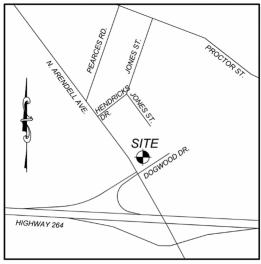


Stormwater Management & Sediment/Erosion Control Report


Submitted to:
Town of Zebulon, NC & Wake County, NC

Prepared for:

COOKOUT

1200 N Arendell Avenue Zebulon, NC 27597

Project No: OUT-1502

VICINITY MAP

Prepared by: Sambatek NC P.C. 8312 Creedmoor Road Raleigh, North Carolina 27613

> Date: 10/24/2022 Rev. 7/21/2023 Rev. 11/6/2023 Rev. 12/14/2023 Rev. 4/2/2025 Rev. 6/5/2025 Rev. 6/24/2025

Table of Contents

Project Narrative	1
Adjacent Areas	2
Existing Conditions	2
Proposed Conditions	2
Critical Erosion Areas	3
Erosion and Sediment Control Measures	3
Silt Fence	3
Vegetative Stabilization	3
Temporary Stabilization	3
Construction Sequence	4
Temporary Erosion and Sediment Control Maintenance	5
Proposed Stormwater Management Requirements	5
Water Quantity Control Requirements and Compliance Methods	5
Water Quality Treatment Requirements	6
Downstream Impact Analysis	6
Calculation Methodology	7
Stormwater SCM Maintenance	7

List of Appendices:

Appendix A – Maps (USDA, FEMA, USGS, Pre- & Post-Development Impervious, 1970 Wake County Soil Survey)

Appendix B - Pre- & Post-Development Hydrograph Calculation Report & WQv Calculations

Appendix C - Vegetated Channel & Rip Rap Apron Calculations

Appendix D -10-Year HGL Calculations

Appendix E – Additional Forms (SCM Maintenance Agreement (DRAFT), Municipal Stormwater Tool)

Appendix F – Downstream Impact Analysis Exhibit Figure

Appendix G - Clean Water Diversion Channel & Culvert Calcs, Channel Liner Spec Sheet

Project Narrative

This report addresses stormwater runoff quantity control, water quality treatment, and peak flow control for site improvements of an existing site in Zebulon, NC. The property is located on N. Arendell Ave. +/-900LF northeast of US-64. The property coordinates are 35° 50′ 12.336″ N; 78° 19′ 18.876″ W. The existing property is an undeveloped open space area. The proposed development of this site includes the construction of a new single-story fast-food restaurant with associated parking. The total site area is 83,368 SF with 0 SF of existing impervious area. After proposed development the site consists of 52,846 SF of impervious area.

Adjacent Areas

The site is bounded by commercial development. Limits of disturbance for this project remain on-site with the exception of utility connections.

Existing Conditions

The on-site runoff sheet flows from the center of the property and sheet flows off-site. Proposed development maintains existent drainage patterns.

Site Area = 83,368 SF Existing Open Space = 83,368 SF Existing Impervious = 0 SF

The USDA Soils Survey mapping included in Appendix A shows that the soils on-site are primarily Ur – Urban Land and WeB – Wedowee sandy loam.

Proposed Conditions

The proposed development consist of a single-story building with curb islands and associated parking. The development will result in 52,846 SF of impervious surface area being added to the site. In the post-development condition, stormwater runoff enters a proposed stormwater conveyance system then flows into an underground detention system. A portion of the detained runoff is directed through a Contech StormFilter water quality device, prior to exiting the site. Runoff volumes in excess of the water quality volume are detained and released at or below pre-development flow rates via the use of a multistage outlet control structure. The outlet pipe from the outlet control structure daylights in the rear of property along Jones St.

Site Area = 83,368 SF Proposed Open Space = 30,522 SF Proposed Impervious = 52,846 SF

Critical Erosion Areas

The most critical erosion area will be the surface of the working areas during construction operations. If grass is not established on dormant denuded areas then there is a significant potential for the covered areas to be eroded and for sediment to be carried in the runoff. To minimize the potential for erosion, covered areas that are temporarily inactive will be seeded within 14 working days after placement of the soil cover.

Erosion and Sediment Control Measures

All vegetative practices and erosion and sediment control features shall be designed, constructed, and maintained in accordance with the NCDEQ Erosion and Sediment Control and Wake County requirements. The erosion and sediment control plan shall be kept on site in a mailbox type structure located immediately adjacent to the posted permits if needed. Sediment shall be removed from the sediment control structures as necessary, but at a minimum of when the design capacity of each structure is reduced by 50%. Plan-view drawings with details and these same requirements are provided.

Silt Fence

Sediment fences will be provided down gradient of the proposed site grading at the locations shown on the drawings. Silt fences are not to be used across channels or in areas of concentrated flows.

Vegetative Stabilization

Vegetative cover shall be re-established within 14 calendar days after completion of the activity. Refer to plans for temporary and permanent seeding schedule and specifications.

Temporary Stabilization

Disturbed areas will be vegetated in accordance with NCDEQ Erosion and Sediment Control and Wake County requirements. Temporary control features will remain in place and will be maintained until the up-gradient disturbed area has been stabilized with vegetative cover.

Construction Sequence

The contractor is responsible for ensuring that erosion is minimized and that compliance with all applicable federal, state, and local laws, regulations, and ordinances are maintained throughout execution of this project.

Phase 1:

- 1. Obtain a land disturbing permit. Schedule a pre-construction meeting.
- 2. Install gravel construction pad, temporary diversions, silt fence, or other measures as shown on the approved plan. Clear only as necessary to install these devices. Seed temporary diversions and berms immediately after construction. See detail on seeding schedule. Contractor shall begin with sediment fencing and all other sediment containment devices followed by all diversion and by-pass ditches/berms and approved inlet protection devices.
- 3. Contact Karyn Pageau @ 919-786-8769 for a compliance inspection immediately following installation of the temporary sediment control devices and prior to mass grading of the site.

Phase 2:

- 1. Begin clearing/grubbing and general excavation on site. It is the responsibility of the contractor to phase/stage erosion control to allow for construction.
 - Note: Contractor shall inspect and repair all erosion devices at least once a week and after every rainfall. Grading activity shall be prohibited in the areas of the sediment control devices until the areas upstream of these devices have been stabilized and approved.
- 2. Begin installing upstream storm drainage system. Install approved inlet protection. Additional measures may be required by the inspector due to the routing of the storm drainage system and actual field conditions.
 - Note: Contractor shall ensure that the erosion control devices remain undisturbed during construction of the building pads and associated parking/drive areas adjacent to these devices until the contributing upstream areas have been stabilized and approved. Erosion control measures shall not be removed until approval from the environmental inspector.
- Stabilize site as areas are brought up to finish grade with vegetation, paving, ditch linings, etc. Seed and mulch denuded areas within 14 working days or 30 calendar days after completion of any phase of construction, whichever period is stabilized. All areas shall be stabilized within 30 days.

Note: Contractor shall ensure that the erosion control devices remain undisturbed during construction of the building pads and associated parking/drive areas adjacent to these devices until the contributing upstream areas have been stabilized and approved.

Phase 3:

- When construction is complete and all areas are stabilized completely, call for inspection by environmental inspector. When site is approved, remove silt fencing, inlet protection, etc. and seed or pave any resulting bare areas. All remaining permanent erosion control devices, such as outlet protection and permanent swale vegetation, should now be installed or brought online.
- 2. When vegetation has become established, call for a final site inspection by the environmental inspector. Obtain a certificate of completion.

Temporary Erosion and Sediment Control Maintenance

All erosion and sediment control measures will be checked for stability and operation following every runoff-producing rainfall but in no case less than twice every week, at least 72 hours apart. Any needed repairs will be made immediately to maintain all measures as designed.

Sediment fences and inlet protection shall be inspected at least twice every week, at least 72 hours apart. Repairs shall be made immediately. Sediment deposits shall be removed as needed to provide adequate storage volume for the next rainfall event, and to reduce pressure on the fence. Fencing materials and sediment deposits shall be removed, and the area brought to grade following stabilization of upgradient disturbed areas.

Proposed Stormwater Management Requirements

The stormwater management controls proposed provide water quantity volume control, peak flow reduction and water quality treatment. The appendices of this report provide detailed information regarding the hydrology and water quality improvements for the pre- and post-development conditions for the site.

Water Quantity Control Requirements and Compliance Methods

This project is located within the City of Zebulon city limits and is subject to the City of Zebulon Code of Ordinances Chapter 151 – Stormwater. Per Chapter 151.35, high-density projects shall control and treat runoff from the first inch of rainfall, and shall feature BMPs designed to ensure no net increase in peak flow rates leaving the site from the pre-development conditions for the one-year, 24-hour storm.

In order to address this control requirement, this project proposes to install an underground detention system with a multi-stage outlet control structure. Stormwater flows have been modeled for pre- and post-development flow rates to ensure compliance with the above stated regulations. In the post-development condition, the 1-year, 24-hour flow rates are controlled to below the pre-development conditions at both analysis points indicated on the attached drainage map exhibits within Appendix A. Please see Appendix B for the supporting peak flow calculations.

Water Quality Treatment Requirements

The project is located within the Neuse River watershed basin and is subject to water quality treatment requirements listed in the City of Zebulon Code of Ordinances, Chapter 151.35 (D) consisting of treatment to remove 85% Total Suspended Solids (TSS) from the first 1.0" of rainfall on-site. Post-construction runoff will be treated with a NCDEQ listed primary SCM (Contech StormFilter) which will provide the TSS treatment requirements to meet the City of Zebulon Ordinance requirements. The StormFilter SCM will be designed and sized in accordance with NCDEQ minimum design criteria listed in the NCDEQ Stormwater Design Manual, chapter D-1. See Appendix C and D for details.

Downstream Impact Analysis

A downstream impact analysis was performed in accordance with section 151.36 of the Zebulon Code of Ordinances to ensure there are no impacts on flooding or channel degradation downstream as a result of this project. Topographic mapping of the site as well as the downstream drainage areas were reviewed during the preparation of this analysis. Two downstream drainage areas and analysis points were identified and modeled using Hydraflows Hydrographs and the NRCS SCS-Method. Pre-development and post-development hydrograph models were prepared and used to confirm that there were no increases in the 10-year, 24-hour storm flow rates at the site boundaries nor at the downstream analysis points. Please see the summary of findings below, as well as the attached Hydraflows Hydrograph calculations (Appendix B) and Downstream Impact Analysis exhibit figure (Appendix F).

10-Year, 24-Hour Storm Peak Flow Summary Table:								
Analysis Point:	DA-1	DA-1	DA-2	DA-2				
	(On-Site)	(Downstream)	(On-Site)	(Downstream)				
Pre-Development	3.476	15.88	4.823	32.71				
Post-Development	1.115	14.32	2.870	32.54				

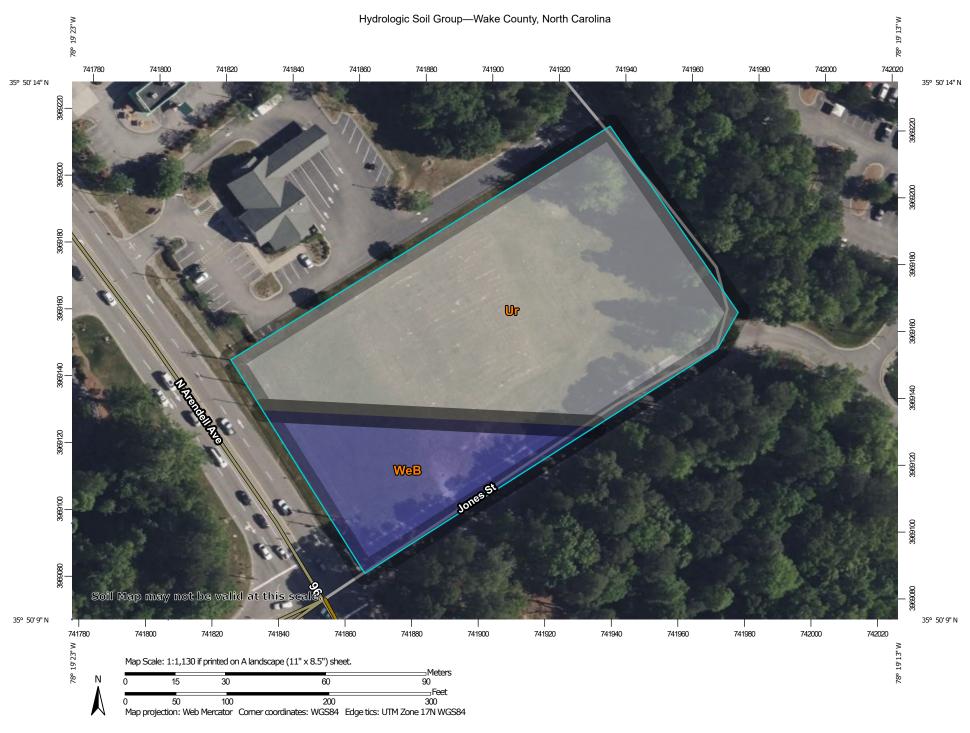
Calculation Methodology

- The rainfall data was taken from NOAA Atlas 14. This rainfall depth was then input into Hydraflow 2017 along with a CN using the SCS method for pre- and post-development flow rates. Please reference the Appendix B within this report for additional information.
- Soils data for the site was taken from the NRCS USDA web soil survey website (http://websoilsurvey.nrcs.usda.gov/). Please reference the miscellaneous site data section within this report for additional information.
- The on- and off-site topography used in the analysis is from a field survey by Sambatek NC PC performed on June 6, 2022.

Stormwater SCM Maintenance

Frequent, thorough, and consistent inspections and maintenance are critical to the successful operation of the stormwater control measures. Inspections reveal the operational status of the system and identify needed maintenance actions. Therefore, the individuals responsible for inspecting and maintaining the SCM should thoroughly understand the stormwater control measures and processes. The type and frequency of maintenance for a specific stormwater system is determined by inspection results and the maintenance schedule for each stormwater device being proposed. Maintenance should be performed in accordance with system design information and safety procedures provided in Appendices. Performing timely maintenance is important in preventing system failure and will be less expensive in the longterm.

Construction Maintenance


During construction, the project site owner must implement a self-monitoring program that includes a written site evaluation of all erosion control measures and SCMs after each measurable storm event, and at least one time per week, in accordance with the requirements in the stormwater manual. All measures and controls must be repaired and maintained in proper operating condition.

Post-Construction Maintenance

After all construction activity has been completed, SCM maintenance is the responsibility of the property owner.

APPENDIX A

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Wake County, North Carolina Survey Area Data: Version 25, Oct 2, 2023 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Apr 24, 2022—May 9. 2022 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI						
Ur	Urban land		1.9	76.5%						
WeB	Wedowee sandy loam, 2 to 6 percent slopes	В	0.6	23.5%						
Totals for Area of Intere	est	2.5	100.0%							

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

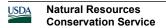
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

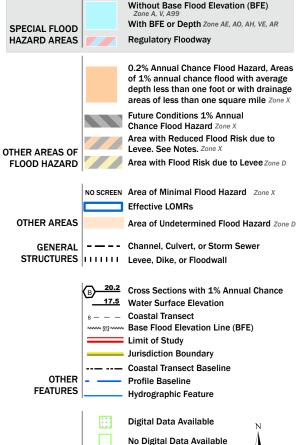
Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

