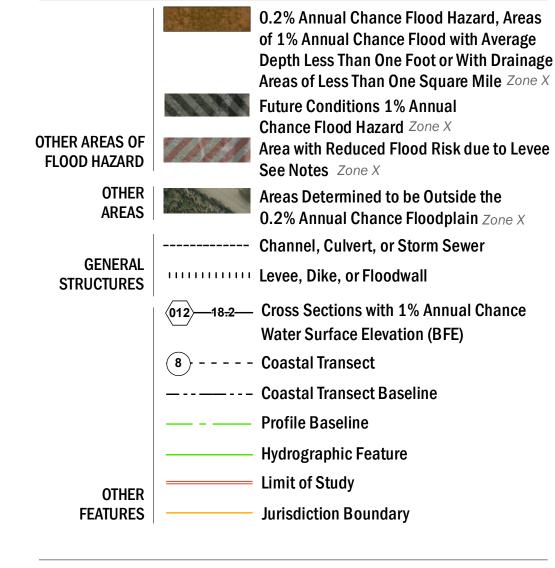
XVII. FEMA FIRM Map

to map flood hazard areas at the local level. As a part of this effort, the State of North Carolina has joined in a Cooperating Technical State agreement with FEMA to produce and maintain this digital FIRM.

FLOOD HAZARD INFORMATION

SPECIAL FLOOD

HAZARD AREAS


SEE FIS REPORT FOR ZONE DESCRIPTIONS AND INDEX MAP **FOR FIRM PANEL LAYOUT**

THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING **DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMAT AT** HTTPS://FRIS.NC.GOV/FRIS HTTPS://MSC.FEMA.GOV

Regulatory Floodway

Without Base Flood Elevation (BFE) Zone A,V, A99

With BFE or Depth Zone AE, AO, AH, VE, AR

NOTES TO USERS

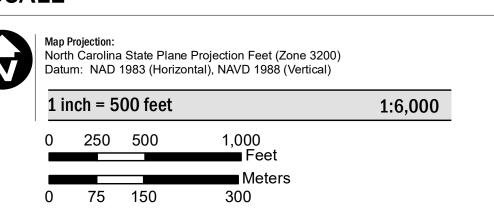
For information and questions about this map, available products associated with this FIRM including historic versions of this FIRM, how to order products or the National Flood Insurance Program in general please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Map Service Center website at https://msc.fema.gov. An accompanying Flood Insurance Study report, Letter of Map Revision (LOMR) or Letter of Map Amendment (LOMA) revising portions of this panel, and digital versions of this FIRM may be available. Visit the North Carolina Floodplain Mapping Program website at https://flood.nc.gov/ncflood, or contact the FEMA Map Service Center.

Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Map Service Center at the number listed above.

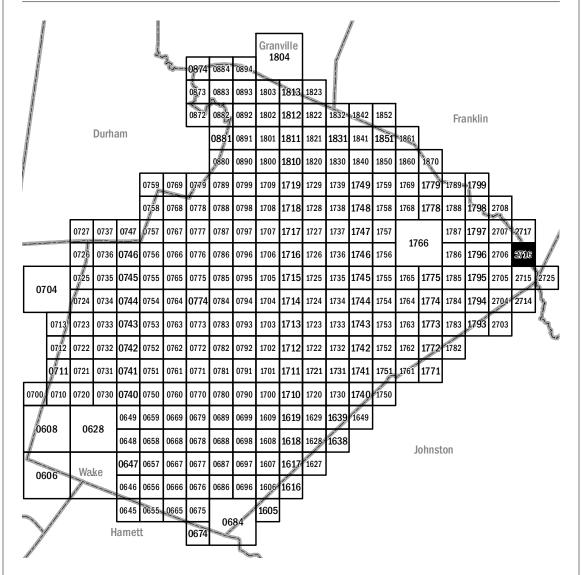
For community and countywide map dates refer to the Flood Insurance Study report for this jurisdiction.

To determine if flood insurance is available in the community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

Flood Insurance Study (FIS) means an examination, evaluation, and determination of flood hazards, corresponding water surface elevations, flood hazard risk zones, and other flood data in a community issued by the North Carolina Floodplain Mapping Program (NCFMP). The Flood Insurance Study (FIS) is comprised of the following products used together: the Digital Flood Hazard Database, the Water Surface Elevation Rasters, the digitally derived, autogenerated Flood Insurance Rate Map and the Flood Insurance Survey Report. A Flood Insurance Survey is a compilation and presentation of flood risk data for specific watercourses, lakes, and coastal flood hazard areas within a community. This report contains detailed flood elevation data, data tables and FIRM indices. When a flood study is completed for the NFIP, the digital information, reports and maps are assembled into an FIS. Information shown on this FIRM is provided in digital format by the NCFMP. Base map information shown on this FIRM was provided in digital format by the NCFMP. The source of this information can be determined from the metadata available in the digital FLOOD database and in the Technical Support Data Notebook (TSDN).


ACCREDITED LEVEE NOTES TO USERS: If an accredited levee note appears on this panel check with your local community to obtain more information, such as the estimated level of protection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, on the levee system(s) shown as providing protection for areas on this panel. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood insurance and floodproofing or other protective measures. For more information on flood insurance, interested parties should visit the FEMA Website at https://www.fema.gov/national-flood-insurance-program.

PROVISIONALLY ACCREDITED LEVEE NOTES TO USERS: If a Provisionally Accredited Levee (PAL) note appears on this panel, check with your local community to obtain more information, such as the estimated level of protection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, on the levee system(s) shown as providing protection for areas on this panel. To maintain accreditation, the levee owner or community is required to submit the data and documentation necessary to comply with Section 65.10 of the NFIP regulations. If the community or owner does not provide the necessary data and documentation or if the data and documentation provided indicate the levee system does not comply with Section 65.10 requirements, FEMA will revise the flood hazard and risk information for this area to reflect de-accreditation of the levee system. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood insurance and floodproofing or other protective measures. For more information on flood insurance, interested parties should visit the FEMA Website at https://www.fema.gov/national-flood-insurance-program.


LIMIT OF MODERATE WAVE ACTION NOTES TO USERS: For some coastal flooding zones the AE Zone category has been divided by a Limit of Moderate Wave Action (LiMWA). The LiMWA represents the approximate landward limit of the 1.5-foot breaking wave. The effects of wave hazards between the VE Zone and the LiMWA (or between the shoreline and the LiMWA for areas where VE Zones are not identified) will be similar to, but less severe than those in the VE Zone.

Limit of Moderate Wave Action (LiMWA)

SCALE

PANEL LOCATOR

Program NORTH CAROLINA FLOODPLAIN MAPPING PROGRAM NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP

NORTH CAROLINA

PANEL **2716**

Panel Contains:

COMMUNITY FRANKLIN COUNTY

Insurance

National Flood

CID PANEL SUFFIX 370377 2716 370368 2716

WAKE COUNTY ZEBULON, TOWN OF 370246 2716

VERSION NUMBER 2.3.3.2 MAP NUMBER 3720271600L **MAP REVISED** July 19, 2022

Pabst Design Group, PA 107 Fayetteville St, Suite 200 Raleigh, NC 27601

1915 & 1917 Old Bunn Road Zebulon, North Carolina 27597 PDG Project No.: 673-23

XVIII. SCM Design Calculations

DESIGN CALCULATIONS

WET POND-1

Project Name

Bennett Bunn Plantation Subdivision

Project Number

673-23

Date

14-Feb-25

Wet Pond Drainage Area Data

Wet Pond Drainage Area: <u>1427946.449</u> square feet = <u>32.781</u> acres

	Drainage Area to Wet Pond		
Impervious areas	Pre	Post	Change
	[sf]	[sf]	[sf]
On-site buildings	0	410,611	410,611
On-site streets	0	199,559	199,559
On-site parking	0	0	0
On-site sidewalks	0	63,782	63,782
Other on-site	0	0	0
Total off-site impervious	0	0	0
Total Impervious	0	673,951.58	673,952
	Drainage Area to Wet Pond		
Non-impervious areas	Pre	Post	Change
	[sf]	[sf]	[sf]
On-site grass/landscape	0	753,995	753,995
On-site woods	0	0	0
Other undeveloped	0	0	0
Other on-site non-impervious	0	0	0
Total off-site non-impervious	0	0	0
Total non-impervious	0	753,994.87	753,995
Total Drainage Area	0	1,427,946	1,427,946
Percent Impervious	n/a	47.2	n/a

Wet Pond Surface Area Calculations

Project: Project No.:	Bennett Bunn Plantation Subdivision 673-23								
Date:	14-Feb-25								
	inage area to por area in drainage		1,427,946 673,952	_square feet _square feet					
Average water d	lepth of basin at r	3.01	_feet						
Location of site Site region		Zebulon Piedmont	- -						
% Impervious co	47.2	_percent							
Will a vegetative	filter be used?	No	_						
For a site in the	ainage Area Ration Piedmont w/out \ Coastal County w/	1.5	_percent _percent						
	e area of pond: Piedmont w/out \ oastal County w/o	22,020.0 0.0	square feet						

Wet Pond Design Volume Caclutaion

Project Bennett Bunn Plantation Subdivision

Project No. <u>673-23</u>

Date 14-Feb-25

Total on-site drainage area to pond 32.781 acres
Total impervious area in drainage area 15.472 acres

% Impervious cover (impervious fraction), I_A 0.472

Runoff coefficient, R_v 0.475

 R_V = 0.05 + 0.9 * I_A Where: R_V = Runoff coefficient (unitless) Impervious fraction (unitless)

Design storm depth, R_D 1.0 inches

Design Volume, DV 56,496 cubic feet

DV = $3630 * R_D * R_V * A$

 $\begin{array}{cccccc} \text{Where:} & \text{DV} & = & \text{Design volume (cu ft)} \\ & & & \text{R}_{\text{D}} & = & \text{Design storm depth (in)} \\ & & & \text{A} & = & \text{Drainage area (ac)} \\ \end{array}$

MAIN POOL

Project No. Bennett Bunn Plantation Subo 673-23

Date	14-Feb-25	
------	-----------	--

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
253.0	0.0	18,899	0.434	0.00	0.434	0.00	0.000	0.00	0.000
254.0	1.0	20,018	0.460	20,018.46	0.03	19,458.55	0.03	19,458.55	0.03
255.0	2.0	21,158	0.486	1,139.92	0.026	20,588.42	0.473	40,046.97	0.498
256.0	3.0	22,318	0.512	1,160.02	0.027	21,738.39	0.499	61,785.37	0.972
256.5	3.5	23,499	0.539	1,180.13	0.027	11,454.24	0.263	73,239.60	0.762
257.0	4.0	25,306	0.581	1,807.90	0.069	12,201.24	0.547	85,440.85	1.046

FOREBAY VOLUME

Project Bennett Bunn Plantation Subo

Project No. 673-23

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
			Ι,,						
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
253.0	0.0	3,780	0.087	3,779.73	0.087	0.00	0.000	0.00	0.000
254.0	1.0	4,004	0.092	223.96	0.01	223.96	0.01	223.96	0.01
255.0	2.0	4,232	0.097	227.98	0.005	4,117.68	0.095	4,341.65	0.100
256.0	3.0	4,464	0.102	232.00	0.005	4,347.68	0.100	8,689.33	0.194
256.5	3.5	4,700	0.108	236.03	0.005	2,290.85	0.053	10,980.17	0.152
257.0	4.0	5,061	0.116	361.58	0.008	2,440.25	0.056	13,420.42	0.109

Required Forebay Volun	ne = 12,816	(Max 20%)
Provided Forebay Volui	me = 13,420	15.7%

PERMANENT POOL

Project Bennett Bunn Plantation Subo Project No. 673-23

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
253.0	0.0	22,678	0.521	0.00	0.521	0.00	0.000	0.00	0.000
254.0	1.0	24,022	0.551	24,022.15	0.03	23,350.27	0.03	23,350.27	0.03
255.0	2.0	25,390	0.583	1,367.90	0.031	24,706.10	0.567	48,056.37	0.598
256.0	3.0	26,782	0.615	1,392.03	0.032	26,086.07	0.599	74,142.44	1.166
256.5	3.5	28,198	0.647	1,416.16	0.033	13,745.08	0.316	87,887.52	0.914
257.0	4.0	30,368	0.697	2,169.48	0.082	14,641.49	0.656	102,529.01	1.255

TEMPORARY POOL

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date <u>14-Feb-25</u>

Contour ID	Stage	Area [sq. ft.]	Area [acres]	Incremental Area [sq. ft.]	Incremental Area [acres]	Incremental volume [cu. ft]	Incremental volume [acre-ft]	Cumulative volume [cu. ft]	Cumulative volume [acre-ft]
257.0	0.0	30,368	0.697	0.00	0.70	0.00	0.00	0.00	0.00
258.0	1.0	33,209	0.762	2,841.28	0.07	31,788.36	0.73	31,788.36	0.73
259.0	2.0	35,131	0.806	1,922.00	0.04	34,170.00	0.78	65,958.36	1.51