National Flood Hazard Layer FIRMette



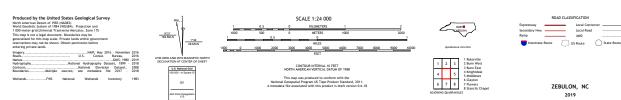
Legend

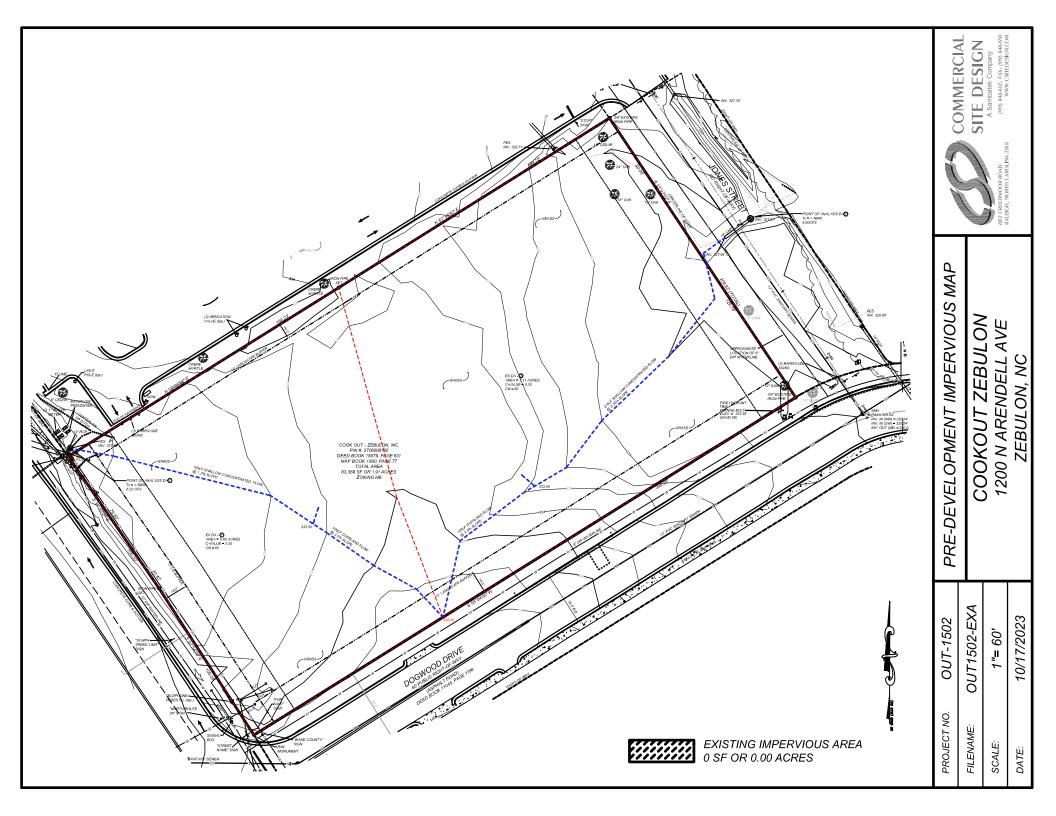
MAP PANELS

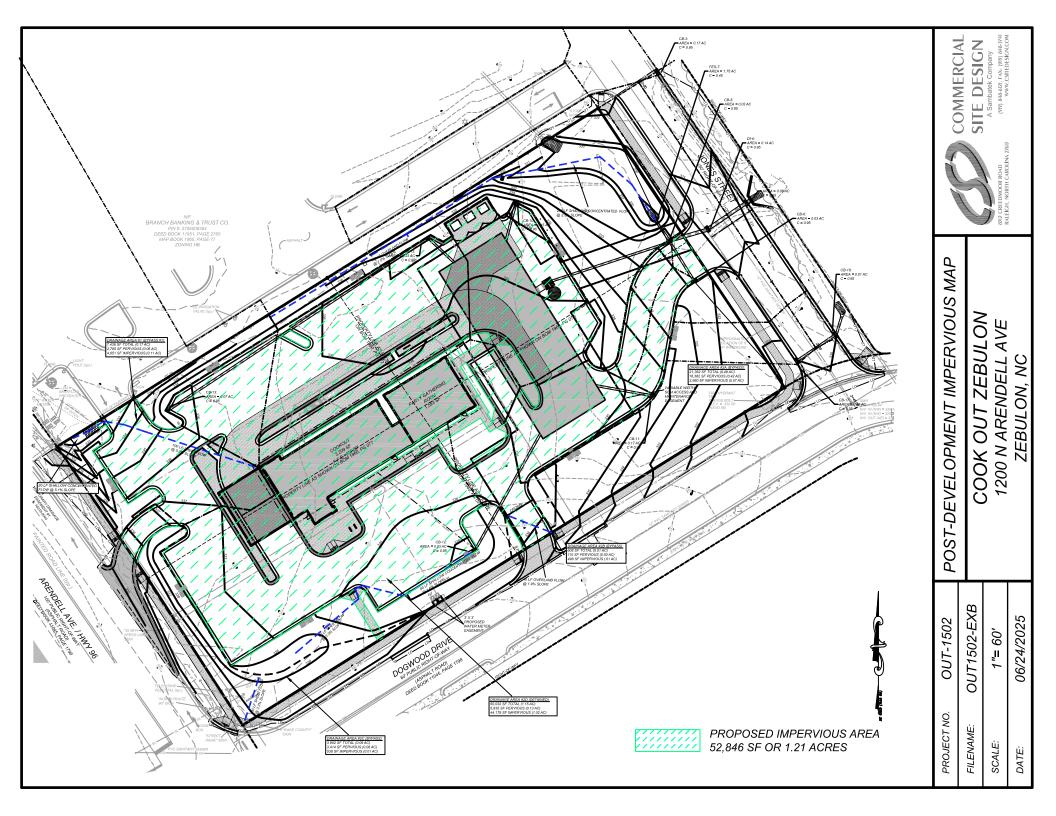
SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

point selected by the user and does not represent an authoritative property location.

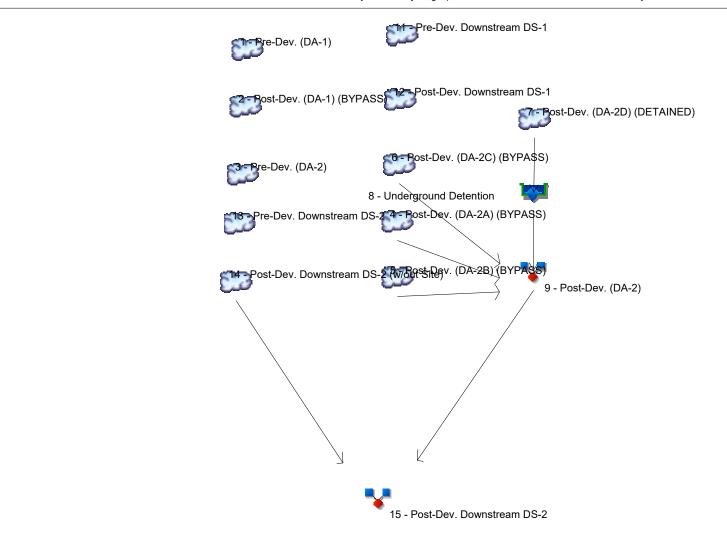
The pin displayed on the map is an approximate


This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards


The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 10/17/2023 at 2:48 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.


Unmapped

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.



APPENDIX B

<u>Legend</u>

<u>Hyd.</u>	<u>Origin</u>	<u>Description</u>
1	SCS Runoff	Pre-Dev. (DA-1)
2	SCS Runoff	Post-Dev. (DA-1) (BYPASS)
3	SCS Runoff	Pre-Dev. (DA-2)
4	SCS Runoff	Post-Dev. (DA-2A) (BYPASS)
5	SCS Runoff	Post-Dev. (DA-2B) (BYPASS)
6	SCS Runoff	Post-Dev. (DA-2C) (BYPASS)
7	SCS Runoff	Post-Dev. (DA-2D) (DETAINED)
8	Reservoir	Underground Detention
9	Combine	Post-Dev. (DA-2)
11	SCS Runoff	Pre-Dev. Downstream DS-1
12	SCS Runoff	Post-Dev. Downstream DS-1
13	SCS Runoff	Pre-Dev. Downstream DS-2
14	SCS Runoff	Post-Dev. Downstream DS-2 (w/out Site)
15	Combine	Post-Dev. Downstream DS-2

Project: X:\OUT - Cookout\1500 Sites\1502 - Zebulon, NC\Engineering\Stormwater\Stormwater\Stormwater\Stormwater\Duz41/520225lodel - Final.gpw

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

_		Inflow	Peak Outflow (cfs)								Hydrograph
	type origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
ı scs	S Runoff		1.300				3.476			6.368	Pre-Dev. (DA-1)
scs	S Runoff		0.558				1.115			1.800	Post-Dev. (DA-1) (BYPASS)
scs	S Runoff		1.803				4.823			8.836	Pre-Dev. (DA-2)
scs	S Runoff		0.749				1.870			3.320	Post-Dev. (DA-2A) (BYPASS)
scs	S Runoff		0.038				0.070			0.109	Post-Dev. (DA-2B) (BYPASS)
scs	S Runoff		0.058				0.267			0.591	Post-Dev. (DA-2C) (BYPASS)
scs	S Runoff		3.944				7.489			11.85	Post-Dev. (DA-2D) (DETAINED)
Res	servoir	7	0.488				0.960			10.26	Underground Detention
Con	mbine	4, 5, 6, 8	1.221				2.870			13.84	Post-Dev. (DA-2)
11 SCS	S Runoff		6.955				15.88			27.13	Pre-Dev. Downstream DS-1
12 SCS	S Runoff		6.425				14.32			24.21	Post-Dev. Downstream DS-1
13 SCS	S Runoff		13.97				32.71			56.56	Pre-Dev. Downstream DS-2
14 SCS	S Runoff		13.56				31.00			53.02	Post-Dev. Downstream DS-2 (w/out S
15 Con	mbine	9, 14	14.28				32.54			55.63	Post-Dev. Downstream DS-2

Proj. file: X:\OUT - Cookout\1500 Sites\1502 - Zebulon, NC\Engineering\StormwaTer\Sttayn,\06t\ell\4Mb\20\20UT-1502 Model - Final.gpw

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

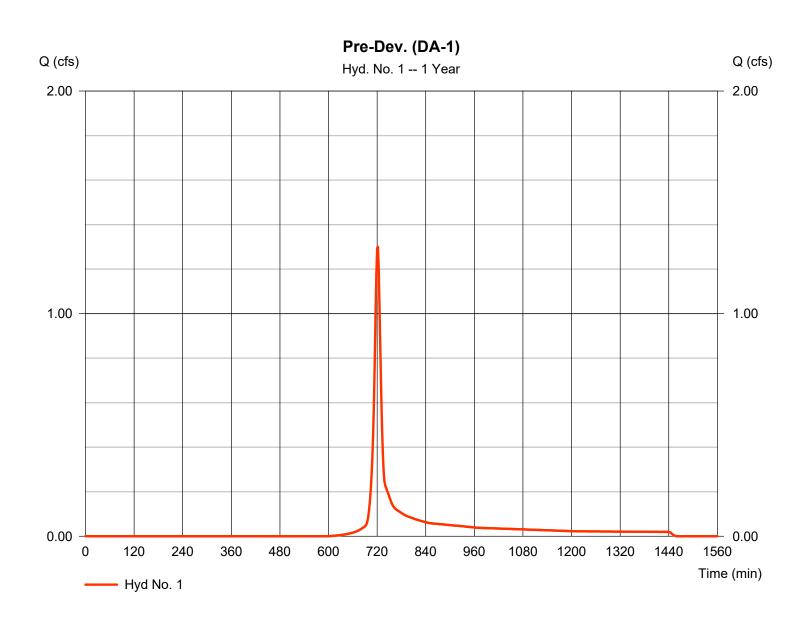
lyd. lo.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.300	2	722	3,410				Pre-Dev. (DA-1)
2	SCS Runoff	0.558	2	716	1,169				Post-Dev. (DA-1) (BYPASS)
3	SCS Runoff	1.803	2	722	4,731				Pre-Dev. (DA-2)
4	SCS Runoff	0.749	2	724	2,360				Post-Dev. (DA-2A) (BYPASS)
5	SCS Runoff	0.038	2	716	89				Post-Dev. (DA-2B) (BYPASS)
6	SCS Runoff	0.058	2	718	135				Post-Dev. (DA-2C) (BYPASS)
7	SCS Runoff	3.944	2	718	9,614				Post-Dev. (DA-2D) (DETAINED)
8	Reservoir	0.488	2	738	9,608	7	331.87	5,077	Underground Detention
9	Combine	1.221	2	726	12,192	4, 5, 6, 8			Post-Dev. (DA-2)
11	SCS Runoff	6.955	2	736	33,756				Pre-Dev. Downstream DS-1
12	SCS Runoff	6.425	2	736	31,142				Post-Dev. Downstream DS-1
13	SCS Runoff	13.97	2	744	79,332				Pre-Dev. Downstream DS-2
14	SCS Runoff	13.56	2	744	76,855				Post-Dev. Downstream DS-2 (w/out
15	Combine	14.28	2	742	89,047	9, 14			Post-Dev. Downstream DS-2

X:\OUT - Cookout\1500 Sites\1502 - Zebulon, Returng Return of Steamwater\Storm Tracksd 1/2006\024T/-25025 Model - Final.gpw

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 06 / 24 / 2025

Hyd. No. 1


Pre-Dev. (DA-1)

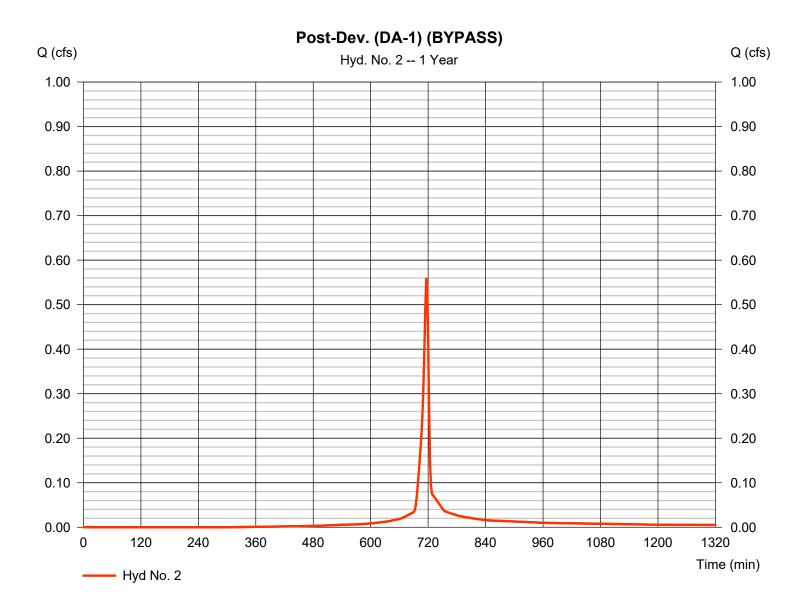
Hydrograph type = SCS Runoff Peak discharge = 1.300 cfsStorm frequency Time to peak = 722 min = 1 yrsTime interval = 2 min Hyd. volume = 3.410 cuftDrainage area = 0.800 acCurve number = 80* Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method = TR55 $= 13.20 \, \text{min}$

Total precip. = 2.85 in Distribution = Type II

Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $+ (0.800 \times 80)$] / 0.800

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

Hyd. No. 2

Post-Dev. (DA-1) (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 0.558 cfsStorm frequency Time to peak = 716 min = 1 yrsTime interval = 2 min Hyd. volume = 1,169 cuft Curve number Drainage area = 0.170 ac= 92* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 2.85 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.110 x 98) + (0.060 x 80)] / 0.170

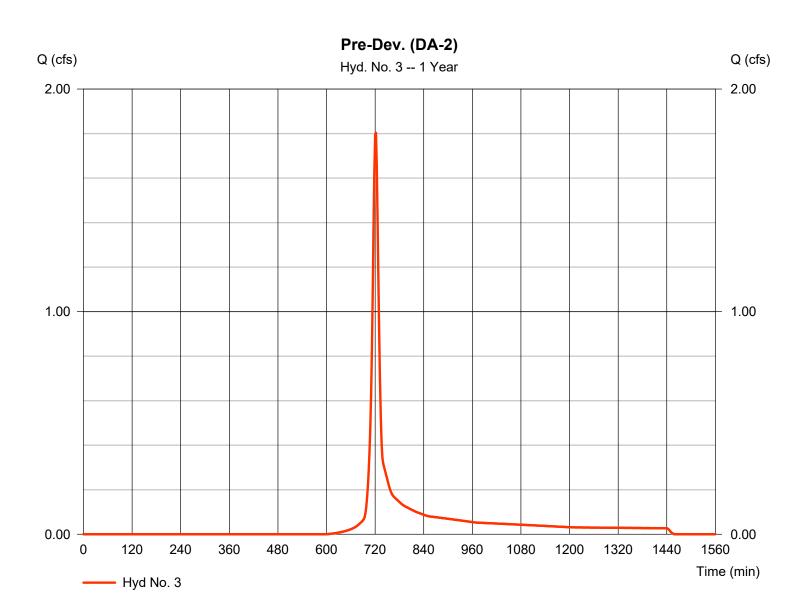
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

= 24 hrs

Tuesday, 06 / 24 / 2025

= 484

Hyd. No. 3


Pre-Dev. (DA-2)

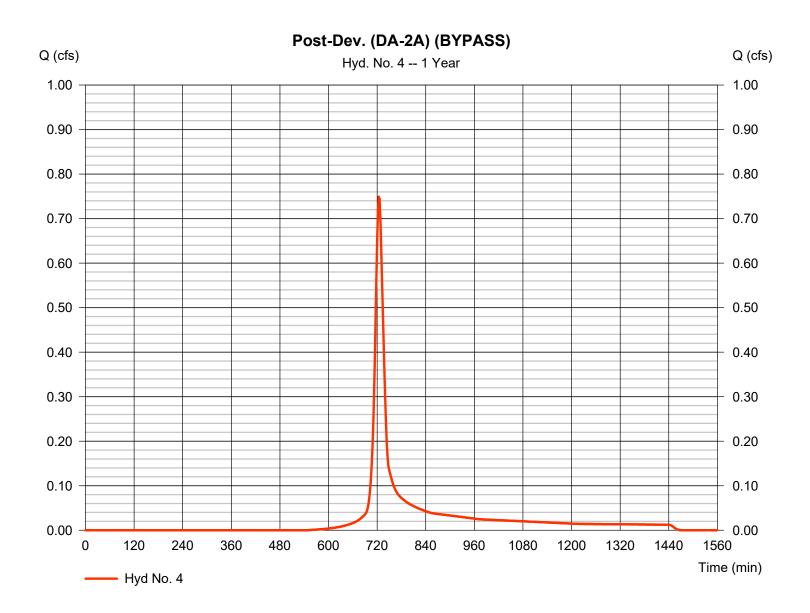
Storm duration

Hydrograph type = SCS Runoff Peak discharge = 1.803 cfsStorm frequency Time to peak = 722 min = 1 yrsTime interval = 2 min Hyd. volume = 4,731 cuftDrainage area = 1.110 acCurve number = 80* Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method = TR55 $= 12.40 \, \text{min}$ Total precip. = 2.85 inDistribution = Type II

Shape factor

^{*} Composite (Area/CN) = + (1.110 x 80)] / 1.110

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

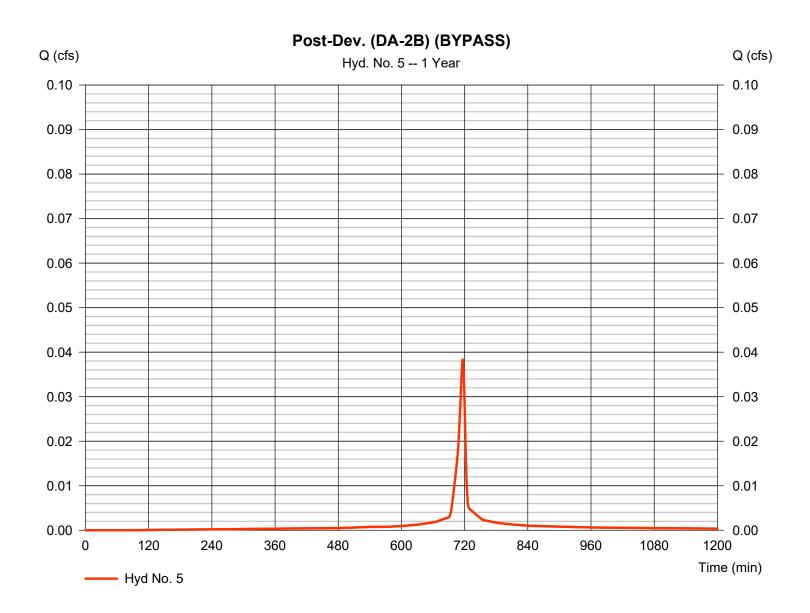
Hyd. No. 4

Post-Dev. (DA-2A) (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 0.749 cfsStorm frequency Time to peak = 724 min = 1 yrsTime interval = 2 min Hyd. volume = 2.360 cuftCurve number Drainage area = 0.490 ac= 83* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 19.50 \, \text{min}$ Total precip. Distribution = Type II = 2.85 inStorm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.070 \times 98) + (0.420 \times 80)] / 0.490$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