Design Volume =	56,496
Provided Volume =	65.958

Average Depth Calculation

Project Bennett Bunn Plantation Subdivision Project No. 673-23

Date 14-Feb-25

Davg = A hottom of shelf Where: Average depth (feet) Main pool volume at permanent pool elevation (feet3) Volume over the shelf only (feet3) - see below Area of main pool at the bottom of the shelf (feet2) Abottom of shelf = 0.5 * Depth_{max over shelf} * Perimeter_{perm pool} * Width_{submerged part of shelf} Where: Depth of water at the deep side of the shelf as Depth_{max over shelf} measured from the permanent pool (feet) Perimeter_{perm pool} Perimeter of main pool at the bottom of the shelf (feet) Width from the deep side to the dry side of the Width_{submerged part of shelf} = shelf as measured at permanent pool (feet)

Depth_{max over shelf} 0.50 feet

 $Width_{\text{submerged part of shelf}} \underline{3.00} \hspace{0.5cm} \text{feet}$

 V_{shelf} 572.04 cubic feet

 $D_{avg} \underline{\hspace{0.5cm}} 3.61 \underline{\hspace{0.5cm}} feet$

Provided Depth = 3.61 feet

Wet Pond Drawdown Time Calculations

Project Bennett Bunn Plantation Subdivision

Project No. <u>673-23</u>

Date 14-Feb-25

Surface area at normal pool (A_0) = 30,368 square feet Surface area at beginning of drawdown (A_1) = 35,131 square feet Maximum head of water above dewatering hole (H_1) = feet 1.00 Orifice coefficient $(C_d) =$ 0.6 Diameter of each hole = 1.25 inches Number of holes = 2 Acceleration of Gravity (g) = 32.2 feet / second² Cross sectional area of each hole (a) = 0.009 square feet Cross sectional area of each hole = 1.2 square inches Cross sectional area of dewatering hole(s) = 0.017 square feet Cross sectional area of dewatering hole(s) = 2.5 square inches Dewatering time for basin (T) = 395,979.8 seconds Dewatering time for basin (T) = 4.58 days

Calculations based on Greensboro Stormwater Manual, Chapter 3, Section 3.5.2

For the specific case where
$$A_2 = A_0$$
 and $H_2 = 0$

$$T = \frac{1}{Cd*a*\sqrt{2*g}}*\left[\left(2*A_0*H_1^{-1/2} + \frac{2}{3}\left(\frac{A_1 - A_0}{H_1}\right)*H_1^{-3/2}\right)\right]$$
Equation 2
$$T = \frac{1}{Cd*a*\sqrt{2*g}}*\left[\left(\frac{2}{3}A_0 + \frac{1}{3}A_1\right)*H_1^{-1/2}\right]$$

Notes:

Bouyancy Calculations for Riser

	dydney Galcalations it	JI 113CI
Project Project No.	Bennett Bunn Plantation 673-23	on Subdivision
Date	14-Feb-25	
Structure Data		
Riser Inner Width =	4.00	ft
Riser Inner Length =		ft
Wall Thickness =		ft
Base Width =		ft
Base Length =		ft
Top of Riser Elevation =		ft
Structure Invert Elevation =	253.00	ft
Bottom of Base Elevation =	250.00	ft
Depth of Concrete Base =	3.00	ft
Bouyant Force Calcluation		
Riser Inner Volume =	80.00	ft
Riser Concrete Volume =		ft Unit Weight = 62.50 pcf
Base Concrete Volume =		ft Total Bouyant Force = 12,500.00
Total Displaced Volume =	200.00	ft
Required Resisting Force Calcluation		
Desired Factor of Safety =	1.15	Factored Resistent Force = 14,375.00 lb
Provided Resisting Force Calculation		
Unit Weight of Concrete =	150.00	pcf
Weight of Concrete Riser =		lb
Weight of Concrete Base Unit =	11,250.00	Ib Total Resisting Force = 18,000.00 lb
Compliance Check		
Provided Resisting Force >	Factored Resisting Fo	rce = YES
	Provided Factor of Saf	
		·

Wet Pond Summary Information

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date 14-Feb-25

Drainage area to pond Impervious area in drainage area $\frac{1,427,946}{673,952}$ square feet = $\frac{32.78}{15.47}$ acres acres

 $\begin{array}{c} \text{Bottom of pond elevation} & \underline{253.00} & \text{feet} \\ \text{Normal pool elevation} & \underline{257.00} & \text{feet} \\ \end{array}$

Required volume for design rainfall 56,496 cubic feet

Provided volume for design rainfall 65,958 cubic feet at elevation 259

SA/DA Ratio for Permanent Pool Sizing for 85% Removal in the Piedmont

Pool depth to lookup	3.61
Impervious cover to lookup	47.2

Pool depth between	3	and	4	which is between columns	1	and	2
Impervious cover between	40.0	and	50.0	which is between rows	4	and	5

SA/DA ratios

Impevious cover	Pool depth					
[percent]	[feet]					
	3.0	3.6	4.0			
40	1.51	1.34	1.24			
47.2	1.71	1.54	1.43			
50	1.79	1.62	1.51			

Piedmont and Mountain SA/DA Table

% Impervious	Permanent Pool Depth						
Cover	3.0	4.0	5.0	6.0	7.0	8.0	
10	0.51	0.43	0.37	0.30	0.27	0.25	
20	0.84	0.69	0.61	0.51	0.44	0.40	
30	1.17	0.97	0.84	0.72	0.61	0.56	
40	1.51	1.24	1.09	0.91	0.78	0.71	
50	1.79	1.51	1.31	1.13	0.95	0.87	
60	2.09	1.77	1.49	1.31	1.12	1.03	
70	2.51	2.09	1.80	1.56	1.34	1.17	
80	2.92	2.41	2.07	1.82	1.62	1.40	
90	3.25	2.64	2.31	2.04	1.84	1.59	
100	3.55	2.79	2.52	2.34	2.04	1.75	

DESIGN CALCULATIONS

WET POND-2

Project Name

Bennett Bunn Plantation Subdivision

Project Number

673-23

Date

14-Feb-25

Wet Pond Drainage Area Data

Wet Pond Drainage Area: <u>1619635.296</u> square feet = <u>37.182</u> acres

	Drain	age Area to Wet	Pond		
Impervious areas	Pre	Post	Change		
·	[sf]	[sf]	[sf]		
On-site buildings	0	416,797	416,797		
On-site streets	0	291,248	291,248		
On-site parking	0	0	0		
On-site sidewalks	0	61,146	61,146		
Other on-site	0	0	0		
Total off-site impervious	0	0	0		
Total Impervious	0	769,190.64	769,191		
	Drain	age Area to Wet	t Pond		
Non-impervious areas	Pre	Post	Change		
	[sf]	[sf]	[sf]		
On-site grass/landscape	0	850,445	850,445		
On-site woods	0	0	0		
Other undeveloped	0	0	0		
Other on-site non-impervious	0	0	0		
Total off-site non-impervious	0	0	0		
Total non-impervious	0	850,444.66	850,445		
Total Drainage Area	0	1,619,635	1,619,635		
Percent Impervious	n/a	47.5	n/a		

Wet Pond Surface Area Calculations

Project: Project No.:	Bennett Bunn Pl 673-23	antation Subdivis -	ion		
Date:	14-Feb-25				
	inage area to por area in drainage		1,619,635 769,191	_square feet _square feet	
Average water d	lepth of basin at r	ormal pool		3.04	feet
Location of site Site region		Garner Piedmont	- -		
% Impervious co	over	47.5	percent		
Will a vegetative	filter be used?			No	-
For a site in the	ainage Area Ration Piedmont w/out Voastal County w/	1.6	_percent _percent		
	e area of pond: Piedmont w/out \ oastal County w/o	•	ter	25,430.0 0.0	square feet square feet

Wet Pond Design Volume Caclutaion

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date 14-Feb-25

Total on-site drainage area to pond 37.182 acres Total impervious area in drainage area 17.658 acres

% Impervious cover (impervious fraction), IA 0.475

Runoff coefficient, R_v 0.477

 R_V $0.05 + 0.9 * I_A$ Runoff coefficient (unitless) Where: Impervious fraction (unitless)

Design storm depth, R_D 1.0 inches

Design Volume, DV 64,438 cubic feet

DV 3630 * RD * RV * A

Where: DV Design volume (cu ft)

Design storm depth (in)
Drainage area (ac) R_D

MAIN POOL

Project Bennett Bunn Plantation Subo Project No. <u>673-23</u>

Date	14-Feb-25	
------	-----------	--

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
239.0	0.0	20,073	0.461	0.00	0.461	0.00	0.000	0.00	0.000
240.0	1.0	21,554	0.495	21,554.25	0.03	20,813.45	0.03	20,813.45	0.03
241.0	2.0	23,062	0.529	1,507.83	0.035	22,308.17	0.512	43,121.61	0.546
242.0	3.0	24,590	0.565	1,527.94	0.035	23,826.05	0.547	66,947.67	1.059
242.5	3.5	26,138	0.600	1,548.04	0.036	12,682.02	0.291	79,629.69	0.838
243.0	4.0	28,498	0.654	2,359.77	0.090	13,658.97	0.609	93,288.66	1.156

FOREBAY VOLUME

Project Bennett Bunn Plantation Subo

Project No. 673-23

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
239.0	0.0	4,015	0.092	4,014.53	0.092	0.00	0.000	0.00	0.000
240.0	1.0	4,311	0.099	296.32	0.01	296.32	0.01	296.32	0.01
241.0	2.0	4,612	0.106	301.57	0.007	4,461.63	0.102	4,757.96	0.109
242.0	3.0	4,918	0.113	305.59	0.007	4,765.21	0.109	9,523.17	0.212
242.5	3.5	5,228	0.120	309.61	0.007	2,536.40	0.058	12,059.57	0.168
243.0	4.0	5,700	0.131	471.95	0.011	2,731.79	0.063	14,791.37	0.121

Required Forebay Volume =	13,993	(Max 20%)
Provided Forebay Volume =	14,791	15.9%

PERMANENT POOL

Project Bennett Bunn Plantation Subo Project No. 673-23

Date 14-I	-eb-25
-----------	--------

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
239.0	0.0	24,087	0.553	0.00	0.553	0.00	0.000	0.00	0.000
240.0	1.0	25,865	0.594	25,865.10	0.04	24,976.13	0.04	24,976.13	0.04
241.0	2.0	27,674	0.635	1,809.40	0.042	26,769.80	0.615	51,745.94	0.655
242.0	3.0	29,508	0.677	1,833.53	0.042	28,591.26	0.656	80,337.20	1.271
242.5	3.5	31,366	0.720	1,857.65	0.043	15,218.43	0.349	95,555.62	1.006
243.0	4.0	34,197	0.785	2,831.72	0.108	16,390.77	0.731	111,946.39	1.388

TEMPORARY POOL

Project Bennett Bunn Plantation Subdivision

Project No. <u>673-23</u>

Date 14-Feb-25

Contour ID	Stage	Area [sq. ft.]	Area [acres]	Incremental Area [sq. ft.]	Incremental Area [acres]	Incremental volume [cu. ft]	Incremental volume [acre-ft]	Cumulative volume [cu. ft]	Cumulative volume [acre-ft]
243.0	0.0	34,197	0.785	0.00	0.79	0.00	0.00	0.00	0.00
244.0	1.0	37,101	0.852	2,903.60	0.07	35,649.20	0.82	35,649.20	0.82
245.0	2.0	39,288	0.902	2,187.00	0.05	38,194.50	0.88	73,843.70	1.70

Design Volume = 64,438 Provided Volume = 73,844

Average Depth Calculation

Project Bennett Bunn Plantation Subdivision Project No. 673-23

Date 14-Feb-25

Davg = A hottom of shelf Where: Average depth (feet) Main pool volume at permanent pool elevation (feet3) Volume over the shelf only (feet3) - see below Area of main pool at the bottom of the shelf (feet2) Abottom of shelf = 0.5 * Depth_{max over shelf} * Perimeter_{perm pool} * Width_{submerged part of shelf} Where: Depth of water at the deep side of the shelf as Depth_{max over shelf} measured from the permanent pool (feet) Perimeter_{perm pool} Perimeter of main pool at the bottom of the shelf (feet) Width from the deep side to the dry side of the Width_{submerged part of shelf} = shelf as measured at permanent pool (feet)

Depth_{max over shelf} 0.50 feet

Perimeter_{perm pool} 992.66 feet

 $Width_{\text{submerged part of shelf}} \underline{3.00} \hspace{0.5cm} \text{feet}$