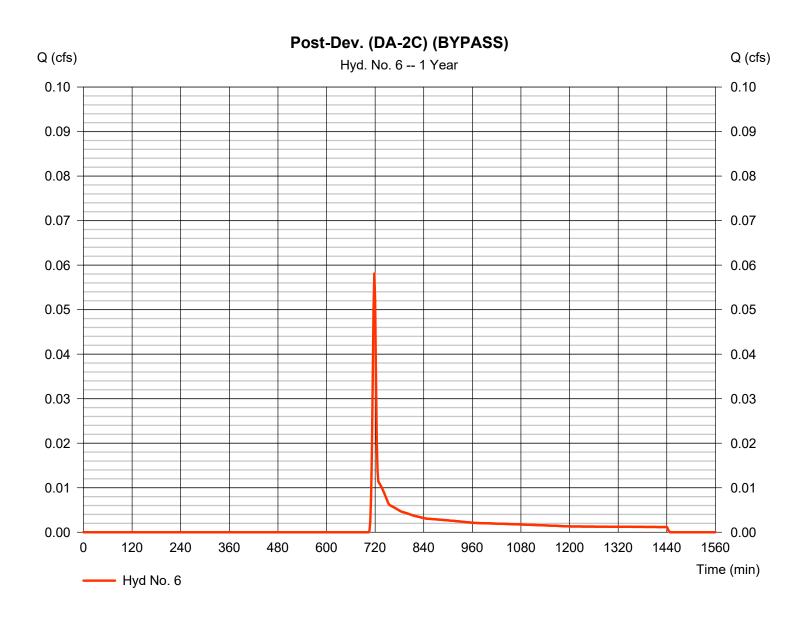
Hyd. No. 5

Post-Dev. (DA-2B) (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 0.038 cfsStorm frequency Time to peak = 716 min = 1 yrsTime interval = 2 min Hyd. volume = 89 cuft Curve number Drainage area = 0.010 ac= 98* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 2.85 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.010 x 98)] / 0.010

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

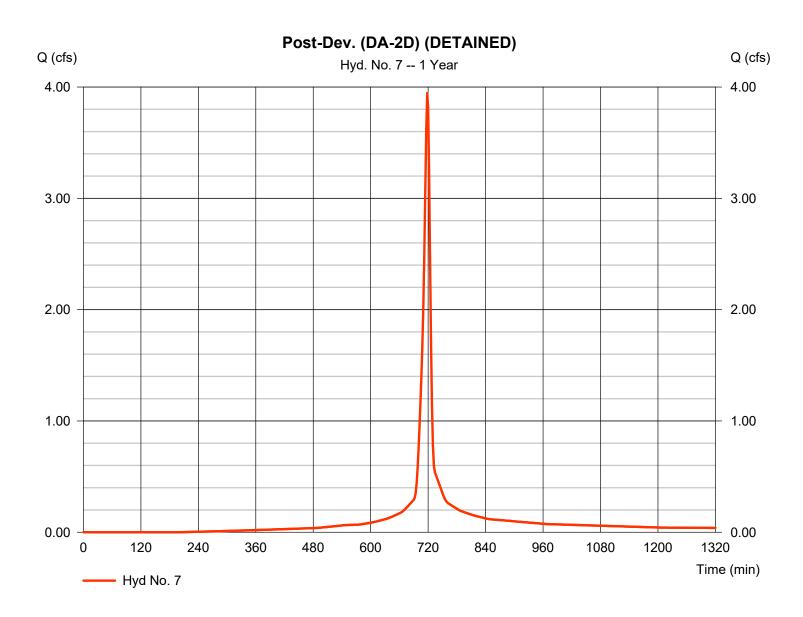
Hyd. No. 6

Post-Dev. (DA-2C) (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 0.058 cfsStorm frequency Time to peak = 718 min = 1 yrsTime interval = 2 min Hyd. volume = 135 cuft Curve number Drainage area = 0.090 ac= 65* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 2.85 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.010 \times 98) + (0.080 \times 61)] / 0.090$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

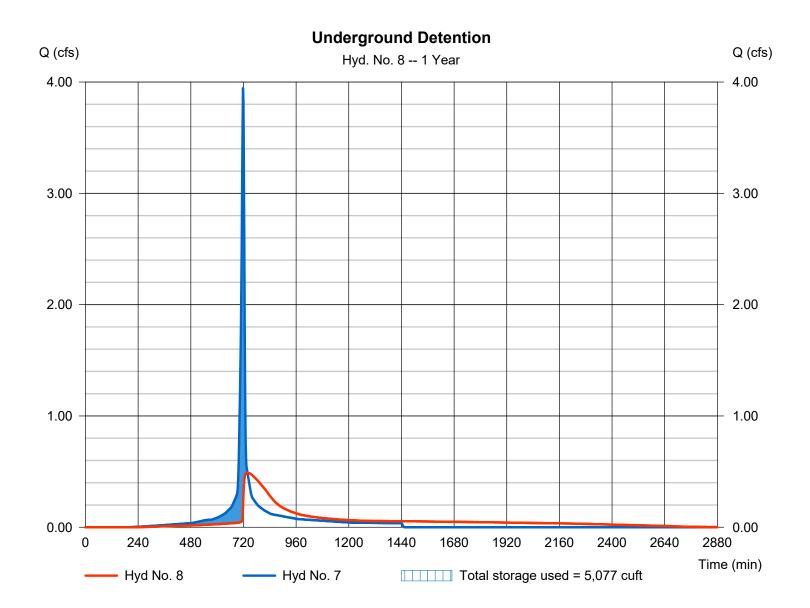
Hyd. No. 7

Post-Dev. (DA-2D) (DETAINED)

Hydrograph type = SCS Runoff Peak discharge = 3.944 cfsStorm frequency Time to peak = 718 min = 1 yrsTime interval = 2 min Hyd. volume = 9.614 cuft Drainage area = 1.150 acCurve number = 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method = TR55 $= 8.00 \, \text{min}$ Total precip. Distribution = Type II = 2.85 inShape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(1.020 \times 98) + (0.060 \times 80) + (0.070 \times 61)] / 1.150$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

Hyd. No. 8

Underground Detention

Hydrograph type = Reservoir Peak discharge = 0.488 cfsStorm frequency Time to peak = 738 min = 1 yrsTime interval = 2 min Hyd. volume = 9,608 cuft= 7 - Post-Dev. (DA-2D) (DETAINMED) Elevation Inflow hyd. No. = 331.87 ftReservoir name = UG Detention System Max. Storage = 5,077 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 06 / 24 / 2025

Pond No. 1 - UG Detention System

Pond Data

UG Chambers -Invert elev. = 330.15 ft, Rise x Span = 4.00 x 4.00 ft, Barrel Len = 123.00 ft, No. Barrels = 8, Slope = 0.00%, Headers = No

Stage / Storage Table

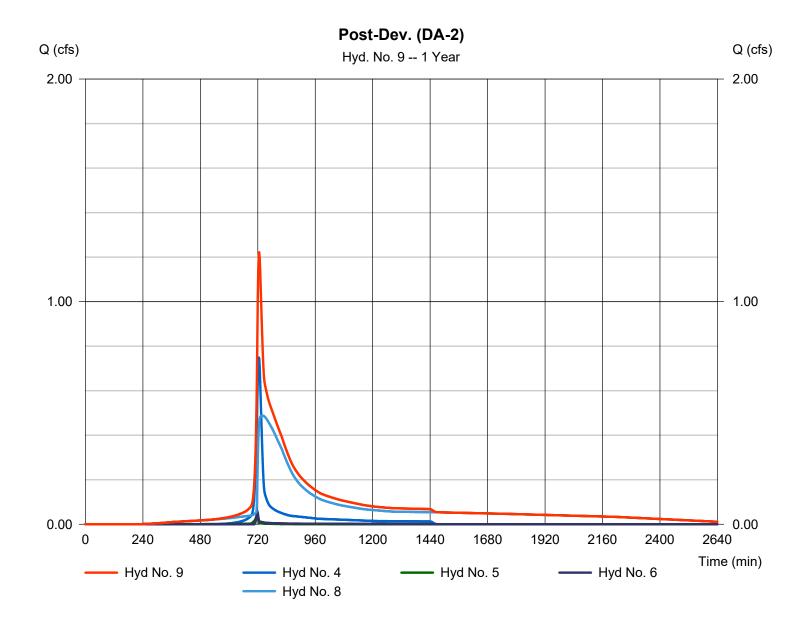
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	330.15	n/a	0	0
0.40	330.55	n/a	644	644
0.80	330.95	n/a	1,118	1,762
1.20	331.35	n/a	1,360	3,122
1.60	331.75	n/a	1,498	4,620
2.00	332.15	n/a	1,565	6,185
2.40	332.55	n/a	1,565	7,750
2.80	332.95	n/a	1,498	9,248
3.20	333.35	n/a	1,359	10,608
3.60	333.75	n/a	1,117	11,725
4.00	334.15	n/a	643	12,368

Culvert / Orifice Structures Weir Structures [B] [C] [PrfRsr] [A] [B] [C] [D] [A] = 18.00 1.40 5.00 0.00 = 20.00 5.00 0.00 0.00 Rise (in) Crest Len (ft) Span (in) = 18.001.40 5.00 0.00 Crest El. (ft) = 335.75 333.40 0.00 0.00 No. Barrels = 1 1 0 Weir Coeff. = 3.33 3.33 3.33 3.33 1 328.30 331.25 0.00 Weir Type Invert El. (ft) = 328.15 = 1 Rect = 75.00 0.50 0.50 0.00 Multi-Stage = Yes Yes No No Length (ft) 0.00 0.00 Slope (%) = 0.87 n/a .013 N-Value = .013 .013 n/a Orifice Coeff. = 0.600.61 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) = n/a Yes No TW Elev. (ft) = 0.00 Multi-Stage Yes

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	330.15	0.00	0.00	0.00		0.00	0.00					0.000
0.40	644	330.55	9.01 oc	0.03 ic	0.00		0.00	0.00					0.033
0.80	1,762	330.95	9.01 oc	0.05 ic	0.00		0.00	0.00					0.047
1.20	3,122	331.35	9.01 oc	0.06 ic	0.03 ic		0.00	0.00					0.085
1.60	4,620	331.75	9.01 oc	0.07 ic	0.35 ic		0.00	0.00					0.421
2.00	6,185	332.15	9.01 oc	0.07 ic	0.55 ic		0.00	0.00					0.620
2.40	7,750	332.55	9.01 oc	0.08 ic	0.69 ic		0.00	0.00					0.767
2.80	9,248	332.95	9.01 oc	0.09 ic	0.80 ic		0.00	0.00					0.890
3.20	10,608	333.35	9.01 oc	0.09 ic	0.90 ic		0.00	0.00					0.997
3.60	11,725	333.75	9.01 oc	0.10 ic	0.99 ic		0.00	3.45					4.541
4.00	12.368	334.15	11.98 oc	0.09 ic	1.08 ic		0.00	10.81					11.98


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

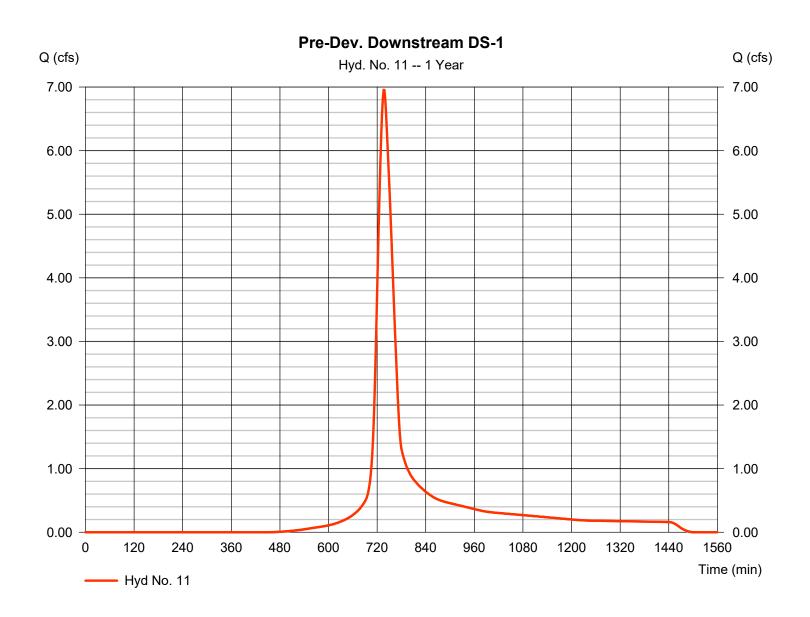
Tuesday, 06 / 24 / 2025

Hyd. No. 9

Post-Dev. (DA-2)

Hydrograph type = 1.221 cfs= Combine Peak discharge Storm frequency = 1 yrsTime to peak = 726 min Time interval = 2 min Hyd. volume = 12,192 cuft = 4, 5, 6, 8 Inflow hyds. Contrib. drain. area = 0.590 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

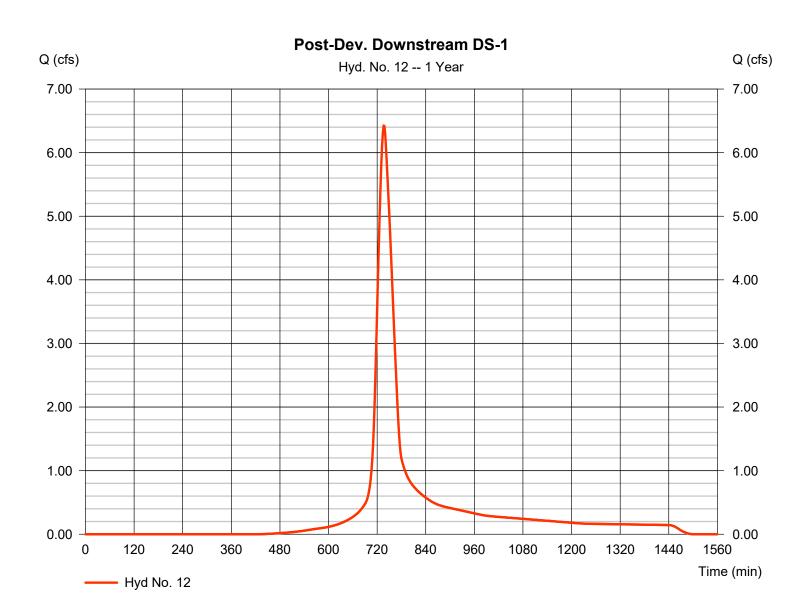
Hyd. No. 11

Pre-Dev. Downstream DS-1

Hydrograph type = SCS Runoff Peak discharge = 6.955 cfsStorm frequency Time to peak = 736 min = 1 yrsTime interval = 2 min Hyd. volume = 33.756 cuft Drainage area Curve number = 5.780 ac= 87* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 40.10 \, \text{min}$ Total precip. = 2.85 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(2.180 x 98) + (3.600 x 80)] / 5.780

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

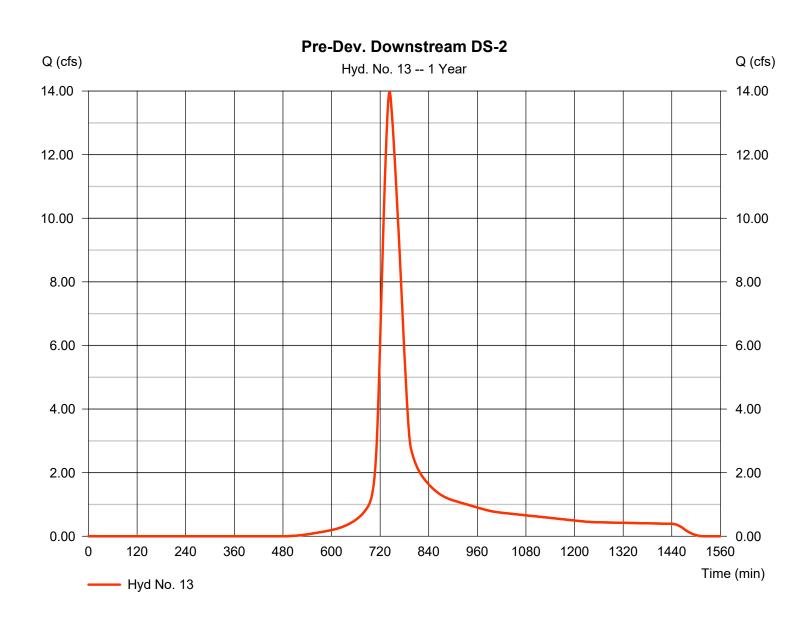
Hyd. No. 12

Post-Dev. Downstream DS-1

Hydrograph type = SCS Runoff Peak discharge $= 6.425 \, \text{cfs}$ Storm frequency Time to peak = 736 min = 1 yrsTime interval = 2 min Hyd. volume = 31.142 cuft Drainage area Curve number = 5.090 ac= 88* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 40.10 \, \text{min}$ Total precip. = 2.85 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(2.310 x 98) + (2.780 x 80)] / 5.090