V_{shelf} 744.50 cubic feet

D_{avg} 3.54 feet

Provided Depth = 3.54 feet

Wet Pond Drawdown Time Calculations

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date 14-Feb-25

Surface area at normal pool (A_0) =	28,498	square feet
Surface area at beginning of drawdown $(A_1) = \overline{}$	39,288	square feet
Maximum head of water above dewatering hole $(H_1) = \frac{1}{2}$	1.00	_ feet
Orifice coefficient (C_d) =	0.6	_
Diameter of each hole =	1.50	_inches
Number of holes = _	2	_
Acceleration of Gravity (g) = _	32.2	_feet / second ²
Cross sectional area of each hole (a) = _	0.012	_square feet
Cross sectional area of each hole = _	1.8	_square inches
	0.005	•
Cross sectional area of dewatering hole(s) = _	0.025	_square feet
Cross sectional area of dewatering hole(s) = _	3.5	_square inches
Deviatoring time for basin (T)	070 400 7	
Dewatering time for basin (T) = _	276,182.7	_seconds
Dewatering time for basin (T) = _	3.20	_days

Calculations based on Greensboro Stormwater Manual, Chapter 3, Section 3.5.2

For the specific case where
$$A_2 = A_0$$
 and $H_2 = 0$
$$T = \frac{1}{Cd*a*\sqrt{2*g}}*\left[\left(2*A_0*H_1^{1/2} + \frac{2}{3}\left(\frac{A_1 - A_0}{H_1}\right)*H_1^{3/2}\right)\right]$$
 Equation 2
$$T = \frac{1}{Cd*a*\sqrt{2*g}}*\left[\left(\frac{2}{3}A_0 + \frac{1}{3}A_1\right)*H_1^{1/2}\right]$$

Notes:

Bouyancy Calculations for Riser

	ayancy calculations i	OI MISCI
Project Project No.	Bennett Bunn Plantati 673-23	on Subdivision
Date	14-Feb-25	-
Structure Data Riser Inner Width =	4.00	tr.
Riser Inner Vidur -		_ft _ft
- Wall Thickness		ft
Base Width =		ft
Base Length =		ft
Top of Riser Elevation =		ft
Structure Invert Elevation =		-r. ft
Bottom of Base Elevation =		ft
Depth of Concrete Base =		- ft
Bouyant Force Calcluation		_
Riser Inner Volume =		_ft
Riser Concrete Volume =		ft Unit Weight = 62.50 pcf
Base Concrete Volume =		ft Total Bouyant Force = 12,500.00
Total Displaced Volume =	200.00	_ft
Required Resisting Force Calcluation		
Desired Factor of Safety =	1.15	Factored Resistent Force = 14,375.00 lb
Provided Resisting Force Calculation		
Unit Weight of Concrete =	150.00	pcf
Weight of Concrete Riser =		lb
Weight of Concrete Base Unit =	11,250.00	lb Total Resisting Force = 18,000.00 lb
		
Compliance Check	Fastanad Dasiation Fr	VEO.
Provided Resisting Force	_	
	Provided Factor of Sa	fety = <u>1.44</u>

Wet Pond Summary Information

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date 14-Feb-25

Drainage area to pond Impervious area in drainage area $\frac{1,619,635}{769,191}$ square feet = $\frac{37.18}{17.66}$ acres acres

Required volume for design rainfall 64,438 cubic feet

Provided volume for design rainfall 73,844 cubic feet at elevation 245

SA/DA Ratio for Permanent Pool Sizing for 85% Removal in the Piedmont

Pool depth to lookup	3.54							
Impervious cover to lookup	47.5							
Pool depth between	3	and	4	which is between columns	1	and	2	
Impervious cover between	40.0	and	50.0	which is between rows	4	and	5	•

SA/DA ratios

Impevious cover	Pool depth					
[percent]	[feet]					
	3.0 3.5 4.0					
40	1.51 1.36 1.24					
47.5	1.72 1.57 1.44					
50	1.79 1.64 1.51					

Piedmont and Mountain SA/DA Table

% Impervious	Permanent Pool Depth					
Cover	3.0	4.0	5.0	6.0	7.0	8.0
10	0.51	0.43	0.37	0.30	0.27	0.25
20	0.84	0.69	0.61	0.51	0.44	0.40
30	1.17	0.97	0.84	0.72	0.61	0.56
40	1.51	1.24	1.09	0.91	0.78	0.71
50	1.79	1.51	1.31	1.13	0.95	0.87
60	2.09	1.77	1.49	1.31	1.12	1.03
70	2.51	2.09	1.80	1.56	1.34	1.17
80	2.92	2.41	2.07	1.82	1.62	1.40
90	3.25	2.64	2.31	2.04	1.84	1.59
100	3.55	2.79	2.52	2.34	2.04	1.75

DESIGN CALCULATIONS

WET POND-3

Project Name

Bennett Bunn Plantation Subdivision

Project Number

673-23

Date

14-Feb-25

Wet Pond Drainage Area Data

Wet Pond Drainage Area: <u>354833.870</u> square feet = <u>8.146</u> acres

	Drain	age Area to Wet	Pond			
Impervious areas	Pre	Post	Change			
	[sf]	[sf]	[sf]			
On-site buildings	0	74,988	74,988			
On-site streets	0	66,987	66,987			
On-site parking	0	0	0			
On-site sidewalks	0	18,510	18,510			
Other on-site	0	0	0			
Total off-site impervious	0	0	0			
Total Impervious	0	160,485.64	160,486			
	Drainage Area to Wet Pond					
Non-impervious areas	Pre	Post	Change			
	[sf]	[sf]	[sf]			
On-site grass/landscape	0	194,348	194,348			
On-site woods	0	0	0			
Other undeveloped	0	0	0			
Other on-site non-impervious	0	0	0			
Total off-site non-impervious	0	0	0			
Total non-impervious	0	194,348.23	194,348			
Total Drainage Area	0	354,834	354,834			
Percent Impervious	n/a	45.2	n/a			

Wet Pond Surface Area Calculations

Project: Project No.:	Bennett Bunn Pl	antation Subdivis	ion		
Date:	14-Feb-25				
	inage area to por area in drainage		354,834 160,486	_square feet _square feet	
Average water d	lepth of basin at n	ormal pool		2.99	_feet
Location of site Site region		Garner Piedmont	- -		
% Impervious co	over	45.2	percent		
Will a vegetative	filter be used?			No	_
For a site in the	ainage Area Ration Piedmont w/out Voastal County w/	egetative Filter		1.5	_percent _percent
	e area of pond: Piedmont w/out \ oastal County w/o	•	ter	5,460.0 0.0	square feet square feet

Wet Pond Design Volume Caclutaion

Project Bennett Bunn Plantation Subdivision

Project No. <u>673-23</u>

Date 14-Feb-25

Total on-site drainage area to pond 8.146 acres
Total impervious area in drainage area 3.684 acres

% Impervious cover (impervious fraction), I_A 0.452

Runoff coefficient, R_v 0.457

 R_V = 0.05 + 0.9 * I_A Where: R_V = Runoff coefficient (unitless) | Impervious fraction (unitless)

Design storm depth, R_D 1.0 inches

Design Volume, DV 13,515 cubic feet

DV = $3630 * R_D * R_V * A$

MAIN POOL

Project Bennett Bunn Plantation Subo Project No. <u>673-23</u>

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
251.0	0.0	5,841	0.134	0.00	0.134	0.00	0.000	0.00	0.000
252.0	1.0	6,564	0.151	6,564.45	0.02	6,202.75	0.02	6,202.75	0.02
253.0	2.0	7,323	0.168	758.68	0.017	6,943.78	0.159	13,146.53	0.176
254.0	3.0	8,113	0.186	789.94	0.018	7,718.09	0.177	20,864.62	0.337
254.5	3.5	8,516	0.196	403.37	0.009	4,157.37	0.095	25,022.00	0.273
255.0	4.0	9,757	0.224	1,240.26	0.038	4,568.28	0.205	29,590.28	0.382

FOREBAY VOLUME

Project Bennett Bunn Plantation Subo

Project No. 673-23

Contour ID	Stage	Area [sq. ft.]	Area [acres]	Incremental Area [sq. ft.]	Incremental Area [acres]	Incremental volume [cu. ft]	Incremental volume [acre-ft]	Cumulative volume [cu. ft]	Cumulative volume [acre-ft]
251.0	0.0	1,168	0.027	1,168.21	0.027	0.00	0.000	0.00	0.000
252.0	1.0	1,313	0.030	144.68	0.00	144.68	0.00	144.68	0.00
253.0	2.0	1,465	0.034	151.74	0.003	1,388.76	0.032	1,533.44	0.035
254.0	3.0	1,623	0.037	157.99	0.004	1,543.62	0.035	3,077.06	0.067
254.5	3.5	1,703	0.039	80.67	0.002	831.47	0.019	3,908.53	0.055
255.0	4.0	1,951	0.045	248.05	0.006	913.66	0.021	4,822.19	0.040

Required Forebay Volume =	4,439	(Max 20%)
Provided Forebay Volume =	4,822	16.3%

PERMANENT POOL

Project Bennett Bunn Plantation Subo Project No. 673-23

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
251.0	0.0	7,009	0.161	0.00	0.161	0.00	0.000	0.00	0.000
252.0	1.0	7,877	0.181	7,877.33	0.02	7,443.29	0.02	7,443.29	0.02
253.0	2.0	8,788	0.202	910.41	0.021	8,332.54	0.191	15,775.84	0.211
254.0	3.0	9,736	0.224	947.93	0.022	9,261.71	0.213	25,037.55	0.404
254.5	3.5	10,220	0.235	484.04	0.011	4,988.85	0.115	30,026.40	0.327
255.0	4.0	11,708	0.269	1,488.31	0.045	5,481.94	0.246	35,508.33	0.459

TEMPORARY POOL

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date <u>14-Feb-25</u>

Contour ID	Stage	Area [sq. ft.]	Area [acres]	Incremental Area [sq. ft.]	Incremental Area [acres]	Incremental volume [cu. ft]	Incremental volume [acre-ft]	Cumulative volume [cu. ft]	Cumulative volume [acre-ft]
255.0	0.0	11,708	0.269	0.00	0.27	0.00	0.00	0.00	0.00
256.0	1.0	12,718	0.292	1,009.97	0.02	12,213.02	0.28	12,213.02	0.28
257.0	2.0	13,988	0.321	1,270.00	0.03	13,353.00	0.31	25,566.02	0.59

Design Volume =	13,515
Provided Volume =	25.566

Average Depth Calculation

Project Bennett Bunn Plantation Subdivision Project No. 673-23

Date 14-Feb-25

Davg = A hottom of shelf Where: Average depth (feet) Main pool volume at permanent pool elevation (feet3) Volume over the shelf only (feet3) - see below Area of main pool at the bottom of the shelf (feet2) Abottom of shelf = 0.5 * Depth_{max over shelf} * Perimeter_{perm pool} * Width_{submerged part of shelf} Where: Depth of water at the deep side of the shelf as Depth_{max over shelf} measured from the permanent pool (feet) Perimeter_{perm pool} Perimeter of main pool at the bottom of the shelf (feet) Width from the deep side to the dry side of the Width_{submerged part of shelf} = shelf as measured at permanent pool (feet)

Depth_{max over shelf} 0.50 feet

Perimeter_{perm pool} 526.20 feet

 $Width_{\text{submerged part of shelf}} \underline{\hspace{0.5cm} 3.00 \hspace{0.5cm}} \text{ feet}$

 V_{shelf} 394.65 cubic feet

D_{avg} 3.43 feet

Provided Depth = 3.43 feet

Wet Pond Drawdown Time Calculations

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date 14-Feb-25

Surface area at normal pool (A_0) =	9,757	square feet
Surface area at beginning of drawdown (A ₁) =	13,988	square feet
Maximum head of water above dewatering hole (H ₁) =	1.00	feet
Orifice coefficient $(C_d) = \frac{1}{2}$	0.6	-
Diameter of each hole =	1.25	inches
Number of holes =	1	_
Acceleration of Gravity (g) =	32.2	feet / second ²
Cross sectional area of each hole (a) =	0.009	square feet
Cross sectional area of each hole =	1.2	square inches
Cross sectional area of dewatering hole(s) =	0.009	square feet
Cross sectional area of dewatering hole(s) = _	1.2	square inches
Dewatering time for basin (T) =	276,757.4	seconds
Dewatering time for basin (T) = _	3.20	_days

Calculations based on Greensboro Stormwater Manual, Chapter 3, Section 3.5.2

For the specific case where
$$A_2 = A_0$$
 and $H_2 = 0$
$$T = \frac{1}{Cd*a*\sqrt{2*g}}*\left[\left(2*A_0*H_1^{1/2} + \frac{2}{3}\left(\frac{A_1 - A_0}{H_1}\right)*H_1^{3/2}\right)\right]$$
 Equation 2
$$T = \frac{1}{Cd*a*\sqrt{2*g}}*\left[\left(\frac{2}{3}A_0 + \frac{1}{3}A_1\right)*H_1^{1/2}\right]$$

Notes:

Bouyancy Calculations for Riser

	ayancy calculations	TOT TRISCI
Project Project No.	Bennett Bunn Plantation Subdivision 673-23	
Date	14-Feb-25	_
Structure Data		
Riser Inner Width =	4.00	ft
Riser Inner Length =		_ ·· ft
Wall Thickness =		_ tt
Base Width =		_ ft
Base Length =		_ ft
Top of Riser Elevation =		ft
Structure Invert Elevation =	251.00	ft
Bottom of Base Elevation =	248.00	ft
Depth of Concrete Base =	3.00	ft
Bouyant Force Calcluation		
Riser Inner Volume =	80.00	ft
Riser Concrete Volume =		ft Unit Weight = 62.50 pcf
Base Concrete Volume =		ft Total Bouyant Force = 12,500.00
Total Displaced Volume =	200.00	ft
Required Resisting Force Calcluation		
Desired Factor of Safety =	1.15	Factored Resistent Force = 14,375.00 lb
Provided Resisting Force Calculation		
Unit Weight of Concrete =	150.00	pcf
Weight of Concrete Riser =		_ lb
Weight of Concrete Base Unit =	11,250.00	lb Total Resisting Force = 18,000.00 lb
Compliance Check		
Provided Resisting Force >	Factored Resisting Fo	orce = YES
9	Provided Factor of Sa	
		· <u> </u>

Wet Pond Summary Information

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date 14-Feb-25

Drainage area to pond Impervious area in drainage area $\frac{354,834}{160,486}$ square feet = $\frac{8.15}{3.68}$ acres acres

 $\begin{array}{c} \text{Bottom of pond elevation} & \underline{251.00} & \text{feet} \\ \text{Normal pool elevation} & \underline{255.00} & \text{feet} \end{array}$

Required volume for design rainfall 13,515 cubic feet

Provided volume for design rainfall 25,566 cubic feet at elevation 2

SA/DA Ratio for Permanent Pool Sizing for 85% Removal in the Piedmont

Pool depth to lookup	3.43
Impervious cover to lookup	45.2

Pool depth between	3	and	4	which is between columns	1	and	2
Impervious cover between	40.0	and	50.0	which is between rows	4	and	5

SA/DA ratios

Impevious cover	Pool depth				
[percent]	[feet]				
	3.0 3.4 4.0				
40	1.51	1.39	1.24		
45.2	1.66	1.54	1.38		
50	1.79	1.67	1.51		

Piedmont and Mountain SA/DA Table

% Impervious	Permanent Pool Depth						
Cover	3.0	4.0	5.0	6.0	7.0	8.0	
10	0.51	0.43	0.37	0.30	0.27	0.25	
20	0.84	0.69	0.61	0.51	0.44	0.40	
30	1.17	0.97	0.84	0.72	0.61	0.56	
40	1.51	1.24	1.09	0.91	0.78	0.71	
50	1.79	1.51	1.31	1.13	0.95	0.87	
60	2.09	1.77	1.49	1.31	1.12	1.03	
70	2.51	2.09	1.80	1.56	1.34	1.17	
80	2.92	2.41	2.07	1.82	1.62	1.40	
90	3.25	2.64	2.31	2.04	1.84	1.59	
100	3.55	2.79	2.52	2.34	2.04	1.75	

DESIGN CALCULATIONS

WET POND-4

Project Name

Bennett Bunn Plantation Subdivision

Project Number

673-23

Date

14-Feb-25

Wet Pond Drainage Area Data

Wet Pond Drainage Area: <u>349308.530</u> square feet = <u>8.019</u> acres

	Drain	age Area to Wet	Pond			
Impervious areas	Pre	Post	Change			
· ·	[sf]	[sf]	[sf]			
On-site buildings	0	88,087	88,087			
On-site streets	0	72,996	72,996			
On-site parking	0	0	0			
On-site sidewalks	0	17,973	17,973			
Other on-site	0	0	0			
Total off-site impervious	0	0	0			
Total Impervious	0	179,055.82	179,056			
	Drainage Area to Wet Pond					
Non-impervious areas	Pre	Post	Change			
	[sf]	[sf]	[sf]			
On-site grass/landscape	0	170,253	170,253			
On-site woods	0	0	0			
Other undeveloped	0	0	0			
Other on-site non-impervious	0	0	0			
Total off-site non-impervious	0	0	0			
Total non-impervious	0	170,252.71	170,253			
Total Drainage Area	0	349,309	349,309			
Percent Impervious	n/a	51.3	n/a			

Wet Pond Surface Area Calculations

Project: Beni Project No.: 673-	23	on Subdivis	ion		
Date: <u>14-</u> F	eb-25				
Total on-site drainage Total impervious area	-		349,309 179,056	_square feet _square feet	
Average water depth	of basin at normal	l pool		2.95	_feet
Location of site Site region	Garne Piedn				
% Impervious cover		51.3	percent		
Will a vegetative filter	be used?			No	_
Surface Area/Drainag For a site in the Piedr For a site in a Coasta	nont w/out Vegeta			1.7	_percent _percent
Required surface area For a site in the Piedr For a site in a Coasta	nont w/out Vegeta		er	5,840.0 0.0	_square feet _square feet

Wet Pond Design Volume Caclutaion

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date 14-Feb-25

Total on-site drainage area to pond 8.019 acres Total impervious area in drainage area 4.111 acres

% Impervious cover (impervious fraction), IA 0.513

Runoff coefficient, R_v 0.511

 R_V $0.05 + 0.9 * I_A$ Runoff coefficient (unitless) Where:

Design storm depth, R_D 1.0 inches

Design Volume, DV 14,885 cubic feet

Impervious fraction (unitless)

DV 3630 * RD * RV * A

Where: DV Design volume (cu ft)

Design storm depth (in)
Drainage area (ac) R_D

MAIN POOL

Project No. Bennett Bunn Plantation Subo 673-23

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
246.0	0.0	7,056	0.162	0.00	0.162	0.00	0.000	0.00	0.000
247.0	1.0	7,702	0.177	7,702.16	0.01	7,379.27	0.01	7,379.27	0.01
248.0	2.0	8,368	0.192	665.89	0.015	8,035.10	0.184	15,414.37	0.199
249.0	3.0	9,054	0.208	686.00	0.016	8,711.05	0.200	24,125.42	0.384
249.5	3.5	9,405	0.216	350.54	0.008	4,614.66	0.106	28,740.07	0.306
250.0	4.0	10,486	0.241	1,081.77	0.033	4,972.73	0.224	33,712.81	0.424

FOREBAY VOLUME

Project Bennett Bunn Plantation Subo

Project No. 673-23

Contour ID	Stage	Area [sq. ft.]	Area [acres]	Incremental Area [sq. ft.]	Incremental Area [acres]	Incremental volume [cu. ft]	Incremental volume [acre-ft]	Cumulative volume [cu. ft]	Cumulative volume [acre-ft]
246.0	0.0	1,411	0.032	1,411.28	0.032	0.00	0.000	0.00	0.000
247.0	1.0	1,540	0.035	129.16	0.00	129.16	0.00	129.16	0.00
248.0	2.0	1,674	0.038	133.18	0.003	1,607.02	0.037	1,736.18	0.040
249.0	3.0	1,811	0.042	137.20	0.003	1,742.21	0.040	3,478.39	0.077
249.5	3.5	1,881	0.043	70.11	0.002	922.93	0.021	4,401.32	0.061
250.0	4.0	2,097	0.048	216.35	0.005	994.55	0.023	5,395.86	0.044

Required Forebay Volu	me = 5,057	(Max 20%)
Provided Forebay Volu	ume = 5,396	16.0%

PERMANENT POOL

Project Bennett Bunn Plantation Subo Project No. <u>673-23</u>

Date	14-Feb-25	

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
246.0	0.0	8,468	0.194	0.00	0.194	0.00	0.000	0.00	0.000
247.0	1.0	9,243	0.212	9,242.59	0.02	8,855.12	0.02	8,855.12	0.02
248.0	2.0	10,042	0.231	799.07	0.018	9,642.12	0.221	18,497.25	0.239
249.0	3.0	10,865	0.249	823.19	0.019	10,453.25	0.240	28,950.50	0.461
249.5	3.5	11,285	0.259	420.64	0.010	5,537.59	0.127	34,488.09	0.367
250.0	4.0	12,584	0.289	1,298.13	0.039	5,967.28	0.269	40,455.37	0.509

TEMPORARY POOL

Project Bennett Bunn Plantation Subdivision

Project No. <u>673-23</u>

Date <u>14-Feb-25</u>

Contour ID	ontour ID Stage Area		Area	Incremental	Incremental	Incremental	Incremental	Cumulative	Cumulative
Contour ID	Stage	Alea	Alea	Area	Area	volume	volume	volume	volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
250.0	0.0	12,584	0.289	0.00	0.29	0.00	0.00	0.00	0.00
251.0	1.0	13,610	0.312	1,026.38	0.02	13,096.81	0.30	13,096.81	0.30
252.0	2.0	14,556	0.334	946.00	0.02	14,083.00	0.32	27,179.81	0.62

Design Volume = 14,885 Provided Volume = 27,180

Average Depth Calculation

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date 14-Feb-25

Davg = A hottom of shelf Where: Average depth (feet) Main pool volume at permanent pool elevation (feet3) Volume over the shelf only (feet3) - see below Area of main pool at the bottom of the shelf (feet2) Abottom of shelf = 0.5 * Depth_{max over shelf} * Perimeter_{perm pool} * Width_{submerged part of shelf} Where: Depth of water at the deep side of the shelf as Depth_{max over shelf} measured from the permanent pool (feet) Perimeter_{perm pool} Perimeter of main pool at the bottom of the shelf (feet) Width from the deep side to the dry side of the Width_{submerged part of shelf} = shelf as measured at permanent pool (feet)

Depth_{max over shelf} 0.50 feet

Perimeter_{perm pool} 460.16 feet

 $Width_{\text{submerged part of shelf}} \underline{3.00} \qquad \text{feet}$

 V_{shelf} 345.12 cubic feet

 $\mathsf{D}_{\mathsf{avg}} \underline{\hspace{0.5cm}} 3.55 \underline{\hspace{0.5cm}} \mathsf{feet}$

Provided Depth = 3.55 feet

Wet Pond Drawdown Time Calculations

Project Bennett Bunn Plantation Subdivision

Project No. <u>673-23</u>

Date 14-Feb-25

Surface area at normal pool (A_0) = 10,486 square feet Surface area at beginning of drawdown (A₁) = 14,556 square feet Maximum head of water above dewatering hole (H_1) = feet 1.00 Orifice coefficient $(C_d) =$ 0.6 Diameter of each hole = 1.25 inches Number of holes = 1 Acceleration of Gravity (g) = 32.2 feet / second² Cross sectional area of each hole (a) = 0.009 square feet Cross sectional area of each hole = 1.2 square inches Cross sectional area of dewatering hole(s) = 0.009 square feet Cross sectional area of dewatering hole(s) = 1.2 square inches Dewatering time for basin (T) = 293,505.2 seconds Dewatering time for basin (T) = 3.40 days

Calculations based on Greensboro Stormwater Manual, Chapter 3, Section 3.5.2

For the specific case where
$$A_2 = A_0$$
 and $H_2 = 0$

$$T = \frac{1}{Cd*a*\sqrt{2*g}}*\left[\left(2*A_0*H_1^{-1/2} + \frac{2}{3}\left(\frac{A_1 - A_0}{H_1}\right)*H_1^{-3/2}\right)\right]$$
Equation 2
$$T = \frac{1}{Cd*a*\sqrt{2*g}}*\left[\left(\frac{2}{3}A_0 + \frac{1}{3}A_1\right)*H_1^{-1/2}\right]$$

Notes:

Bouyancy Calculations for Riser

	ayancy calculations	TOT TAISOT
Project Project No.	Bennett Bunn Plantat 673-23	ion Subdivision
Date	14-Feb-25	_
Structure Data		
Riser Inner Width =	4.00	ft
Riser Inner Length =		_'` ft
Wall Thickness =		_ ·· ft
Base Width =		- t ft
Base Length =		– ft
Top of Riser Elevation =		_ ft
Structure Invert Elevation =		_ ft
Bottom of Base Elevation =	243.00	_ ft
Depth of Concrete Base =	3.00	_ft
Bouyant Force Calcluation		
Riser Inner Volume =	80.00	ft
Riser Concrete Volume =		ft Unit Weight = 62.50 pcf
Base Concrete Volume =	75.00	ft Total Bouyant Force = 12,500.00
Total Displaced Volume =	200.00	ft
Required Resisting Force Calcluation		
Desired Factor of Safety =	1.15	Factored Resistent Force = 14,375.00 lb
Provided Resisting Force Calculation		
Unit Weight of Concrete =	150.00	pcf
Weight of Concrete Riser =		lb
Weight of Concrete Base Unit =	11,250.00	lb Total Resisting Force = 18,000.00 lb
Compliance Check		
Provided Resisting Force >	Factored Resisting Fo	orce = YES
	Provided Factor of Sa	afety = 1.44

Wet Pond Summary Information

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date 14-Feb-25

Drainage area to pond Impervious area in drainage area $\frac{349,309}{179,056}$ square feet = $\frac{8.02}{4.11}$ acres

 $\begin{array}{c} \text{Bottom of pond elevation} & \underline{246.00} & \text{feet} \\ \text{Normal pool elevation} & \underline{250.00} & \text{feet} \end{array}$

Required volume for design rainfall $\underline{\hspace{0.1cm}}$ 14,885 cubic feet

Provided volume for design rainfall 27,180 cubic feet at elevation 2

SA/DA Ratio for Permanent Pool Sizing for 85% Removal in the Piedmont

Pool depth to lookup Impervious cover to lookup	51.3							
Pool depth between	3	and	4	which is between columns	1	and	2	
Impervious cover between	50.0	and	60.0	which is between rows	5	and	6	•

SA/DA ratios

Impevious cover	Pool depth				
[percent]	[feet]				
	3.0	3.5	4.0		
50	1.79	1.64	1.51		
51.3	1.83	1.67	1.54		
60	2.09	1.91	1.77		

Piedmont and Mountain SA/DA Table

% Impervious	Permanent Pool Depth					
Cover	3.0	4.0	5.0	6.0	7.0	8.0
10	0.51	0.43	0.37	0.30	0.27	0.25
20	0.84	0.69	0.61	0.51	0.44	0.40
30	1.17	0.97	0.84	0.72	0.61	0.56
40	1.51	1.24	1.09	0.91	0.78	0.71
50	1.79	1.51	1.31	1.13	0.95	0.87
60	2.09	1.77	1.49	1.31	1.12	1.03
70	2.51	2.09	1.80	1.56	1.34	1.17
80	2.92	2.41	2.07	1.82	1.62	1.40
90	3.25	2.64	2.31	2.04	1.84	1.59
100	3.55	2.79	2.52	2.34	2.04	1.75

DESIGN CALCULATIONS

WET POND-5

Project Name

Bennett Bunn Plantation Subdivision

Project Number

673-23

Date

14-Feb-25

Wet Pond Drainage Area Data

Wet Pond Drainage Area: <u>1203919.524</u> square feet = <u>27.638</u> acres

	Drain	age Area to Wet	Pond			
Impervious areas	Pre	Post	Change			
· ·	[sf]	[sf]	[sf]			
On-site buildings	0	274,813	274,813			
On-site streets	0	213,644	213,644			
On-site parking	0	35,739	35,739			
On-site sidewalks	0	82,629	82,629			
Other on-site	0	0	0			
Total off-site impervious	0	0	0			
Total Impervious	0	606,825.73	606,826			
	Drainage Area to Wet Pond					
Non-impervious areas	Pre	Post	Change			
	[sf]	[sf]	[sf]			
On-site grass/landscape	0	597,094	597,094			
On-site woods	0	0	0			
Other undeveloped	0	0	0			
Other on-site non-impervious	0	0	0			
Total off-site non-impervious	0	0	0			
Total non-impervious	0	597,093.79	597,094			
Total Drainage Area	0	1,203,920	1,203,920			
Percent Impervious	n/a	50.4	n/a			

Wet Pond Surface Area Calculations

Project: Project No.:	Bennett Bunn Pl 673-23	antation Subdivis -	sion				
Date:	14-Feb-25						
	inage area to por area in drainage		1,203,920 606,826	_square feet _square feet			
Average water d	epth of basin at r	ormal pool		2.92	_feet		
Location of site Site region		Garner Piedmont	- -				
% Impervious co	over	50.4	_percent				
Will a vegetative	filter be used?			No	_		
Surface Area/Drainage Area Ratios: For a site in the Piedmont w/out Vegetative Filter For a site in a Coastal County w/ Vegetative Filter percent							
Required surface area of pond: For a site in the Piedmont w/out Vegetative Filter For a site in a Coastal County w/out Vegetative Filter 0.0 square feet							

Wet Pond Design Volume Caclutaion

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date 14-Feb-25

Total on-site drainage area to pond 27.638 acres Total impervious area in drainage area 13.931 acres

% Impervious cover (impervious fraction), IA 0.504

Runoff coefficient, R_v 0.504

 R_V $0.05 + 0.9 * I_A$ Runoff coefficient (unitless) Where:

Design storm depth, R_D 1.0 inches

50,528 cubic feet Design Volume, DV

Impervious fraction (unitless)

DV 3630 * RD * RV * A

Where: DV Design volume (cu ft)

Design storm depth (in)
Drainage area (ac) R_D

MAIN POOL

Project Bennett Bunn Plantation Subo

Project No. 673-23

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
246.0	0.0	16,798	0.386	0.00	0.386	0.00	0.000	0.00	0.000
247.0	1.0	18,347	0.421	18,346.64	0.04	17,572.32	0.04	17,572.32	0.04
248.0	2.0	19,915	0.457	1,568.73	0.036	19,131.00	0.439	36,703.33	0.475
249.0	3.0	21,504	0.494	1,588.84	0.036	20,709.79	0.475	57,413.11	0.915
249.5	3.5	23,113	0.531	1,608.94	0.037	11,154.34	0.256	68,567.45	0.731
250.0	4.0	25,564	0.587	2,451.12	0.093	12,169.35	0.540	80,736.81	1.016

FOREBAY VOLUME

Project Bennett Bunn Plantation Subo

Project No. 673-23

Contour ID	Stage	Area [sq. ft.]	Area [acres]	Incremental Area [sq. ft.]	Incremental Area [acres]	Incremental volume [cu. ft]	Incremental volume [acre-ft]	Cumulative volume [cu. ft]	Cumulative volume [acre-ft]
246.0	0.0	3,360	0.077	3,359.60	0.077	0.00	0.000	0.00	0.000
247.0	1.0	3,669	0.084	309.73	0.01	309.73	0.01	309.73	0.01
248.0	2.0	3,983	0.091	313.75	0.007	3,826.20	0.088	4,135.93	0.095
249.0	3.0	4,301	0.099	317.77	0.007	4,141.96	0.095	8,277.88	0.183
249.5	3.5	4,623	0.106	321.79	0.007	2,230.87	0.051	10,508.75	0.146
250.0	4.0	5,113	0.117	490.22	0.011	2,433.87	0.056	12,942.62	0.107

Required Forebay Volume =	12,111	(Max 20%)
Provided Forebay Volume =	12,943	16.0%

PERMANENT POOL

Project Bennett Bunn Plantation Subo Project No. 673-23

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
246.0	0.0	20,158	0.463	0.00	0.463	0.00	0.000	0.00	0.000
247.0	1.0	22,016	0.505	22,015.96	0.04	21,086.79	0.04	21,086.79	0.04
248.0	2.0	23,898	0.549	1,882.48	0.043	22,957.20	0.527	44,043.99	0.570
249.0	3.0	25,805	0.592	1,906.61	0.044	24,851.75	0.571	68,895.74	1.098
249.5	3.5	27,736	0.637	1,930.73	0.044	13,385.21	0.307	82,280.95	0.878
250.0	4.0	30,677	0.704	2,941.34	0.112	14,603.23	0.648	96,884.17	1.219

TEMPORARY POOL

Project Bennett Bunn Plantation Subdivision

Project No. <u>673-23</u>

Date <u>14-Feb-25</u>

Contour ID	Stage	Area	Area	Incremental	Incremental	Incremental volume	Incremental	Cumulative	Cumulative
		[sq. ft.]	[acres]	Area [sq. ft.]	Area [acres]	[cu. ft]	volume [acre-ft]	volume [cu. ft]	volume [acre-ft]
250.0	0.0	30,677	0.704	0.00	0.70	0.00	0.00	0.00	0.00
251.0	1.0	32,611	0.749	1,933.88	0.04	31,644.06	0.73	31,644.06	0.73
252.0	2.0	34,013	0.781	1,402.00	0.03	33,312.00	0.76	64,956.06	1.49

Design Volume = 50,528 Provided Volume = 64,956

Average Depth Calculation

Project Bennett Bunn Plantation Subdivision Project No. 673-23

Date 14-Feb-25

Davg = A hottom of shelf Where: Average depth (feet) Main pool volume at permanent pool elevation (feet3) Volume over the shelf only (feet3) - see below Area of main pool at the bottom of the shelf (feet2) Abottom of shelf = 0.5 * Depth_{max over shelf} * Perimeter_{perm pool} * Width_{submerged part of shelf} Where: Depth of water at the deep side of the shelf as Depth_{max over shelf} measured from the permanent pool (feet) Perimeter_{perm pool} Perimeter of main pool at the bottom of the shelf (feet) Width from the deep side to the dry side of the Width_{submerged part of shelf} = shelf as measured at permanent pool (feet)

Depth_{max over shelf} 0.50 feet

Perimeter_{perm pool} 1020.72 feet

 $Width_{\text{submerged part of shelf}} \underline{3.00} \hspace{0.5cm} \text{feet}$

V_{shelf} 765.54 cubic feet

D_{avg} 3.46 feet

Provided Depth = 3.46 feet

Wet Pond Drawdown Time Calculations

Project Bennett Bunn Plantation Subdivision

Project No. <u>673-23</u>

Date 14-Feb-25

Surface area at normal pool (A_0) = 25,564 square feet Surface area at beginning of drawdown (A₁) = 34,013 square feet Maximum head of water above dewatering hole (H_1) = feet 1.00 Orifice coefficient $(C_d) =$ 0.6 Diameter of each hole = 1.25 inches Number of holes = 2 Acceleration of Gravity (g) = 32.2 feet / second² Cross sectional area of each hole (a) = 0.009 square feet Cross sectional area of each hole = 1.2 square inches Cross sectional area of dewatering hole(s) = 0.017 square feet Cross sectional area of dewatering hole(s) = 2.5 square inches Dewatering time for basin (T) = 351,680.1 seconds Dewatering time for basin (T) = 4.07 days

Calculations based on Greensboro Stormwater Manual, Chapter 3, Section 3.5.2

For the specific case where
$$A_2 = A_0$$
 and $H_2 = 0$

$$T = \frac{1}{Cd * a * \sqrt{2 * g}} * \left[\left(2 * A_0 * H_1^{1/2} + \frac{2}{3} \left(\frac{A_1 - A_0}{H_1} \right) * H_1^{3/2} \right) \right]$$
Equation 2
$$T = \frac{1}{Cd * a * \sqrt{2 * g}} * \left[\left(\frac{2}{3} A_0 + \frac{1}{3} A_1 \right) * H_1^{1/2} \right]$$

Notes:

Bouyancy Calculations for Riser

	ayancy calculations	TOT TAISOT
Project Project No.	Bennett Bunn Plantat 673-23	ion Subdivision
Date	14-Feb-25	_
Structure Data		
Riser Inner Width =	4.00	ft
Riser Inner Length =		_'` ft
Wall Thickness =		_ ·· ft
Base Width =		- t ft
Base Length =		– ft
Top of Riser Elevation =		_ ft
Structure Invert Elevation =		_ ft
Bottom of Base Elevation =	243.00	_ ft
Depth of Concrete Base =	3.00	_ft
Bouyant Force Calcluation		
Riser Inner Volume =	80.00	ft
Riser Concrete Volume =		ft Unit Weight = 62.50 pcf
Base Concrete Volume =	75.00	ft Total Bouyant Force = 12,500.00
Total Displaced Volume =	200.00	ft
Required Resisting Force Calcluation		
Desired Factor of Safety =	1.15	Factored Resistent Force = 14,375.00 lb
Provided Resisting Force Calculation		
Unit Weight of Concrete =	150.00	pcf
Weight of Concrete Riser =		lb
Weight of Concrete Base Unit =	11,250.00	lb Total Resisting Force = 18,000.00 lb
Compliance Check		
Provided Resisting Force >	Factored Resisting Fo	orce = YES
	Provided Factor of Sa	afety = 1.44

Wet Pond Summary Information

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date 14-Feb-25

Drainage area to pond Impervious area in drainage area $\frac{1,203,920}{606,826}$ square feet = $\frac{27.64}{13.93}$ acres

 $\begin{array}{c} \text{Bottom of pond elevation} & \underline{246.00} & \text{feet} \\ \text{Normal pool elevation} & \underline{250.00} & \text{feet} \end{array}$

Required volume for design rainfall 50,528 cubic feet

Provided volume for design rainfall 64,956 cubic feet at elevation 25

SA/DA Ratio for Permanent Pool Sizing for 85% Removal in the Piedmont

Pool depth to lookup Impervious cover to lookup	3.46 50.4						
Pool depth between Impervious cover between	3 50.0	and and	60.0	which is between columns which is between rows	1	and and	2

SA/DA ratios

Impevious cover	Pool depth				
[percent]	[feet]				
	3.0	3.5	4.0		
50	1.79	1.66	1.51		
50.4	1.80	1.67	1.52		
60	2.09	1.94	1.77		