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

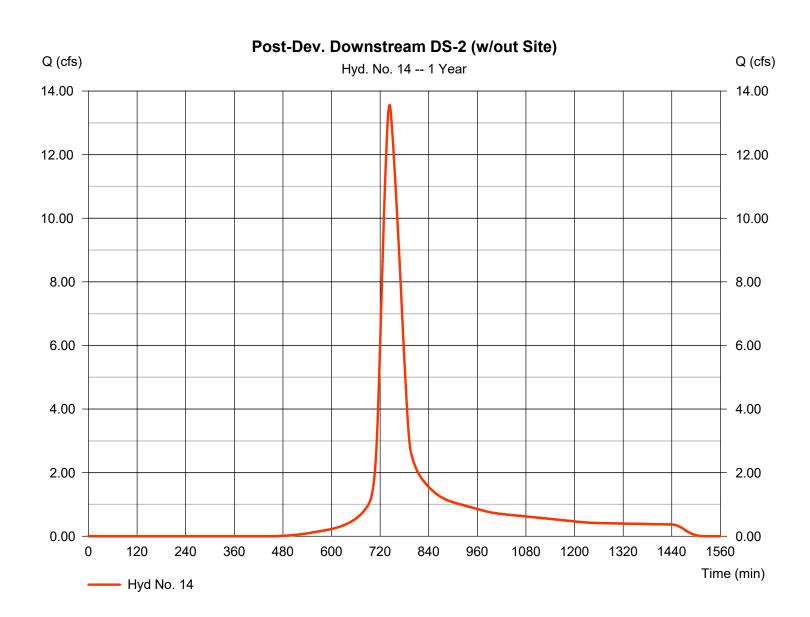
Hyd. No. 13

Pre-Dev. Downstream DS-2

Hydrograph type = SCS Runoff Peak discharge = 13.97 cfsStorm frequency Time to peak = 744 min = 1 yrsTime interval = 2 min Hyd. volume = 79.332 cuft Drainage area = 14.240 ac Curve number = 86* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.10 min = TR55 Total precip. = 2.85 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(4.930 \times 98) + (9.310 \times 80)] / 14.240$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

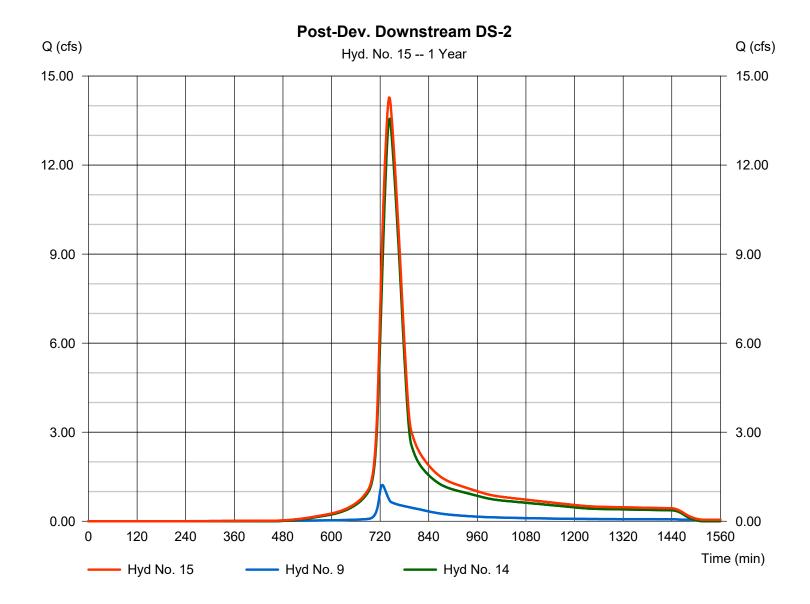

Tuesday, 06 / 24 / 2025

Hyd. No. 14

Post-Dev. Downstream DS-2 (w/out Site)

Hydrograph type	= SCS Runoff	Peak discharge	= 13.56 cfs
Storm frequency	= 1 yrs	Time to peak	= 744 min
Time interval	= 2 min	Hyd. volume	= 76,855 cuft
Drainage area	= 13.160 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 49.10 min
Total precip.	= 2.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = [(5.220 x 98) + (7.940 x 80)] / 13.160


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 06 / 24 / 2025

Hyd. No. 15

Post-Dev. Downstream DS-2

Hydrograph type Peak discharge = 14.28 cfs= Combine Time to peak Storm frequency = 1 yrs= 742 min Time interval = 2 min Hyd. volume = 89,047 cuft Inflow hyds. Contrib. drain. area = 9, 14 = 13.160 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

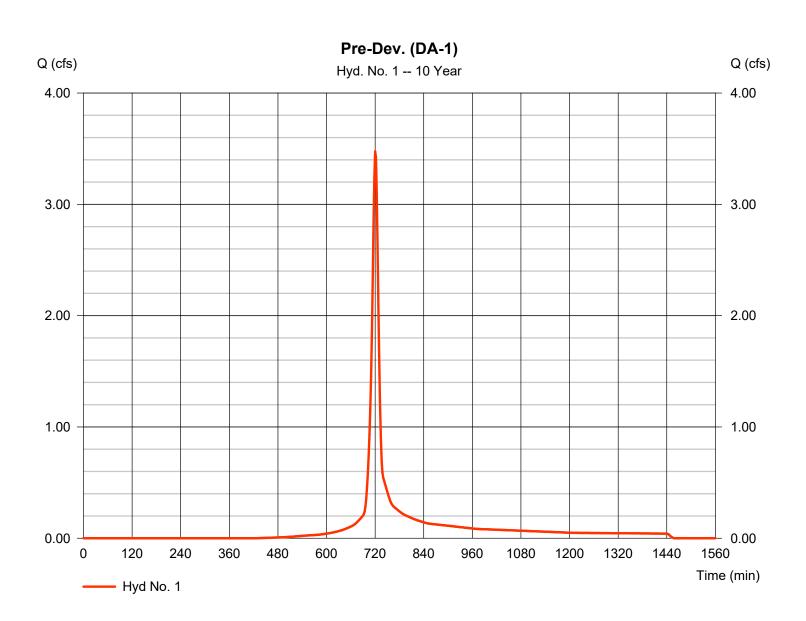
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	3.476	2	720	9,030				Pre-Dev. (DA-1)
2	SCS Runoff	1.115	2	716	2,445				Post-Dev. (DA-1) (BYPASS)
3	SCS Runoff	4.823	2	720	12,529				Pre-Dev. (DA-2)
4	SCS Runoff	1.870	2	724	5,872				Post-Dev. (DA-2A) (BYPASS)
5	SCS Runoff	0.070	2	716	167				Post-Dev. (DA-2B) (BYPASS)
6	SCS Runoff	0.267	2	718	535				Post-Dev. (DA-2C) (BYPASS)
7	SCS Runoff	7.489	2	718	19,028				Post-Dev. (DA-2D) (DETAINED)
8	Reservoir	0.960	2	736	19,022	7	333.21	10,124	Underground Detention
9	Combine	2.870	2	724	25,596	4, 5, 6, 8			Post-Dev. (DA-2)
11	SCS Runoff	15.88	2	736	77,617				Pre-Dev. Downstream DS-1
12	SCS Runoff	14.32	2	736	70,250				Post-Dev. Downstream DS-1
13	SCS Runoff	32.71	2	742	185,978				Pre-Dev. Downstream DS-2
14	SCS Runoff	31.00	2	742	176,720				Post-Dev. Downstream DS-2 (w/out S
15	Combine	32.54	2	742	202,316	9, 14			Post-Dev. Downstream DS-2

X:\OUT - Cookout\1500 Sites\1502 - Zebulon, Returng reciercing \Stocan vater\Storm \water\Storm \water\Storm \water\D2417-25025 Model - Final.gpw

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 06 / 24 / 2025

Hyd. No. 1


Pre-Dev. (DA-1)

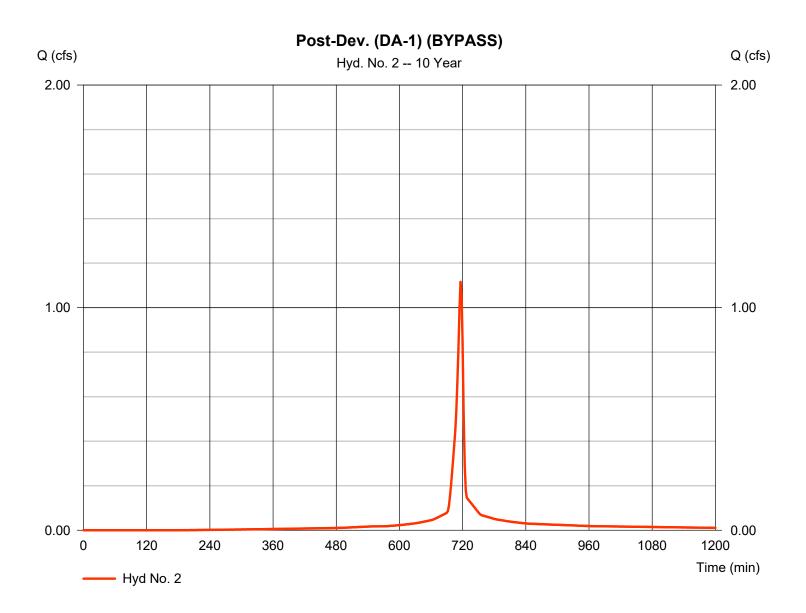
Hydrograph type = SCS Runoff Peak discharge = 3.476 cfsStorm frequency = 10 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 9.030 cuftCurve number Drainage area = 0.800 ac= 80*

Basin Slope = 0.0 %Hydraulic length = 0 ft

Tc method Time of conc. (Tc) = TR55 $= 13.20 \, \text{min}$ Total precip. = 5.14 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $+ (0.800 \times 80)$] / 0.800

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

Hyd. No. 2

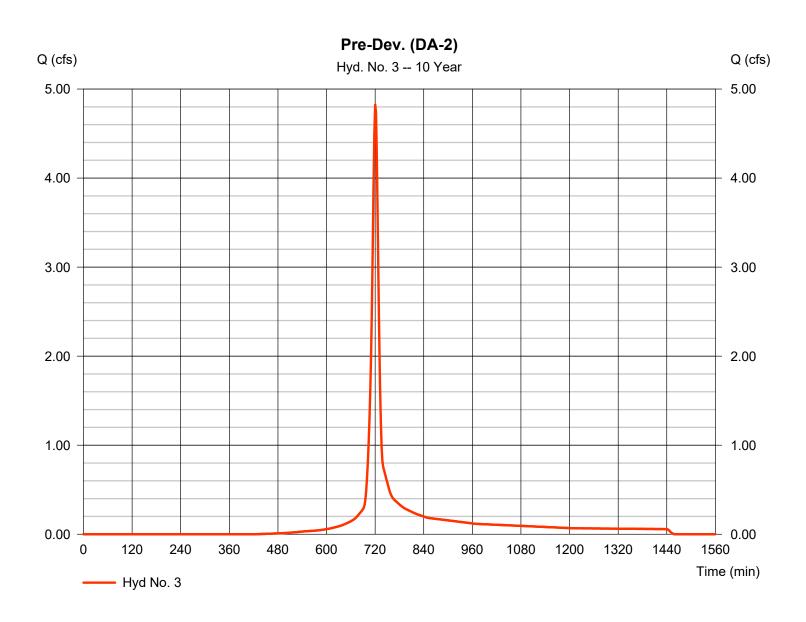
Post-Dev. (DA-1) (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 1.115 cfsStorm frequency = 10 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 2,445 cuftDrainage area = 0.170 acCurve number = 92* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.14 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.110 x 98) + (0.060 x 80)] / 0.170

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 06 / 24 / 2025


Hyd. No. 3

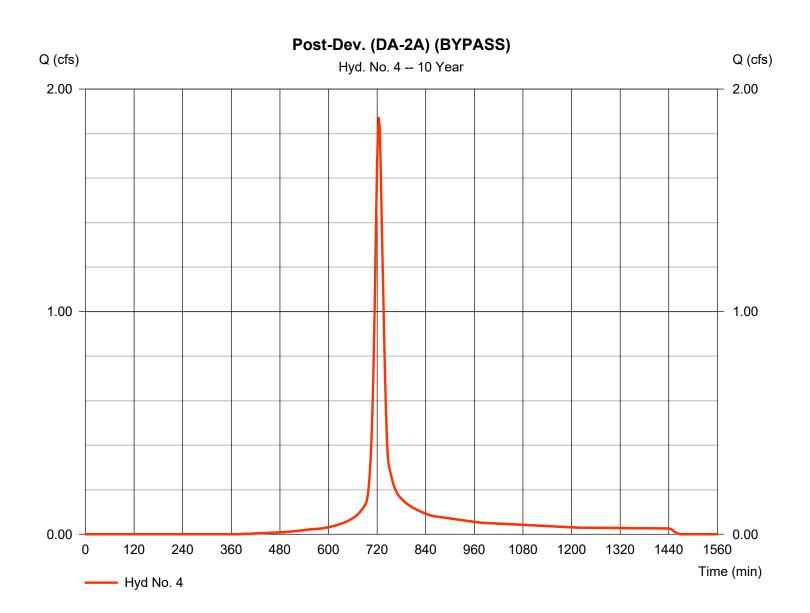
Pre-Dev. (DA-2)

Hydrograph type = SCS Runoff Peak discharge = 4.823 cfsStorm frequency = 10 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 12.529 cuftDrainage area = 1.110 acCurve number = 80* Basin Slope = 0.0 %Hydraulic length = 0 ft

Tc method = TR55 Time of conc. (Tc) = 12.40 min
Total precip. = 5.14 in Distribution = Type II
Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = + (1.110 x 80)] / 1.110

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

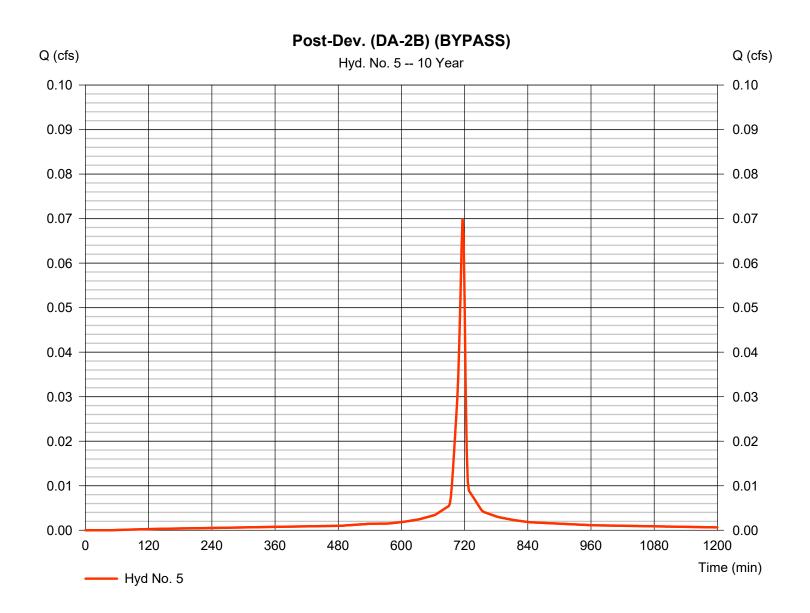
Hyd. No. 4

Post-Dev. (DA-2A) (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 1.870 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 5.872 cuftDrainage area = 0.490 acCurve number = 83* Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method = TR55 $= 19.50 \, \text{min}$ Total precip. = 5.14 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.070 \times 98) + (0.420 \times 80)] / 0.490$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

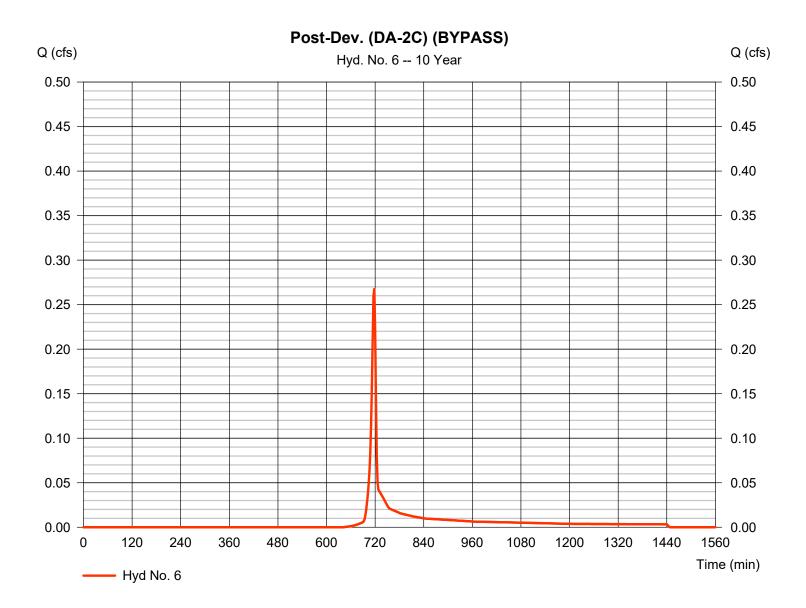
Hyd. No. 5

Post-Dev. (DA-2B) (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 0.070 cfsStorm frequency = 10 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 167 cuft Curve number Drainage area = 0.010 ac= 98* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.14 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.010 x 98)] / 0.010