Piedmont and Mountain SA/DA Table

% Impervious	Permanent Pool Depth								
Cover	3.0	4.0	5.0	6.0	7.0	8.0			
10	0.51	0.43	0.37	0.30	0.27	0.25			
20	0.84	0.69	0.61	0.51	0.44	0.40			
30	1.17	0.97	0.84	0.72	0.61	0.56			
40	1.51	1.24	1.09	0.91	0.78	0.71			
50	1.79	1.51	1.31	1.13	0.95	0.87			
60	2.09	1.77	1.49	1.31	1.12	1.03			
70	2.51	2.09	1.80	1.56	1.34	1.17			
80	2.92	2.41	2.07	1.82	1.62	1.40			
90	3.25	2.64	2.31	2.04	1.84	1.59			
100	3.55	2.79	2.52	2.34	2.04	1.75			

DESIGN CALCULATIONS

WET POND-6

Project Name

Bennett Bunn Plantation Subdivision

Project Number

673-23

Date

14-Feb-25

Wet Pond Drainage Area Data

Wet Pond Drainage Area: <u>231196.563</u> square feet = <u>5.308</u> acres

	Drain	age Area to Wet	Pond
Impervious areas	Pre	Post	Change
·	[sf]	[sf]	[sf]
On-site buildings	0	78,803	78,803
On-site streets	0	22,304	22,304
On-site parking	0	0	0
On-site sidewalks	0	3,238	3,238
Other on-site	0	0	0
Total off-site impervious	0	0	0
Total Impervious	0	104,344.85	104,345
	Drain	age Area to Wet	Pond
Non-impervious areas	Pre	Post	Change
	[sf]	[sf]	[sf]
On-site grass/landscape	0	126,852	126,852
On-site woods	0	0	0
Other undeveloped	0	0	0
Other on-site non-impervious	0	0	0
Total off-site non-impervious	0	0	0
Total non-impervious	0	126,851.71	126,852
Total Drainage Area	0	231,197	231,197
Percent Impervious	n/a	45.1	n/a

Wet Pond Surface Area Calculations

Project: Project No.:	673-23	sion			
Date:	14-Feb-25	-			
	ainage area to por s area in drainage		231,197 104,345	_square feet _square feet	
Average water of	depth of basin at r	normal pool		2.86	feet
Location of site Site region		Garner Piedmont	- -		
% Impervious co	over	45.1	percent		
Will a vegetative	filter be used?			No	
For a site in the	rainage Area Ration Piedmont w/out Voastal County w/		1.5	percent percent	
	e area of pond: Piedmont w/out \ oastal County w/o	ter	3,520.0 0.0	square feet square feet	

Wet Pond Design Volume Caclutaion

Project Bennett Bunn Plantation Subdivision

Project No. <u>673-23</u>

Date 14-Feb-25

Total on-site drainage area to pond 5.308 acres
Total impervious area in drainage area 2.395 acres

% Impervious cover (impervious fraction), I_A 0.451

Runoff coefficient, R_v 0.456

 R_V = 0.05 + 0.9 * I_A Where: R_V = Runoff coefficient (unitless) | Impervious fraction (unitless)

Design storm depth, R_D 1.0 inches

Design Volume, DV 8,789 cubic feet

DV = 3630 * R_D * R_V * AWhere: DV = Design volume (cu ft)

R_D = Design storm depth (in) A = Drainage area (ac)

MAIN POOL

Project Bennett Bunn Plantation Subo Project No. <u>673-23</u>

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
276.0	0.0	7,934	0.182	0.00	0.182	0.00	0.000	0.00	0.000
277.0	1.0	8,811	0.202	8,811.04	0.02	8,372.52	0.02	8,372.52	0.02
278.0	2.0	9,708	0.223	897.14	0.021	9,259.61	0.213	17,632.14	0.233
279.0	3.0	10,625	0.244	917.24	0.021	10,166.80	0.233	27,798.94	0.446
279.5	3.5	11,092	0.255	466.16	0.011	5,429.25	0.125	33,228.19	0.358
280.0	4.0	12,520	0.287	1,428.64	0.043	5,902.95	0.266	39,131.15	0.499

FOREBAY VOLUME

Project Bennett Bunn Plantation Subo

Project No. 673-23

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
276.0	0.0	1,587	0.036	1,586.80	0.036	0.00	0.000	0.00	0.000
277.0	1.0	1,762	0.040	175.41	0.00	175.41	0.00	175.41	0.00
278.0	2.0	1,942	0.045	179.43	0.004	1,851.92	0.043	2,027.33	0.047
279.0	3.0	2,125	0.049	183.45	0.004	2,033.36	0.047	4,060.69	0.089
279.5	3.5	2,218	0.051	93.23	0.002	1,085.85	0.025	5,146.54	0.072
280.0	4.0	2,504	0.057	285.73	0.007	1,180.59	0.027	6,327.13	0.052

Required Forebay \	/olume = 5,870	(Max 20%)
Provided Forebay	Volume = 6,327	16.2%

PERMANENT POOL

Project Bennett Bunn Plantation Subo Project No. 673-23

Contour ID	Stage	Area	Area	Incremental Area	Incremental Area	Incremental volume	Incremental volume	Cumulative volume	Cumulative volume
		[sq. ft.]	[acres]	[sq. ft.]	[acres]	[cu. ft]	[acre-ft]	[cu. ft]	[acre-ft]
276.0	0.0	9,521	0.219	0.00	0.219	0.00	0.000	0.00	0.000
277.0	1.0	10,573	0.243	10,573.25	0.02	10,047.03	0.02	10,047.03	0.02
278.0	2.0	11,650	0.267	1,076.57	0.025	11,111.53	0.255	21,158.56	0.279
279.0	3.0	12,751	0.293	1,100.69	0.025	12,200.16	0.280	33,358.73	0.535
279.5	3.5	13,310	0.306	559.39	0.013	6,515.10	0.150	39,873.83	0.430
280.0	4.0	15,024	0.345	1,714.37	0.052	7,083.55	0.319	46,957.38	0.599

TEMPORARY POOL

Project Bennett Bunn Plantation Subdivision

Project No. <u>673-23</u>

Date 14-Feb-25

Contour ID	Stage	Area [sq. ft.]	Area [acres]	Incremental Area [sq. ft.]	Incremental Area [acres]	Incremental volume [cu. ft]	Incremental volume [acre-ft]	Cumulative volume [cu. ft]	Cumulative volume [acre-ft]
280.0	0.0	15,024	0.345	0.00	0.34	0.00	0.00	0.00	0.00
281.0	1.0	16,724	0.384	1,699.72	0.04	15,874.14	0.36	15,874.14	0.36
282.0	2.0	18,339	0.421	1,615.00	0.04	17,531.50	0.40	33,405.64	0.77

Design Volume = 8,789 Provided Volume = 15,874

Average Depth Calculation

Project Bennett Bunn Plantation Subdivision Project No. 673-23

Date 14-Feb-25

Davg = A hottom of shelf Where: Average depth (feet) Main pool volume at permanent pool elevation (feet3) Volume over the shelf only (feet3) - see below Area of main pool at the bottom of the shelf (feet2) Abottom of shelf = 0.5 * Depth_{max over shelf} * Perimeter_{perm pool} * Width_{submerged part of shelf} Where: Depth of water at the deep side of the shelf as Depth_{max over shelf} measured from the permanent pool (feet) Perimeter_{perm pool} Perimeter of main pool at the bottom of the shelf (feet) Width from the deep side to the dry side of the Width_{submerged part of shelf} = shelf as measured at permanent pool (feet)

Depth_{max over shelf} 0.50 feet

 $Perimeter_{perm\ pool} \underline{\hspace{0.5cm} 604.69} \hspace{0.5cm} feet$

 $Width_{submerged\ part\ of\ shelf} \underline{\hspace{1cm} 3.00} \hspace{1cm} feet$

 V_{shelf} 453.52 cubic feet

D_{avg} 3.49 feet

Provided Depth = 3.49 feet

Wet Pond Drawdown Time Calculations

Project Bennett Bunn Plantation Subdivision

Project No. <u>673-23</u>

Date 14-Feb-25

Surface area at normal pool (A_0) = 12,520 square feet Surface area at beginning of drawdown (A_1) = 16,724 square feet Maximum head of water above dewatering hole (H_1) = feet 1.00 Orifice coefficient $(C_d) =$ 0.6 Diameter of each hole = 1.25 inches Number of holes = 1 Acceleration of Gravity (g) = 32.2 feet / second² Cross sectional area of each hole (a) = 0.009 square feet Cross sectional area of each hole = 1.2 square inches Cross sectional area of dewatering hole(s) = 0.009 square feet Cross sectional area of dewatering hole(s) = 1.2 square inches Dewatering time for basin (T) = 345,019.2 seconds Dewatering time for basin (T) = 3.99 days

Calculations based on Greensboro Stormwater Manual, Chapter 3, Section 3.5.2

For the specific case where
$$A_2 = A_0$$
 and $H_2 = 0$

$$T = \frac{1}{Cd*a*\sqrt{2*g}}*\left[\left(2*A_0*H_1^{-1/2} + \frac{2}{3}\left(\frac{A_1 - A_0}{H_1}\right)*H_1^{-3/2}\right)\right]$$
Equation 2
$$T = \frac{1}{Cd*a*\sqrt{2*g}}*\left[\left(\frac{2}{3}A_0 + \frac{1}{3}A_1\right)*H_1^{-1/2}\right]$$

Notes:

Bouyancy Calculations for Riser

	ayancy calculations i	OI MISCI
Project Project No.	Bennett Bunn Plantati 673-23	on Subdivision
Date	14-Feb-25	-
Structure Data Riser Inner Width =	4.00	tr.
Riser Inner Vidur -		_ft _ft
- Wall Thickness		ft
Base Width =		ft
Base Length =		ft
Top of Riser Elevation =		ft
Structure Invert Elevation =		- rt
Bottom of Base Elevation =		ft
Depth of Concrete Base =		- ft
Bouyant Force Calcluation		_
Riser Inner Volume =		_ft
Riser Concrete Volume =		ft Unit Weight = 62.50 pcf
Base Concrete Volume =		ft Total Bouyant Force = 12,500.00
Total Displaced Volume =	200.00	_ft
Required Resisting Force Calcluation		
Desired Factor of Safety =	1.15	Factored Resistent Force = 14,375.00 lb
Provided Resisting Force Calculation		
Unit Weight of Concrete =	150.00	pcf
Weight of Concrete Riser =		lb
Weight of Concrete Base Unit =	11,250.00	lb Total Resisting Force = 18,000.00 lb
		
Compliance Check	Fastanad Dasiation Fr	VEO.
Provided Resisting Force	_	
	Provided Factor of Sa	fety = <u>1.44</u>

Wet Pond Summary Information

Project Bennett Bunn Plantation Subdivision

Project No. 673-23

Date 14-Feb-25

Drainage area to pond Impervious area in drainage area $\frac{231,197}{104,345}$ square feet = $\frac{5.31}{2.40}$ acres acres

281

 $\begin{array}{c} \text{Bottom of pond elevation} & \underline{276.00} & \text{feet} \\ \text{Normal pool elevation} & \underline{280.00} & \text{feet} \end{array}$

Required volume for design rainfall 8,789 cubic feet

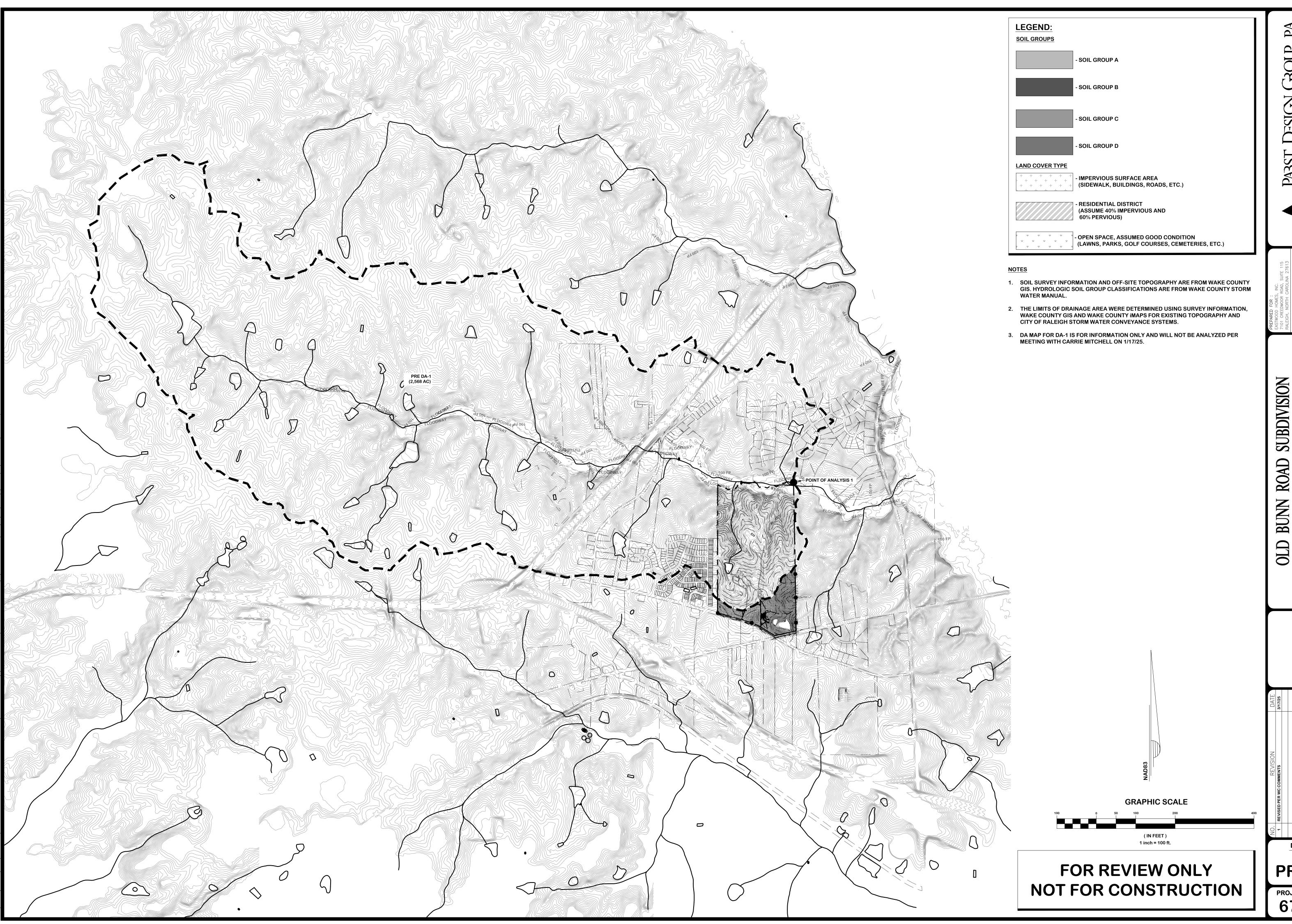
Provided volume for design rainfall 15,874 cubic feet at elevation