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

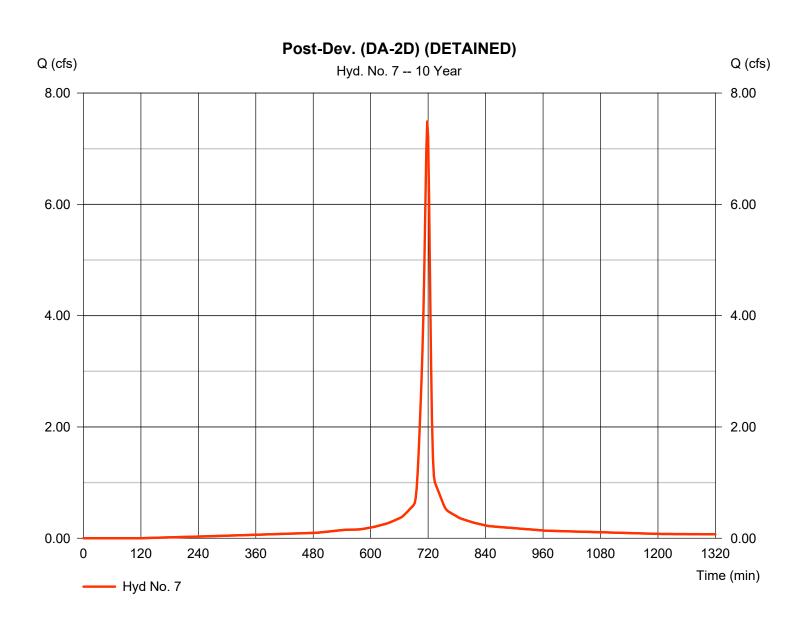
Hyd. No. 6

Post-Dev. (DA-2C) (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 0.267 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 535 cuft Curve number Drainage area = 0.090 ac= 65* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.14 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.010 \times 98) + (0.080 \times 61)] / 0.090$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

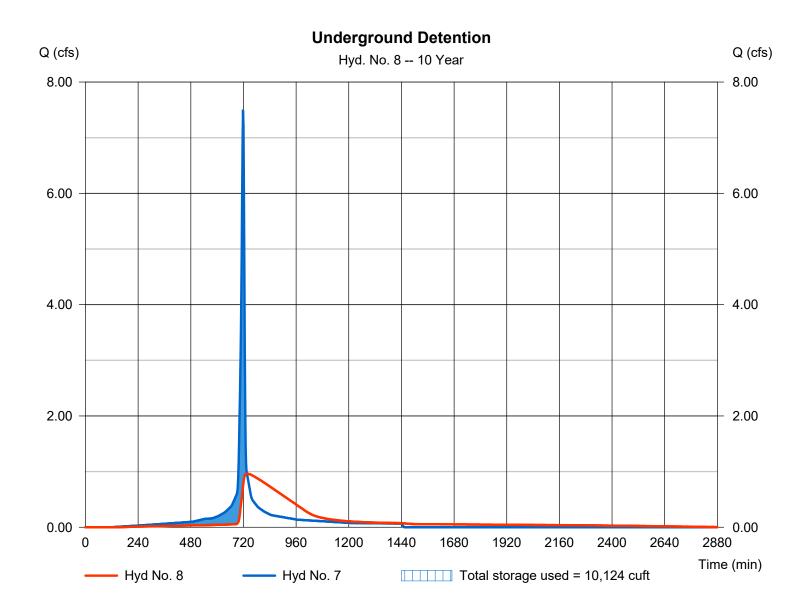
Hyd. No. 7

Post-Dev. (DA-2D) (DETAINED)

Hydrograph type = SCS Runoff Peak discharge = 7.489 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 19.028 cuft Drainage area = 1.150 acCurve number = 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 8.00 \, \text{min}$ Total precip. Distribution = Type II = 5.14 inShape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(1.020 \times 98) + (0.060 \times 80) + (0.070 \times 61)] / 1.150$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

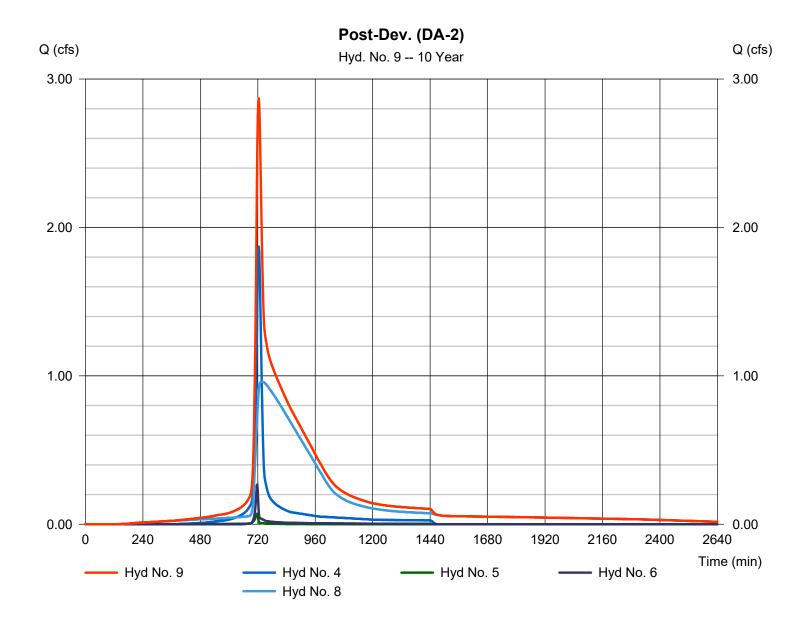

Tuesday, 06 / 24 / 2025

Hyd. No. 8

Underground Detention

Hydrograph type = Reservoir Peak discharge = 0.960 cfsStorm frequency = 10 yrsTime to peak = 736 min Time interval = 2 min Hyd. volume = 19,022 cuft Inflow hyd. No. = 7 - Post-Dev. (DA-2D) (DETAINMED) Elevation = 333.21 ftReservoir name = UG Detention System Max. Storage = 10,124 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

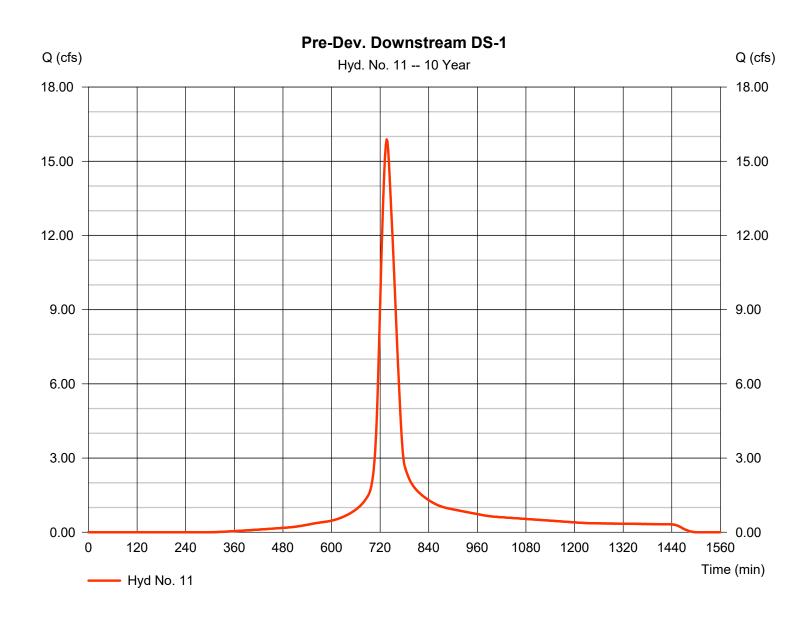
Tuesday, 06 / 24 / 2025

Hyd. No. 9

Post-Dev. (DA-2)

Hydrograph type = Combine Peak discharge = 2.870 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 25,596 cuft = 4, 5, 6, 8 Contrib. drain. area Inflow hyds. = 0.590 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

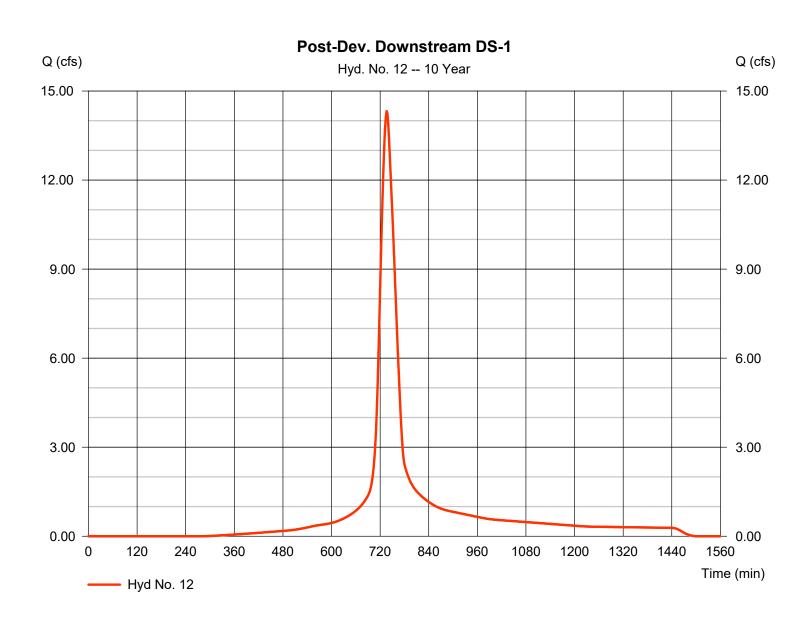
Hyd. No. 11

Pre-Dev. Downstream DS-1

Hydrograph type = SCS Runoff Peak discharge = 15.88 cfsStorm frequency = 10 yrsTime to peak = 736 min Time interval = 2 min Hyd. volume = 77.617 cuft Drainage area Curve number = 5.780 ac= 87* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 40.10 \, \text{min}$ Total precip. = 5.14 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(2.180 x 98) + (3.600 x 80)] / 5.780

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

Hyd. No. 12

Post-Dev. Downstream DS-1

Hydrograph type = SCS Runoff Peak discharge = 14.32 cfsStorm frequency = 10 yrsTime to peak = 736 min Time interval = 2 min Hyd. volume = 70.250 cuft Curve number Drainage area = 5.090 ac= 88* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 40.10 \, \text{min}$ Total precip. = 5.14 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(2.310 x 98) + (2.780 x 80)] / 5.090

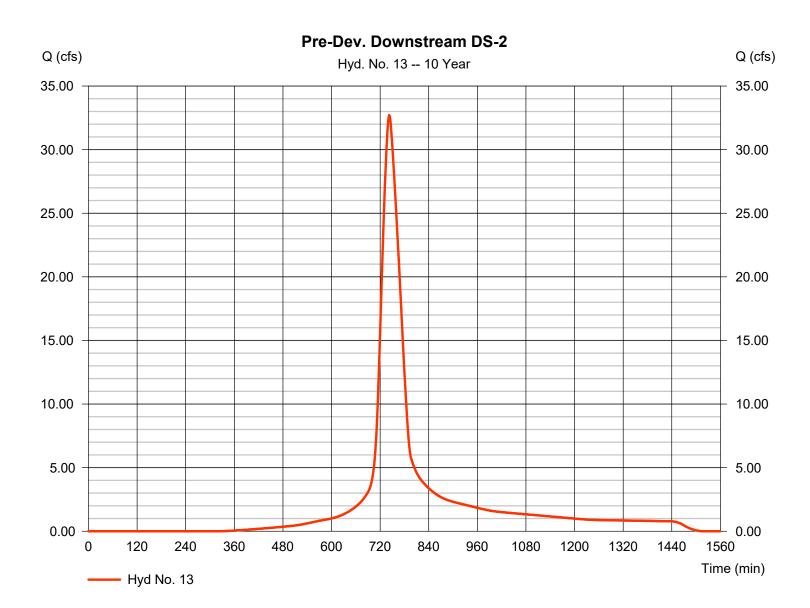
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

= 24 hrs

Tuesday, 06 / 24 / 2025

= 484

Hyd. No. 13


Storm duration

Pre-Dev. Downstream DS-2

Hydrograph type = SCS Runoff Peak discharge = 32.71 cfsStorm frequency = 10 yrsTime to peak = 742 min Time interval = 2 min Hyd. volume = 185.978 cuft Drainage area = 14.240 ac Curve number = 86* Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 49.10 min = TR55 Total precip. = 5.14 inDistribution = Type II

Shape factor

^{*} Composite (Area/CN) = [(4.930 x 98) + (9.310 x 80)] / 14.240

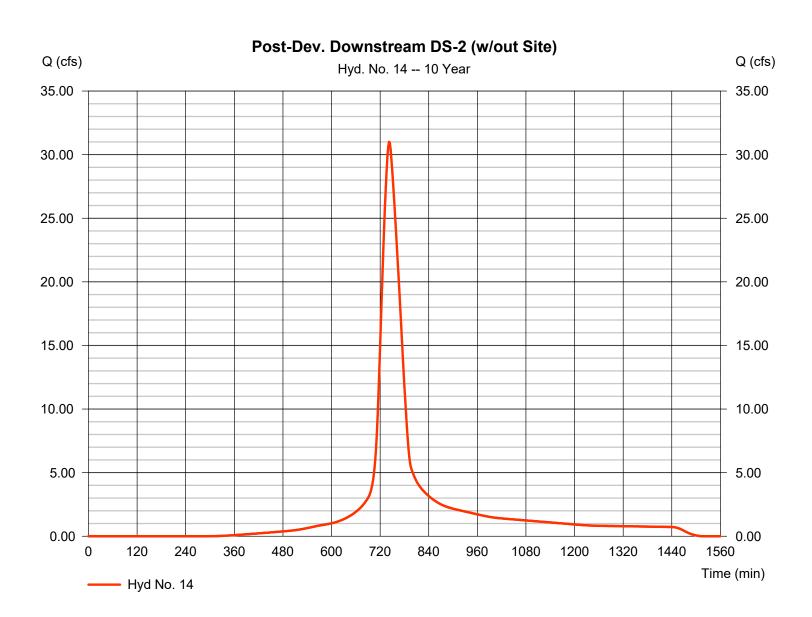
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

= 24 hrs

Tuesday, 06 / 24 / 2025

= 484

Hyd. No. 14

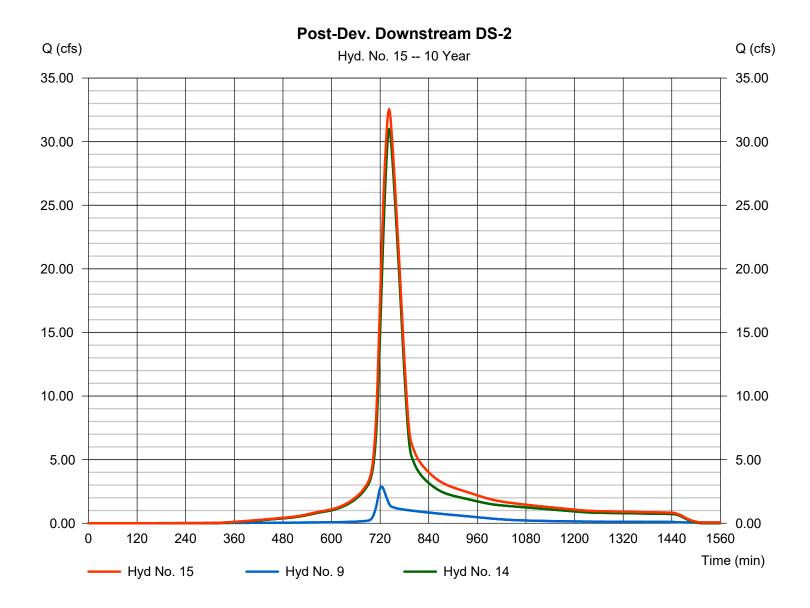

Storm duration

Post-Dev. Downstream DS-2 (w/out Site)

Hydrograph type = SCS Runoff Peak discharge = 31.00 cfsStorm frequency = 10 yrsTime to peak = 742 min Time interval = 2 min Hyd. volume = 176.720 cuft Curve number Drainage area = 13.160 ac = 87* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 49.10 \, \text{min}$ Total precip. Distribution = Type II = 5.14 in

Shape factor

^{*} Composite (Area/CN) = [(5.220 x 98) + (7.940 x 80)] / 13.160


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 06 / 24 / 2025

Hyd. No. 15

Post-Dev. Downstream DS-2

Hydrograph type Peak discharge = 32.54 cfs= Combine Storm frequency Time to peak = 10 yrs= 742 min Time interval = 2 min Hyd. volume = 202,316 cuft Inflow hyds. Contrib. drain. area = 9, 14 = 13.160 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

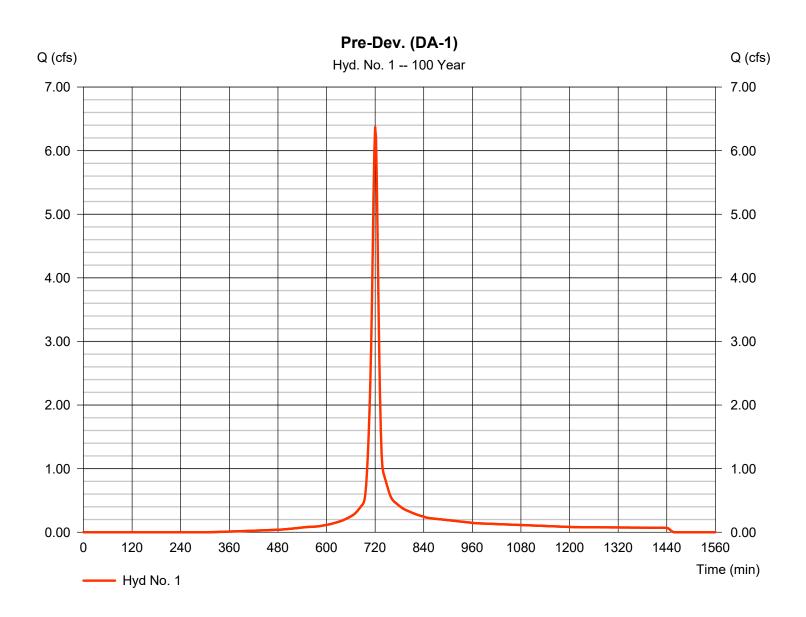
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	6.368	2	720	16,845				Pre-Dev. (DA-1)
2	SCS Runoff	1.800	2	716	4,075				Post-Dev. (DA-1) (BYPASS)
3	SCS Runoff	8.836	2	720	23,373				Pre-Dev. (DA-2)
4	SCS Runoff	3.320	2	724	10,632				Post-Dev. (DA-2A) (BYPASS)
5	SCS Runoff	0.109	2	716	264				Post-Dev. (DA-2B) (BYPASS)
6	SCS Runoff	0.591	2	716	1,193				Post-Dev. (DA-2C) (BYPASS)
7	SCS Runoff	11.85	2	718	30,897				Post-Dev. (DA-2D) (DETAINED)
8	Reservoir	10.26	2	722	30,891	7	334.07	12,236	Underground Detention
9	Combine	13.84	2	722	42,980	4, 5, 6, 8			Post-Dev. (DA-2)
11	SCS Runoff	27.13	2	736	135,324				Pre-Dev. Downstream DS-1
12	SCS Runoff	24.21	2	736	121,358				Post-Dev. Downstream DS-1
13	SCS Runoff	56.56	2	742	327,277				Pre-Dev. Downstream DS-2
14	SCS Runoff	53.02	2	742	308,108				Post-Dev. Downstream DS-2 (w/out
15	Combine	55.63	2	742	351,087	9, 14			Post-Dev. Downstream DS-2

X:\OUT - Cookout\1500 Sites\1502 - Zebulon, Returng Retier in gNotion research Storm Tracks clay out \C24T/-2502 Model - Final.gpw

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 06 / 24 / 2025

Hyd. No. 1


Pre-Dev. (DA-1)

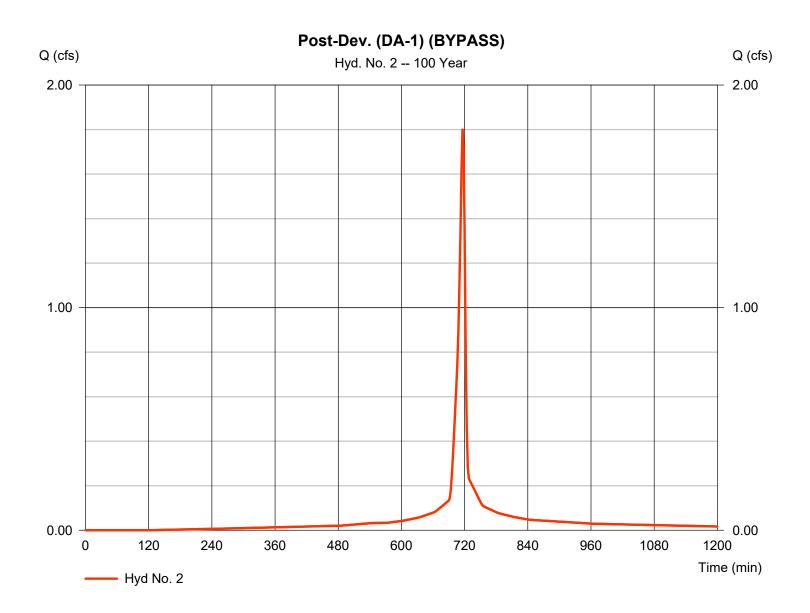
Hydrograph type = SCS Runoff Peak discharge = 6.368 cfs
Storm frequency = 100 yrs Time to peak = 720 min
Time interval = 2 min Hyd. volume = 16,845 cuft

Drainage area = 0.800 ac Curve number = 80^* Basin Slope = 0.0 % Hydraulic length = 0.0 ft

Tc method = TR55 Time of conc. (Tc) = 13.20 min
Total precip. = 8.00 in Distribution = Type II
Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $+ (0.800 \times 80)$] / 0.800

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

Hyd. No. 2

Post-Dev. (DA-1) (BYPASS)

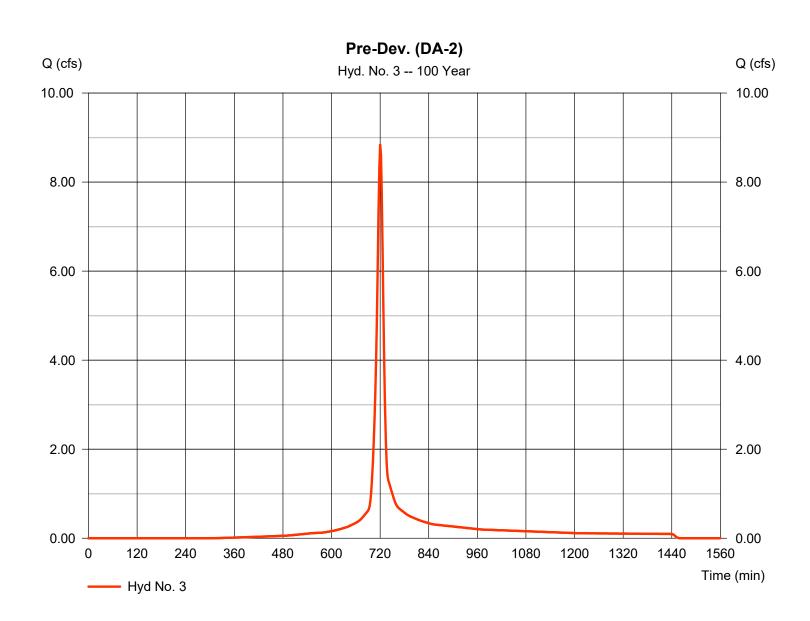
Hydrograph type = SCS Runoff Peak discharge = 1.800 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 4,075 cuftDrainage area = 0.170 acCurve number = 92* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 8.00 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.110 x 98) + (0.060 x 80)] / 0.170

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 06 / 24 / 2025

Hyd. No. 3


Pre-Dev. (DA-2)

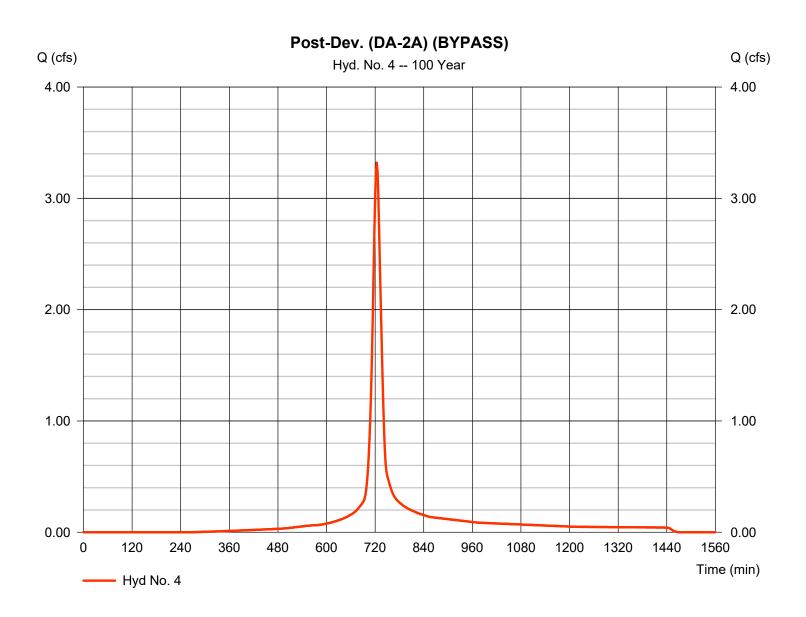
Hydrograph type = SCS Runoff Peak discharge = 8.836 cfsStorm frequency = 100 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 23.373 cuft Curve number Drainage area = 1.110 ac= 80* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 12.40 \, \text{min}$

Total precip. = 8.00 in Distribution = Type II

Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = + (1.110 x 80)] / 1.110

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

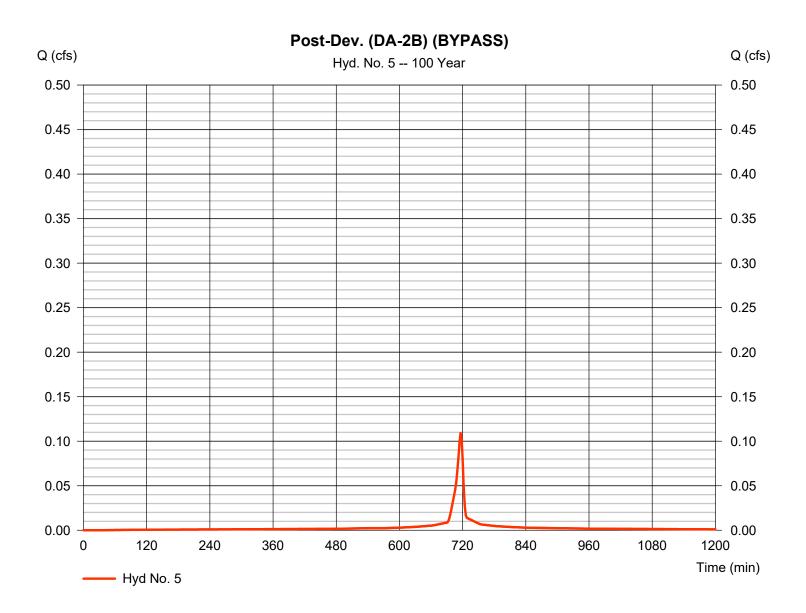
Hyd. No. 4

Post-Dev. (DA-2A) (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 3.320 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 10.632 cuftCurve number Drainage area = 0.490 ac= 83* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 19.50 \, \text{min}$ Total precip. Distribution = Type II = 8.00 inShape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.070 \times 98) + (0.420 \times 80)] / 0.490$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

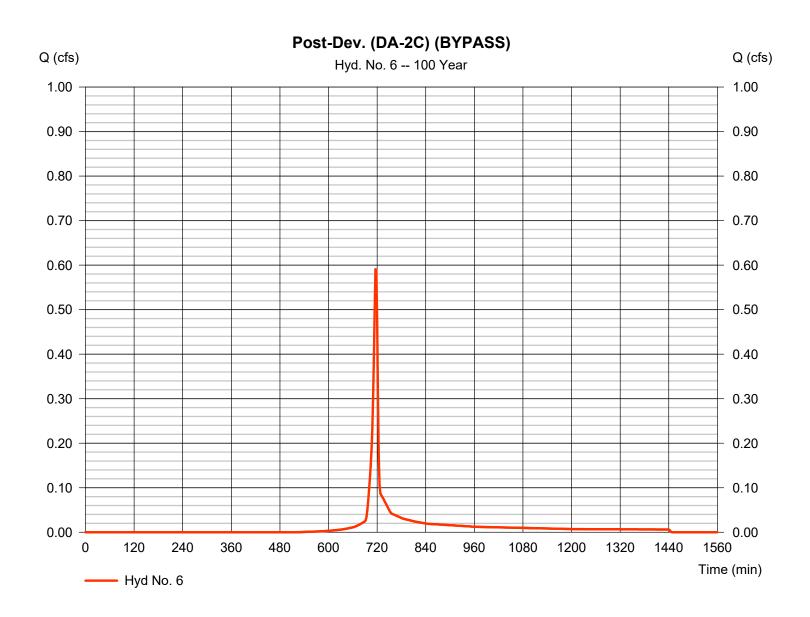
Hyd. No. 5

Post-Dev. (DA-2B) (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 0.109 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 264 cuft Curve number Drainage area = 0.010 ac= 98* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. Distribution = Type II = 8.00 inShape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.010 x 98)] / 0.010

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

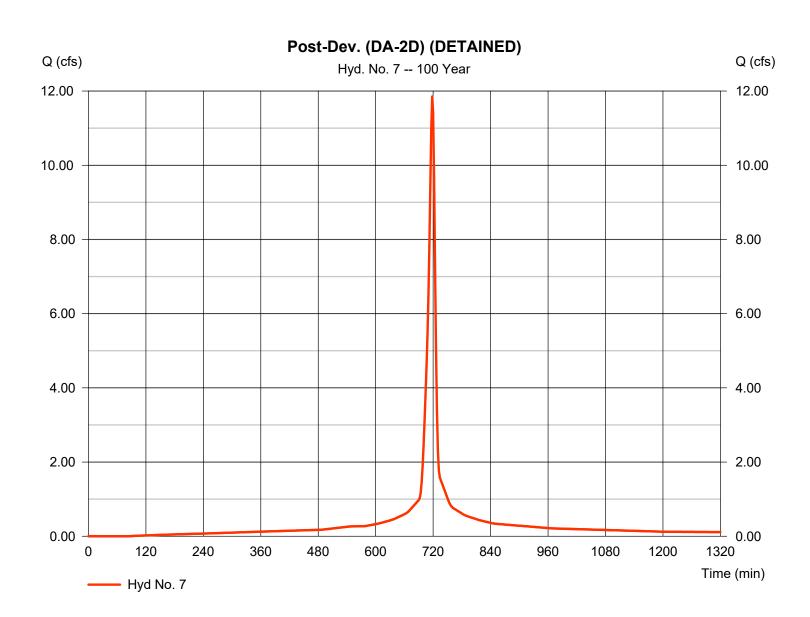
Hyd. No. 6

Post-Dev. (DA-2C) (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 0.591 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 1,193 cuft Curve number Drainage area = 0.090 ac= 65* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. Distribution = Type II = 8.00 inStorm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.010 \times 98) + (0.080 \times 61)] / 0.090$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

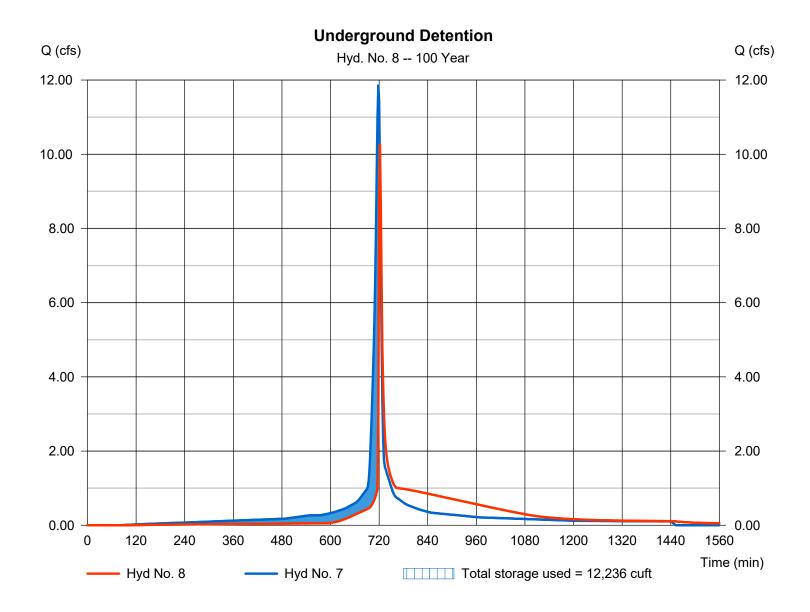
Hyd. No. 7

Post-Dev. (DA-2D) (DETAINED)

Hydrograph type = SCS Runoff Peak discharge = 11.85 cfsStorm frequency = 100 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 30.897 cuft Curve number Drainage area = 1.150 ac= 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 8.00 \, \text{min}$ Total precip. Distribution = Type II = 8.00 inStorm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(1.020 \times 98) + (0.060 \times 80) + (0.070 \times 61)] / 1.150$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

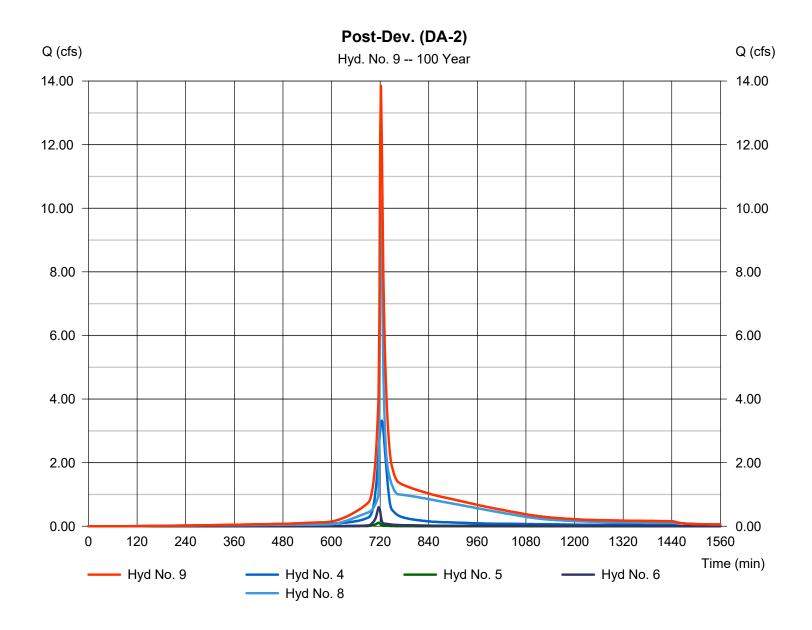

Tuesday, 06 / 24 / 2025

Hyd. No. 8

Underground Detention

Hydrograph type = Reservoir Peak discharge = 10.26 cfsStorm frequency Time to peak = 722 min = 100 yrsTime interval = 2 min Hyd. volume = 30,891 cuft= 7 - Post-Dev. (DA-2D) (DETAINMED) Elevation Inflow hyd. No. = 334.07 ftReservoir name = UG Detention System Max. Storage = 12,236 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 06 / 24 / 2025

Hyd. No. 9

Post-Dev. (DA-2)