SA/DA Ratio for Permanent Pool Sizing for 85% Removal in the Piedmont

Pool depth to lookup	3.49							
Impervious cover to lookup	45.1							
Pool depth between	3	and	4	which is between columns	1	and	2	
Impervious cover hetween	40.0	and	50.0	which is between rows		and		•

SA/DA ratios

Impevious cover	Pool depth				
[percent]	[feet]				
	3.0	3.5	4.0		
40	1.51	1.38	1.24		
45.1	1.65	1.52	1.38		
50	1.79	1.65	1.51		


Piedmont and Mountain SA/DA Table

% Impervious	Permanent Pool Depth						
Cover	3.0	4.0	5.0	6.0	7.0	8.0	
10	0.51	0.43	0.37	0.30	0.27	0.25	
20	0.84	0.69	0.61	0.51	0.44	0.40	
30	1.17	0.97	0.84	0.72	0.61	0.56	
40	1.51	1.24	1.09	0.91	0.78	0.71	
50	1.79	1.51	1.31	1.13	0.95	0.87	
60	2.09	1.77	1.49	1.31	1.12	1.03	
70	2.51	2.09	1.80	1.56	1.34	1.17	
80	2.92	2.41	2.07	1.82	1.62	1.40	
90	3.25	2.64	2.31	2.04	1.84	1.59	
100	3.55	2.79	2.52	2.34	2.04	1.75	

Pabst Design Group, PA 107 Fayetteville St, Suite 200 Raleigh, NC 27601

1915 & 1917 Old Bunn Road Zebulon, North Carolina 27597 PDG Project No.: 673-23

XIX. Drainage Area Maps

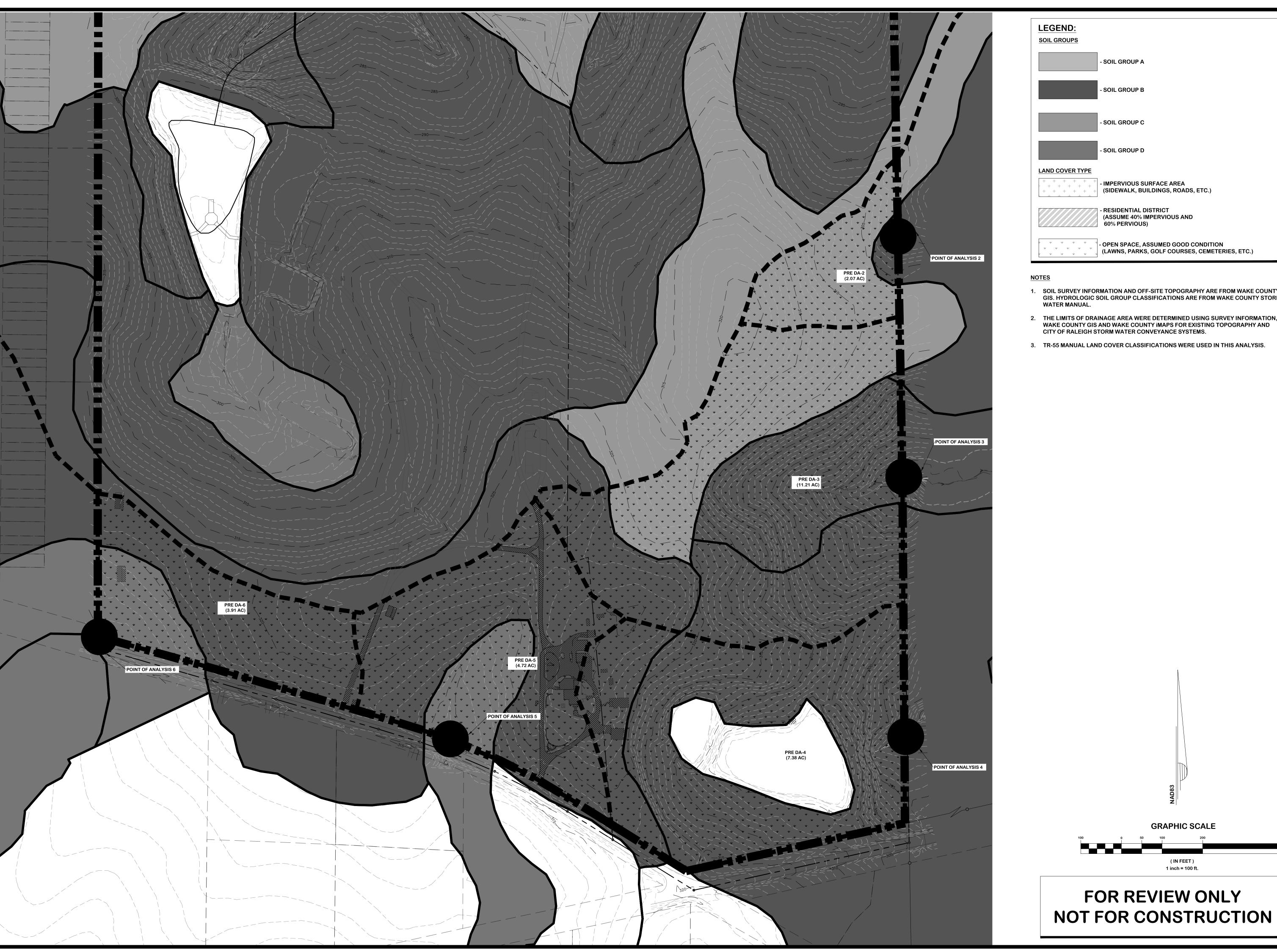
Engineering | CAOUP, PA

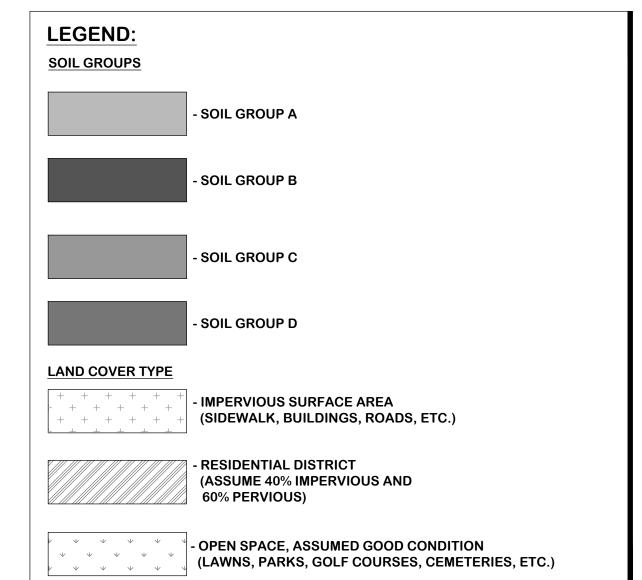
NEER:
DESIGNER:
FYOR:

PROJECT ENGINEER:
PDP
PROJECT CADD DESIGNER:
PDP
PROJECT SURVEYOR:
NEWCOMB LAND SLIPNEYOR

PACT ANALYSIS

STORMWATER IMPACT A


E-DEVELOPMENT DRAINAGE

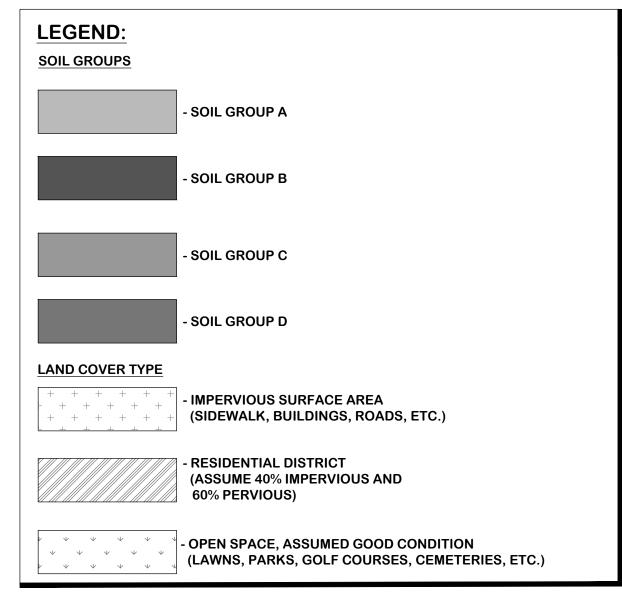

NO. REVISED PER WC COMMENTS

Suppose the suppose the suppose to the suppose th

DRAWING

PRE DA
PROJECT NUMBER
673-23

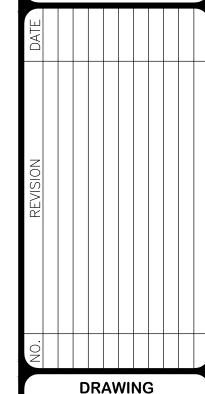
- SOIL SURVEY INFORMATION AND OFF-SITE TOPOGRAPHY ARE FROM WAKE COUNTY GIS. HYDROLOGIC SOIL GROUP CLASSIFICATIONS ARE FROM WAKE COUNTY STORM WATER MANUAL.
- 2. THE LIMITS OF DRAINAGE AREA WERE DETERMINED USING SURVEY INFORMATION, WAKE COUNTY GIS AND WAKE COUNTY IMAPS FOR EXISTING TOPOGRAPHY AND CITY OF RALEIGH STORM WATER CONVEYANCE SYSTEMS.