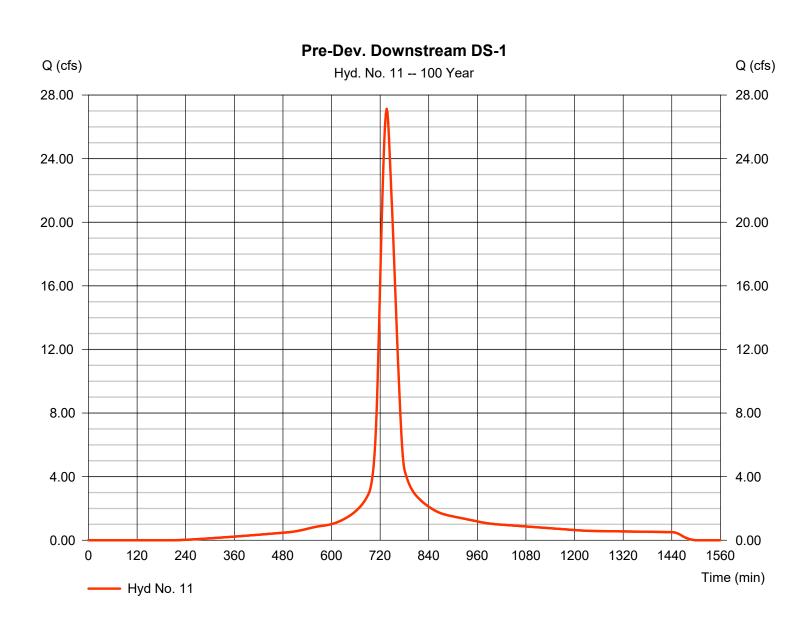
Hydrograph type = Combine Peak discharge = 13.84 cfsTime to peak Storm frequency = 100 yrs= 722 min Time interval = 2 min Hyd. volume = 42,980 cuftInflow hyds. = 4, 5, 6, 8 Contrib. drain. area = 0.590 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 06 / 24 / 2025

Hyd. No. 11

Pre-Dev. Downstream DS-1


Hydrograph type = SCS Runoff Peak discharge = 27.13 cfsStorm frequency = 100 yrsTime to peak = 736 min Time interval = 2 min Hyd. volume = 135,324 cuft Drainage area Curve number = 5.780 ac= 87*

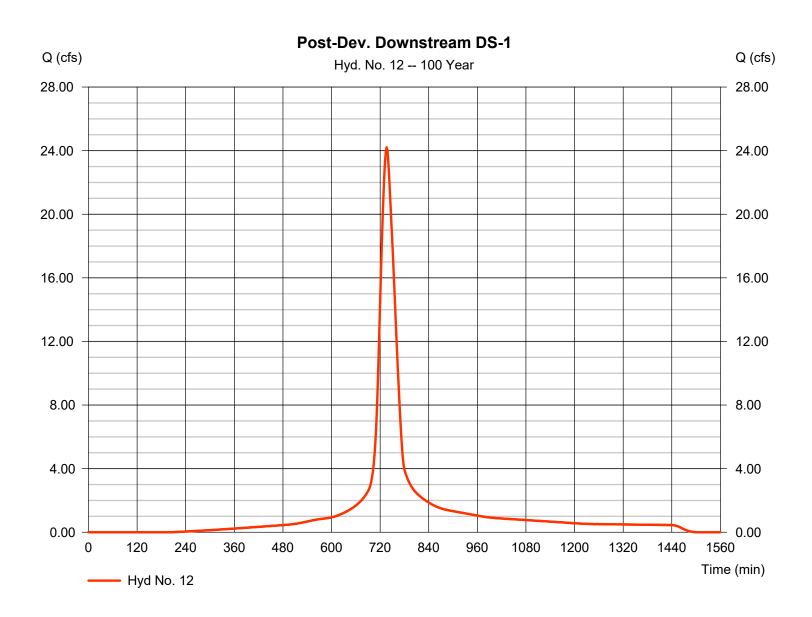
Drainage area = 5.780 ac Curve number = 87*

Basin Slope = 0.0 % Hydraulic length = 0 ft

Tc method = TR55 Time of conc. (Tc) = 40.10 min
Total precip. = 8.00 in Distribution = Type II
Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(2.180 x 98) + (3.600 x 80)] / 5.780

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

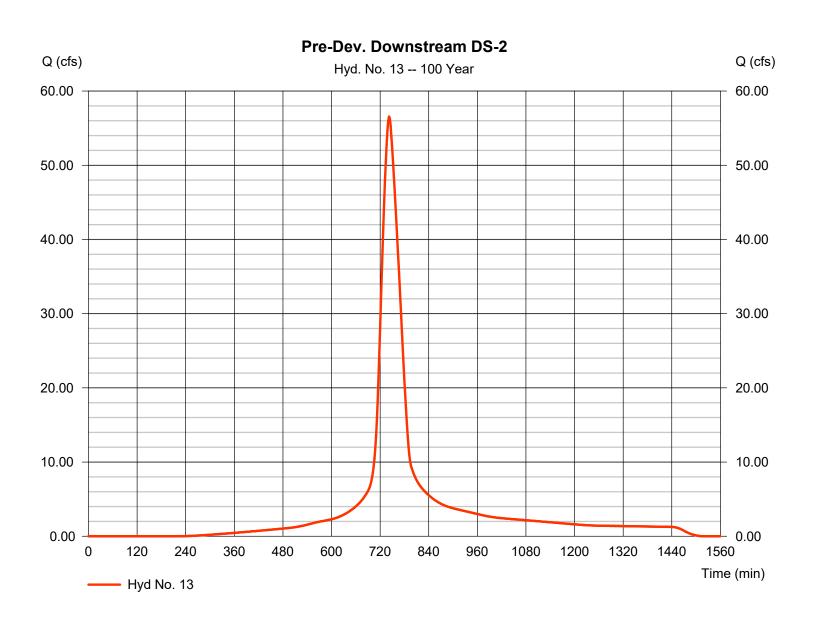
Hyd. No. 12

Post-Dev. Downstream DS-1

Hydrograph type = SCS Runoff Peak discharge = 24.21 cfsStorm frequency = 100 yrsTime to peak = 736 min Time interval = 2 min Hyd. volume = 121.358 cuft Drainage area Curve number = 5.090 ac= 88* Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = TR55 $= 40.10 \, \text{min}$ Total precip. Distribution = Type II = 8.00 inStorm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(2.310 x 98) + (2.780 x 80)] / 5.090

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Tuesday, 06 / 24 / 2025

Hyd. No. 13

Pre-Dev. Downstream DS-2

Hydrograph type = SCS Runoff Peak discharge = 56.56 cfsStorm frequency = 100 yrsTime to peak = 742 min Time interval = 2 min Hyd. volume = 327,277 cuft Curve number Drainage area = 14.240 ac = 86* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.10 min = TR55 Total precip. Distribution = Type II = 8.00 inStorm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(4.930 \times 98) + (9.310 \times 80)] / 14.240$

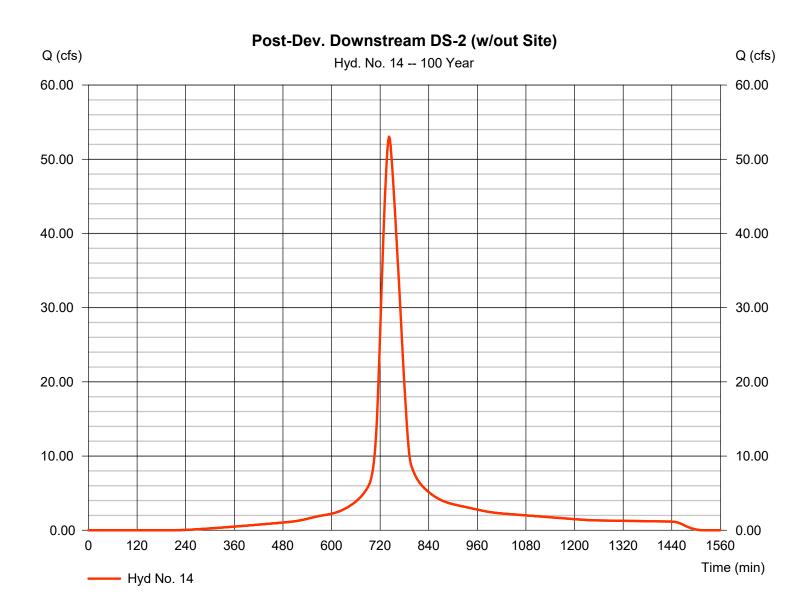
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

= 24 hrs

Tuesday, 06 / 24 / 2025

= 484

Hyd. No. 14

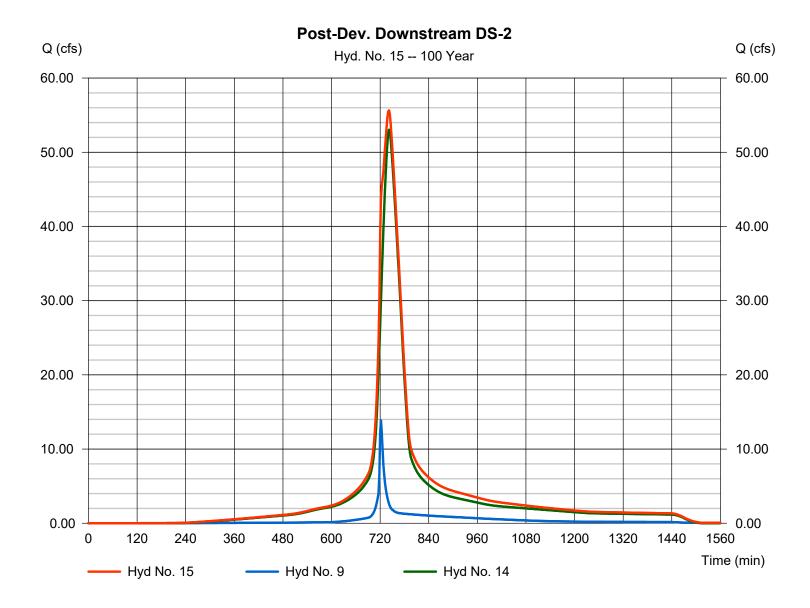

Storm duration

Post-Dev. Downstream DS-2 (w/out Site)

Hydrograph type = SCS Runoff Peak discharge = 53.02 cfsStorm frequency = 100 yrsTime to peak = 742 min Time interval = 2 min Hyd. volume = 308.108 cuft Curve number Drainage area = 13.160 ac = 87* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 49.10 \, \text{min}$ Total precip. Distribution = Type II = 8.00 in

Shape factor

^{*} Composite (Area/CN) = [(5.220 x 98) + (7.940 x 80)] / 13.160


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 06 / 24 / 2025

Hyd. No. 15

Post-Dev. Downstream DS-2

Hydrograph type Peak discharge = 55.63 cfs= Combine Storm frequency Time to peak = 100 yrs= 742 min Time interval = 2 min Hyd. volume = 351,087 cuft Inflow hyds. = 9, 14Contrib. drain. area = 13.160 ac

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 06 / 24 / 2025

Return Period	Intensity-Du	Intensity-Duration-Frequency Equation Coefficients (FHA)							
(Yrs)	В	D	E	(N/A)					
1	65.1130	13.0000	0.8983						
2	71.2172	12.9000	0.8806						
3	0.0000	0.0000	0.0000						
5	68.0041	12.5000	0.8280						
10	71.4662	12.4000	0.8035						
25	63.2015	11.1000	0.7421						
50	56.4878	9.9000	0.6912						
100	54.2579	9.3000	0.6606						

File name: OUT-1502 IDF.IDF

Intensity = $B / (Tc + D)^E$

Return	Intensity Values (in/hr)												
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60	
1	4.85	3.89	3.26	2.82	2.48	2.22	2.01	1.84	1.70	1.58	1.47	1.38	
2	5.61	4.52	3.80	3.28	2.90	2.60	2.36	2.16	2.00	1.86	1.74	1.63	
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
5	6.36	5.16	4.37	3.81	3.38	3.05	2.78	2.56	2.37	2.22	2.08	1.96	
10	7.20	5.88	5.00	4.37	3.89	3.52	3.22	2.97	2.76	2.58	2.43	2.29	
25	8.04	6.58	5.62	4.93	4.42	4.01	3.68	3.41	3.18	2.99	2.82	2.67	
50	8.73	7.15	6.12	5.40	4.85	4.42	4.07	3.79	3.55	3.34	3.16	3.00	
100	9.36	7.68	6.59	5.83	5.25	4.80	4.43	4.13	3.88	3.66	3.47	3.30	

Tc = time in minutes. Values may exceed 60.

x: X:\OUT - Cookout\1500 Sites\1502 - Zebulon, NC\Engineering\Stormwater\Stormwater Model\OUT-1502 Evt Mgr.pcp

	Rainfall Precipitation Table (in)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
SCS 24-hour	2.85	3.46	0.00	4.38	5.14	6.20	7.07	8.00		
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

WATER QUALITY VOLUME

WQv = 3630 * Rd * Rv * A

where,

WQv = Water quality volume (acre-feet)

 $Rv = 0.05 + 0.009 \times I$

I = Percent impervious

A = Area (acres)

P = Rainfall (inches)

Total area to UG Detention, A = 1.15 acres
Impervious area to UG Detention = 1.02 acres

Percent impervious, I = 88.70 %

Runoff coefficient, Rv = 0.85

Rainfall for WQ storm, Rd = 1.00 inches

Water quality volume, WQv = 3541 cf

75% WQv = 2656 cf

WATER QUALITY VOLUME DRAWDOWN

T = WQv / Q / 86400 (sec/day)

where,

T = Drawdown Time (days)
WQv = Water Quality Volume (cf)

 $Q = Cd * A * (2gh)^{(1/2)}$

Diameter of orifice, D = 1.40 inches Cross sectional area of orifice, A = 0.003 sf Orifice invert elevation = 328.70 ft WQv elevation = 331.23 ft Orifice coefficient = 0.61 Driving head on orifice @WQv, h = 2.53

Orifice flowrate, Q = 0.0070

Drawdown time, T = 4.42 days 106.05 hours

Determining Number of Cartridges for Volume-Based Design in NC

Design Engineer:	Irs/Jak	Blue Cells = Input
Date	6/19/2025	Black Cells = Calculation

Cook Out REV3

Site Information

Project Name

Project State NC **Project Location** Zebulon Drainage Area, Ad 1.15 ac Impervious Area, Ai 1.02 ac Pervious Area, Ap 0.13 % Impervious 89%

Runoff Coefficient, Rv 0.85 =0.05+0.9*(Ai/Ad)

Water Quality Volume Calculations

Design storm rainfall depth, Rd **1.0** in

Water quality volume, WQV **3541.1** ft³ =Ad*Rv*Rd*(43560/12)

Storage Component Calculations

Capture 75% of WQV 2655.8 ft³ =0.75*WQV

Pretreatment credit (estimated or calculated), %pre

Mass loading calculations

Mean Annual Rainfall, P 45 in Agency required % removal 85% Percent Runoff Capture (% capture) 90%

144,433 ft³ Mean Annual Runoff, V, =P*Ad*Rv*(43560/12)*%capture

Event Mean Concentration of Pollutant, EMC 70.0 mg/l (Suggestion: Use 60 for residential, 70 for Commercial, 100 for Industrial) **630.78** lbs =EMC*Vt*(28.3)*(0.000001)*(2.2046)

30%

Annual Mass Load, Mtotal

Filter System

StormFilter Filtration brand Cartridge height **18** in

Cartridge Quantity Calculation

Mass removed by pretreatment system, M_{pre} **189** lbs =Mtotal * %removal Mass load to filters after pretreatment, Mpass1 **442** lbs =Mtotal - Mpre Estimate the required filter efficiency, Efilter 79% =1+(%removal - 1)/(1 - %pre)

Mass to be captured by filters, M_{filter} 347 lbs =Mpass1 * Efilter

Maximum Cartridge Flow rate, Qcart **7.5** gpm =q * (7.5 ft2/cartridge)

Mass load per cartridge, M_{cart} (lbs) 36 lbs =lookup mass load per cartridge Number of Cartridges required, N_{mass} 10 =ROUNDUP(Mfilter/Mcart,0)

Maximum Treatment Capacity 0.17 =Nmass*(Qcart/449)

SUMMARY

Maximum Treatment Flow Rate, cfs	0.17
Cartridge Flow Rate, gpm	7.5
Number of Cartridges	10
Stormfilter Size	96" MH

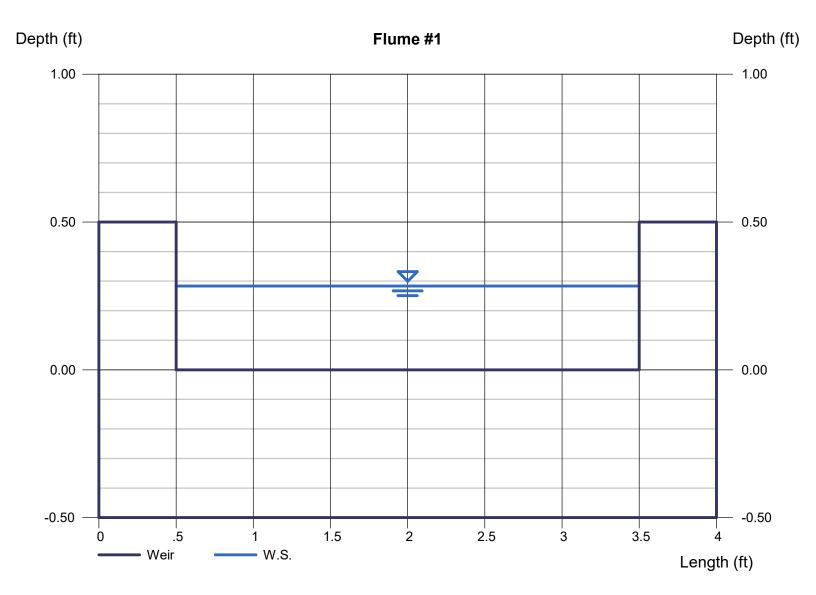
Target Pollutant(s):	TSS, N&P
Media:	Phosphosorb

APPENDIX C

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Oct 3 2023


Flume #1

Rectangular Weir	
Crest	= Sharp
Bottom Length (ft)	= 3.00
Total Depth (ft)	= 0.50

Calculations

Weir Coeff. Cw = 3.33 Compute by: Known Q Known Q (cfs) = 1.51 Highlighted

Depth (ft) = 0.28 Q (cfs) = 1.510 Area (sqft) = 0.85 Velocity (ft/s) = 1.77 Top Width (ft) = 3.00

DESIGN OF RIPRAP OUTLET PROTECTION

New York DOT Dissipator Method For Use in Defined Channe

(Source: "Bank and channel lining procedures", New York Department of Transportation, Division of Design and Construction, 1971.)