FOR REVIEW ONLY

3. TR-55 MANUAL LAND COVER CLASSIFICATIONS WERE USED IN THIS ANALYSIS.

SUBDIVISION

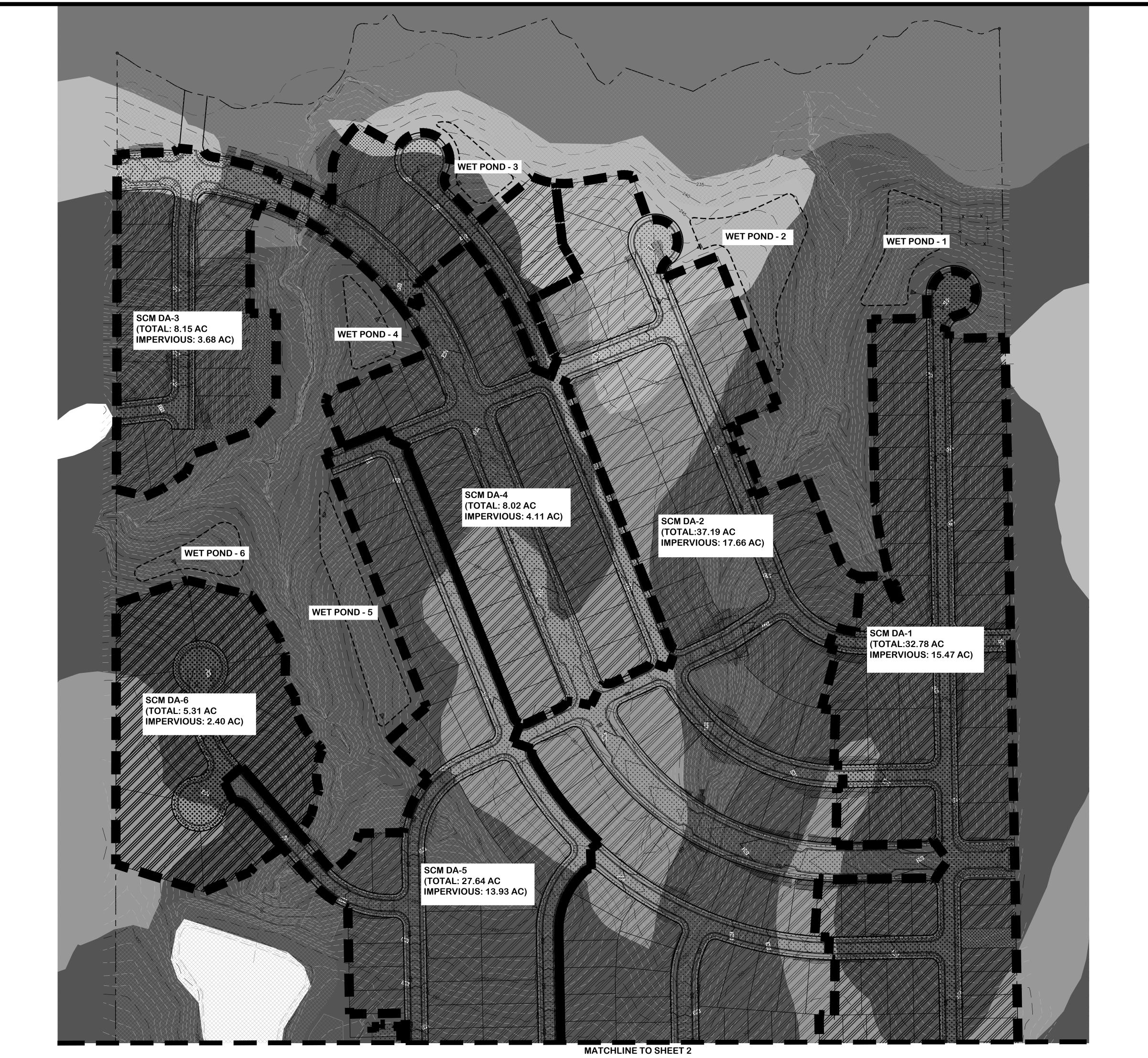
PRE DA PROJECT NUMBER 673-23

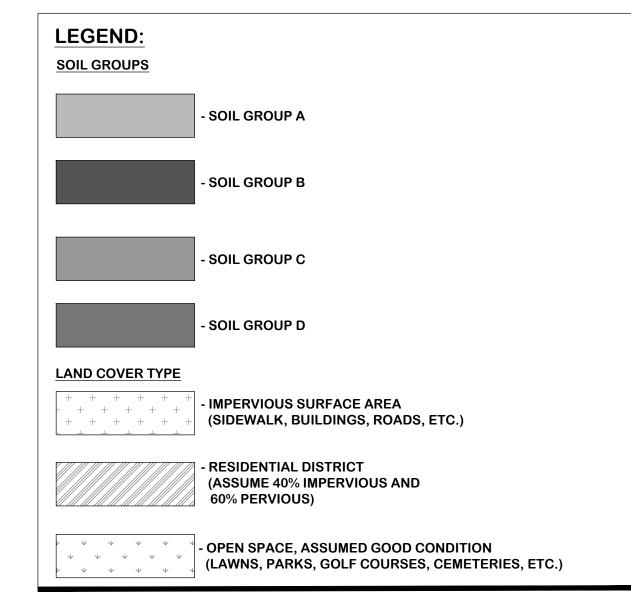

NOTE

- SOIL SURVEY INFORMATION AND OFF-SITE TOPOGRAPHY ARE FROM WAKE COUNTY GIS. HYDROLOGIC SOIL GROUP CLASSIFICATIONS ARE FROM WAKE COUNTY STORM WATER MANUAL.
- 2. THE LIMITS OF DRAINAGE AREA WERE DETERMINED USING SURVEY INFORMATION, WAKE COUNTY GIS AND WAKE COUNTY IMAPS FOR EXISTING TOPOGRAPHY AND CITY OF RALEIGH STORM WATER CONVEYANCE SYSTEMS.
- 3. TR-55 MANUAL LAND COVER CLASSIFICATIONS WERE USED IN THIS ANALYSIS.

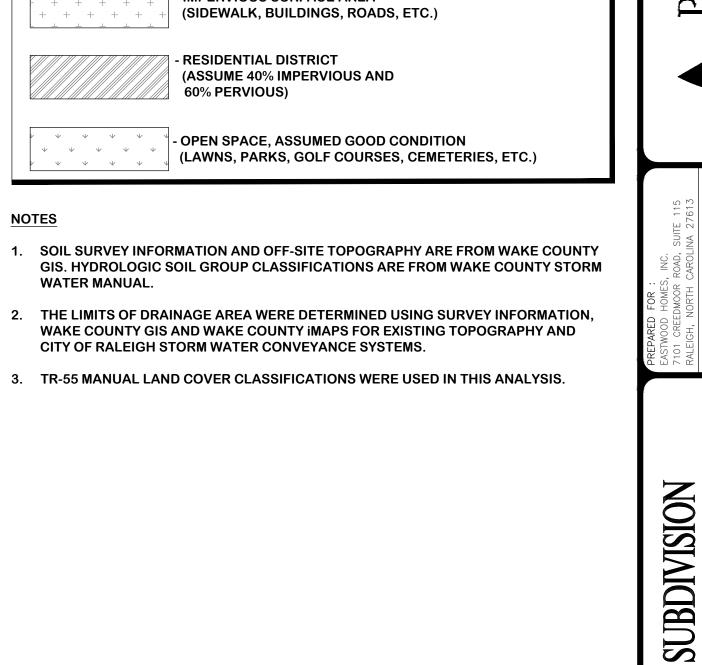
OLD BUNN ROAD SUBDI ZEBULON, WAKE COUNTY, NORTH CAROLIN STORMWATER IMPACT ANA F. DEVEL OPMENT DRAINAGE

Q


FOR REVIEW ONLY NOT FOR CONSTRUCTION


DRAWING
SHEET

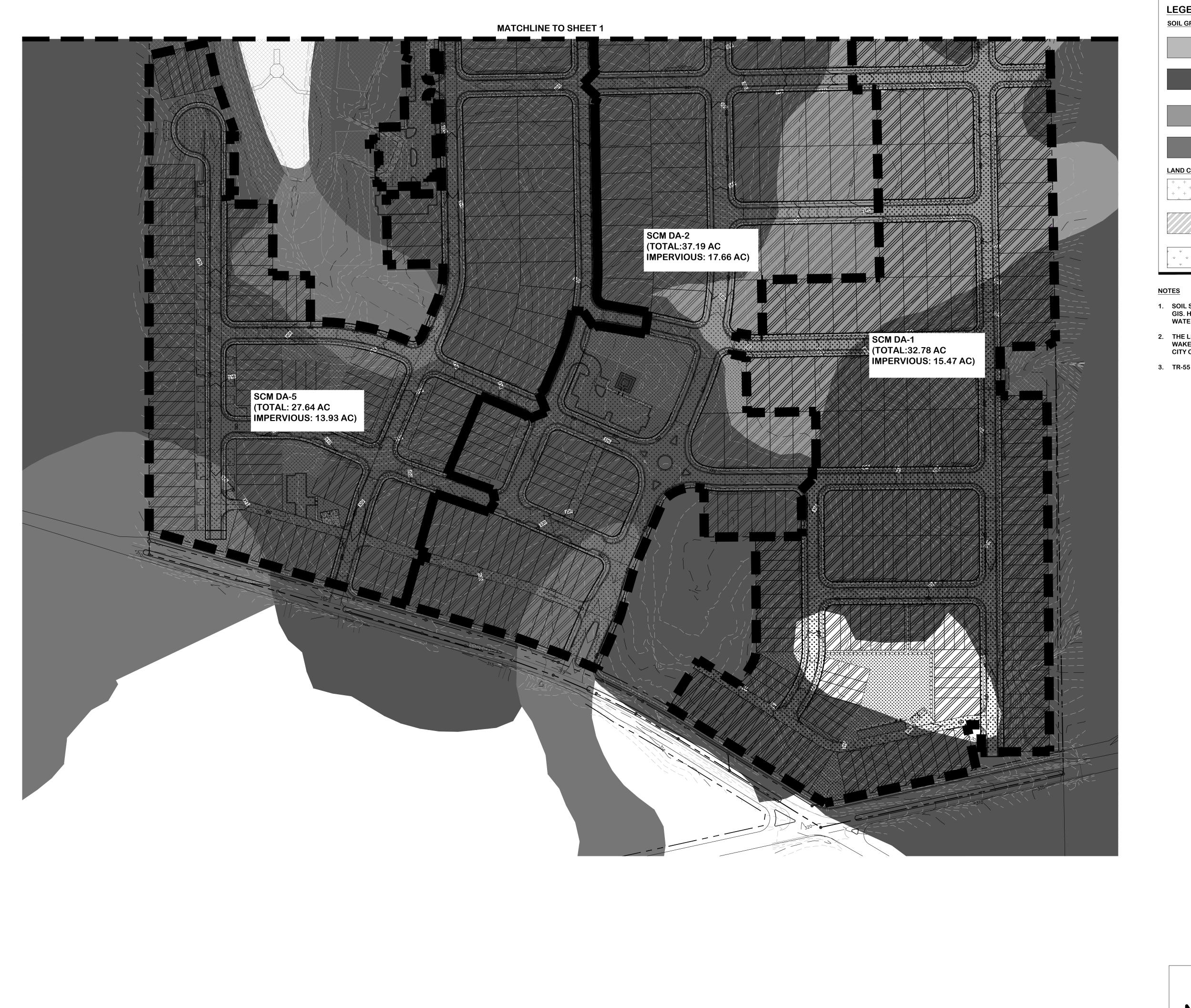
POST DA

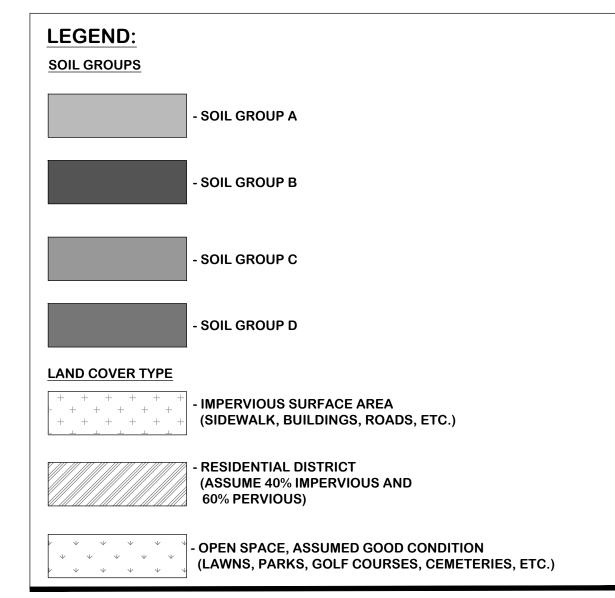

PROJECT NUMBER

673-23

- 1. SOIL SURVEY INFORMATION AND OFF-SITE TOPOGRAPHY ARE FROM WAKE COUNTY GIS. HYDROLOGIC SOIL GROUP CLASSIFICATIONS ARE FROM WAKE COUNTY STORM WATER MANUAL.
- 2. THE LIMITS OF DRAINAGE AREA WERE DETERMINED USING SURVEY INFORMATION, WAKE COUNTY GIS AND WAKE COUNTY IMAPS FOR EXISTING TOPOGRAPHY AND CITY OF RALEIGH STORM WATER CONVEYANCE SYSTEMS.

OLD


FOR REVIEW ONLY NOT FOR CONSTRUCTION


GRAPHIC SCALE

1 inch = 100 ft.

SCM DA PROJECT NUMBER

673-23

- SOIL SURVEY INFORMATION AND OFF-SITE TOPOGRAPHY ARE FROM WAKE COUNTY GIS. HYDROLOGIC SOIL GROUP CLASSIFICATIONS ARE FROM WAKE COUNTY STORM WATER MANUAL.
- 2. THE LIMITS OF DRAINAGE AREA WERE DETERMINED USING SURVEY INFORMATION, WAKE COUNTY GIS AND WAKE COUNTY IMAPS FOR EXISTING TOPOGRAPHY AND CITY OF RALEIGH STORM WATER CONVEYANCE SYSTEMS.
- 3. TR-55 MANUAL LAND COVER CLASSIFICATIONS WERE USED IN THIS ANALYSIS.

OLD BUNN ROAD SUBDIVISION
ZEBULON, WAKE COUNTY, NORTH CAROLINA

NO. REVISION DATE

1 REVISED PER WC COMMENTS

3/17/25

BURNABUR

1 REVISED PER WC COMMENTS

FOR REVIEW ONLY NOT FOR CONSTRUCTION

SCM DA

PROJECT NUMBER

673-23