Guide to Color Key:	User Input Data	Calculated Value
Designed By:	JAS	Date:
Checked By:		Date:
Company:	Sambatek	
Project Name:	Cookout Zebulon	
Project No.:	OUT-1502	
Site Location (City/Town)	Zebulon	
Culvert Id.	Flume #1	

Estimation of Stone Size and Dimensions For Culvert Aprons

Step 1) Compute flow velocity V_o at culvert or paved channel outlet.

Step 2) For pipe culverts D_o is diameter. For pipe arch, arch and box culverts, and paved channel outlets, $D_o = A_o$ where $A_o = C_o$ cross-sectional area of flow at outlet.

For multiple culverts, use $D_0 = 1.25 \times D_0$ of single culvert.

 $\begin{tabular}{lll} Velocity (ft/s) & 1.77 \\ Opening type & Paved Channel Outlet \\ Single or multiple openings? & Single \\ Outlet pipe diameter, <math>D_o$ (ft) & 0.85 \\ \end{tabular}

NOTE 1: If opening type is anything other than "Pipe Culvert", $D_o=A_o$ (Cross-sectional area of flow at outlet).

NOTE 2: If multiple openings, D_o=1.25 x D_o of single culvert.

Step 3) For apron grades of 10% or steeper, use recommendations For next higher zone. (Zones 1 through 6). Zone 1 Figure 8.06c

Will apron have >/=10% grade? No

NOTE: For apron slopes equal to or greater than 10%, use next higher Zone in Figure 8.06d to determine apron length.

Apron length (ft) 10 Figure 8.06d

<u>Determination of Stone Sizes For Dumped Stone Channel Linings</u> and Revetments

Step 1. Use figure 8.06. e to determine maximum stone size (e.g. for 12 Fps = 20" or 550 lbs.

Max. stone size (in.) 5 Figure 8.06e

Step 2. Use figure 8.06. to determine acceptable size range for stone (for 12 FPS it is 125-500 lbs. for 75% of stone, and the maximum and minimum range in weight should be 25-500 lbs.).

NOTE: In determining channel velocities for stone linings and revetment, use the following coefficients of roughness:

	Diameter	Manning's	Min. tl	nickness
	(inches)	"n"	of lining	(inches)
Fine	3	0.031	9	12
Light	6	0.035	12	18
Medium	13	0.040	18	24
Heavy	23	0.044	30	36
			(Channels)	(Dissapators)

Min. & max range of stones (lbs)

Weight range of 75% of stones (lbs)

5-25

Figure 8.05f

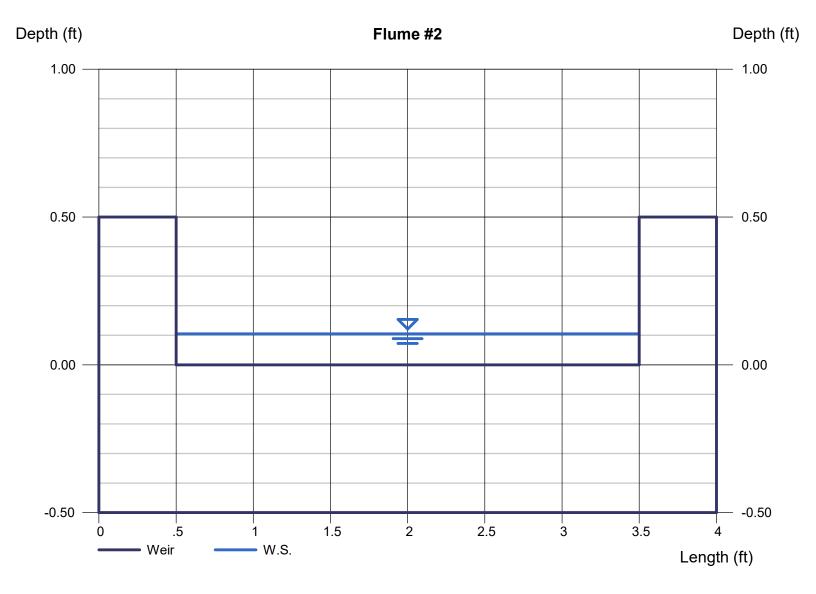
Figure 8.05f

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Oct 3 2023

Flume #2


Rectangular Weir	
Crest	= Sharp
Bottom Length (ft)	= 3.00
Total Depth (ft)	= 0.50

Calculations

Weir Coeff. Cw = 3.33 Compute by: Known Q Known Q (cfs) = 0.34

Highlighted Depth (ft) = 0.10 Q (cfs) = 0.340

Q (cfs) = 0.340 Area (sqft) = 0.31 Velocity (ft/s) = 1.08 Top Width (ft) = 3.00

DESIGN OF RIPRAP OUTLET PROTECTION

New York DOT Dissipator Method For Use in Defined Channe

(Source: "Bank and channel lining procedures", New York Department of Transportation, Division of Design and Construction, 1971.)

Guide to Color Key:	User Input Data	Calculated Value
Designed By:	JAS	Date:
Checked By:		Date:
Company:	Sambatek	
Project Name:	Cookout Zebulon	
Project No.:	OUT-1502	
Site Location (City/Town)	Zebulon	
Culvert Id.	Flume #1	

Estimation of Stone Size and Dimensions For Culvert Aprons

Step 1) Compute flow velocity V_o at culvert or paved channel outlet.

Step 2) For pipe culverts D_o is diameter. For pipe arch, arch and box culverts, and paved channel outlets, $D_o = A_o$ where A. = cross-sectional area of flow at outlet.

For multiple culverts, use $D_0 = 1.25 \times D_0$ of single culvert.

 $\begin{tabular}{lll} Velocity (ft/s) & 1.08 \\ Opening type & Paved Channel Outlet \\ Single or multiple openings? & Single \\ Outlet pipe diameter, <math>D_o$ (ft) & 0.31 \\ \end{tabular}

NOTE 1: If opening type is anything other than "Pipe Culvert", $D_o=A_o$ (Cross-sectional area of flow at outlet).

NOTE 2: If multiple openings, D_o=1.25 x D_o of single culvert.

Step 3) For apron grades of 10% or steeper, use recommendations For next higher zone. (Zones 1 through 6). Zone 1 Figure 8.06c

Will apron have >/=10% grade? No

NOTE: For apron slopes equal to or greater than 10%, use next higher Zone in Figure 8.06d to determine apron length.

Apron length (ft) 10 Figure 8.06d

<u>Determination of Stone Sizes For Dumped Stone Channel Linings</u> and Revetments

Step 1. Use figure 8.06. e to determine maximum stone size (e.g. for 12 Fps = 20" or 550 lbs.

Max. stone size (in.) 5 Figure 8.06e

Step 2. Use figure 8.06. to determine acceptable size range for stone (for 12 FPS it is 125-500 lbs. for 75% of stone, and the maximum and minimum range in weight should be 25-500 lbs.).

NOTE: In determining channel velocities for stone linings and revetment, use the following coefficients of roughness:

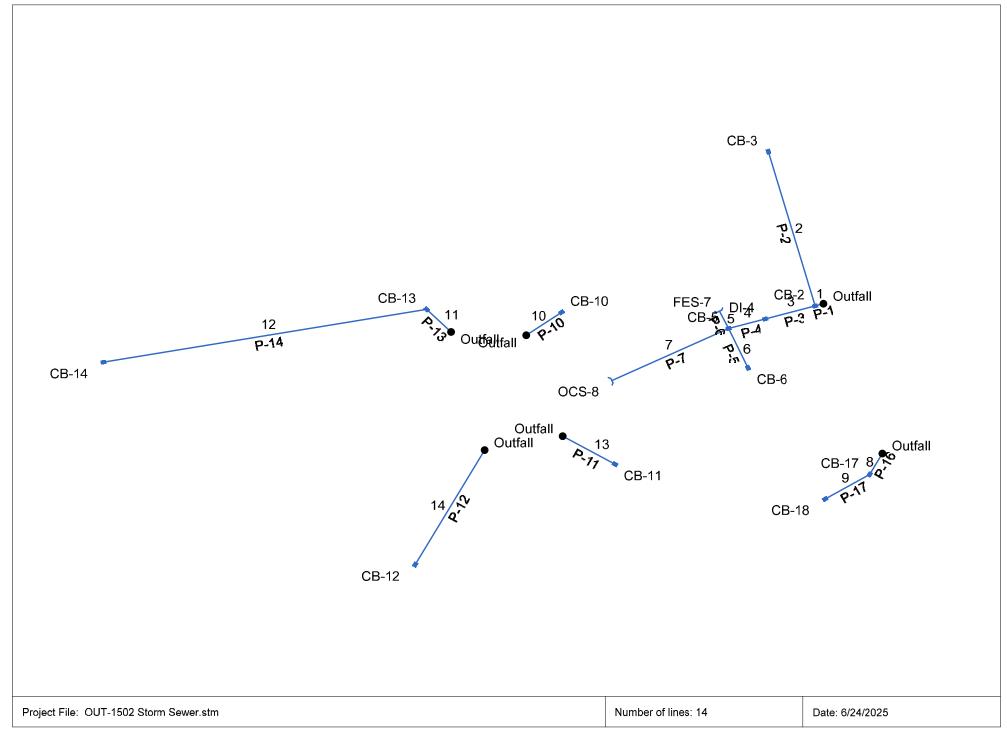
	Diameter	Manning's	Min. tl	nickness
	(inches)	"n"	of lining	(inches)
Fine	3	0.031	9	12
Light	6	0.035	12	18
Medium	13	0.040	18	24
Heavy	23	0.044	30	36
			(Channels)	(Dissapators)

Min. & max range of stones (lbs)

Weight range of 75% of stones (lbs)

5-25

Figure 8.05f


Figure 8.05f

APPENDIX D

COOK OUT 1200 N. ARENDELL AVE. ZEBULON, NC 27597 OUT-1502

OUT-1502 Storm Sewer Model

Storm Sewer Inventory Report

Line												Line ID					
No.	Dnstr Line No.	Length		Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	5.000	164.292	2 Comb	0.00	0.06	0.95	5.0	326.55	3.00	326.70	18	Cir	0.013	1.50	331.15	P-1
2	1	100.001	0 90.000	Comb	0.00	0.17	0.95	5.0	326.90	0.50	327.40	18	Cir	0.013	1.00	331.40	P-2
3	1	30.000	0.000	DrGrt	0.00	0.14	0.95	5.0	326.90	0.67	327.10	18	Cir	0.013	0.50	330.65	P-3
4	3	22.000	0.000	Comb	0.00	0.03	0.95	5.0	327.20	1.36	327.50	18	Cir	0.013	1.59	331.80	P-4
5	4	12.000	79.422	Hdwl	0.00	1.75	0.35	5.0	327.50	10.00	328.70	18	Cir	0.013	1.00	330.20	P-6
6	4	27.000	-98.729	Comb	0.00	0.03	0.95	5.0	327.50	1.48	327.90	18	Cir	0.013	1.00	332.00	P-5
7	4	75.000	-10.000	Hdwl	7.50	0.01	0.95	5.0	327.50	0.87	328.15	18	Cir	0.013	1.00	335.90	P-7
8	End	15.000	119.344	4 Comb	0.00	0.01	0.95	5.0	327.00	0.67	327.10	18	Cir	0.013	0.83	330.00	P-16
9	8	30.000	30.000	Comb	0.00	0.05	0.95	5.0	327.10	0.50	327.25	18	Cir	0.013	1.00	330.00	P-17
10	End	25.000	-35.000	Comb	0.00	0.15	0.95	5.0	330.25	0.60	330.40	18	Cir	0.013	1.00	334.20	P-10
11	End	20.000	-135.000	√ Comb	0.00	0.23	0.95	5.0	330.40	1.00	330.60	18	Cir	0.013	1.27	334.50	P-13
12	11	190.000	0 -55.000	Comb	0.00	0.07	0.95	5.0	330.70	0.84	332.30	18	Cir	0.013	1.00	335.80	P-14
13	End	35.000	30.000	Comb	0.00	0.17	0.95	5.0	330.25	1.00	330.60	15	Cir	0.013	1.00	334.30	P-11
14	End	82.000	119.344	4 Comb	0.00	0.53	0.95	5.0	330.35	0.79	331.00	15	Cir	0.013	1.00	334.70	P-12
		m Sewer M o											of lines: 14				6/24/2025

Structure Report

OUT-1502 Storm Sewer Model

Struct	Structure ID	Junction	Rim		Structure			Line Out	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	CB-2	Combination	331.15	Rect	3.00	2.33	18	Cir	326.70	18 18	Cir Cir	326.90 326.90
2	CB-3	Combination	331.40	Rect	3.00	2.33	18	Cir	327.40			
3	DI-4	DropGrate	330.65	Rect	3.00	2.33	18	Cir	327.10	18	Cir	327.20
4	CB-5	Combination	331.80	Rect	3.00	2.33	18	Cir	327.50	18 18 18	Cir Cir Cir	327.50 327.50 327.50
5	FES-7	OpenHeadwall	330.20	n/a	n/a	n/a	18	Cir	328.70			
6	CB-6	Combination	332.00	Rect	3.00	2.33	18	Cir	327.90			
7	OCS-8	OpenHeadwall	335.90	n/a	n/a	n/a	18	Cir	328.15			
8	CB-17	Combination	330.00	Rect	3.00	2.33	18	Cir	327.10	18	Cir	327.10
9	CB-18	Combination	330.00	Rect	3.00	2.33	18	Cir	327.25			
10	CB-10	Combination	334.20	Rect	3.00	2.33	18	Cir	330.40			
11	CB-13	Combination	334.50	Rect	3.00	2.33	18	Cir	330.60	18	Cir	330.70
12	CB-14	Combination	335.80	Rect	3.00	2.33	18	Cir	332.30			
13	CB-11	Combination	334.30	Rect	3.00	2.33	15	Cir	330.60			
14	CB-12	Combination	334.70	Rect	3.00	2.33	15	Cir	331.00			
	-		1	1	1	<u> </u>		<u>'</u>	<u>'</u>	'		1

Run Date: 6/24/2025

Number of Structures: 14

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	P-1	13.78	18	Cir	5.000	326.55	326.70	3.000	327.53	328.07	n/a	328.07	End	Combination
2	P-2	1.16	18	Cir	100.000	326.90	327.40	0.500	328.07	327.80	n/a	327.80	1	Combination
3	P-3	12.46	18	Cir	30.000	326.90	327.10	0.667	328.40*	328.82*	0.39	329.21	1	DropGrate
4	P-4	11.66	18	Cir	22.000	327.20	327.50	1.364	329.21*	329.48*	1.08	330.56	3	Combination
5	P-6	4.41	18	Cir	12.000	327.50	328.70	10.000	330.56*	330.58*	0.10	330.68	4	OpenHeadwall
6	P-5	0.21	18	Cir	27.000	327.50	327.90	1.481	330.56*	330.56*	0.00	330.56	4	Combination
7	P-7	7.57	18	Cir	75.000	327.50	328.15	0.867	330.56*	330.95*	0.29	331.23	4	OpenHeadwall
8	P-16	0.37	18	Cir	15.000	327.00	327.10	0.667	327.21	327.32	n/a	327.32	End	Combination
9	P-17	0.34	18	Cir	30.000	327.10	327.25	0.500	327.32	327.47	0.07	327.54	8	Combination
10	P-10	1.03	18	Cir	25.000	330.25	330.40	0.600	330.61	330.78	0.13	330.78	End	Combination
11	P-13	1.36	18	Cir	20.000	330.40	330.60	1.000	330.79	331.04	n/a	331.04	End	Combination
12	P-14	0.48	18	Cir	190.000	330.70	332.30	0.842	331.04	332.56	n/a	332.56 j	11	Combination
13	P-11	1.16	15	Cir	35.000	330.25	330.60	1.000	330.61	331.02	n/a	331.02	End	Combination
14	P-12	3.63	15	Cir	82.000	330.35	331.00	0.793	331.07	331.77	n/a	331.77	End	Combination

OUT-1502 Storm Sewer Model Number of lines: 14 Run Date: 6/24/2025

NOTES: Return period = 10 Yrs.; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

Inlet Report

Line	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curb I	nlet	Gra	Grate Inlet Gutter							Inlet		Вур			
No		(cfs)	(cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n		Spread (ft)		Spread (ft)	Depr (in)	Line No
1	CB-2	0.41	0.00	0.41	0.00	Comb	4.0	3.00	3.00	3.00	2.00	Sag	2.00	0.050	0.020	0.000	0.12	3.13	0.12	3.13	0.0	Off
2	CB-3	1.16	0.00	1.16	0.00	Comb	4.0	3.00	3.00	3.00	2.00	Sag	2.00	0.050	0.020	0.000	0.20	6.77	0.20	6.77	0.0	Off
3	DI-4	0.96	0.00	0.96	0.00	DrGrt	0.0	0.00	3.00	2.00	3.00	Sag	2.00	0.020	0.020	0.000	0.10	13.05	0.10	13.05	0.0	Off
4	CB-5	0.21	0.00	0.21	0.00	Comb	4.0	3.00	3.00	3.00	2.00	Sag	2.00	0.050	0.020	0.000	0.10	2.00	0.10	2.00	0.0	Off
5	FES-7	4.41	0.00	4.41	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
6	CB-6	0.21	0.00	0.21	0.00	Comb	4.0	3.00	3.00	3.00	2.00	Sag	2.00	0.050	0.020	0.000	0.10	2.00	0.10	2.00	0.0	Off
7	OCS-8	7.57*	0.00	7.57	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
8	CB-17	0.07	0.00	0.07	0.00	Comb	4.0	3.00	0.00	3.00	2.00	0.008	2.00	0.050	0.020	0.013	0.07	1.44	0.00	0.00	0.0	Off
9	CB-18	0.34	0.00	0.34	0.00	Comb	4.0	3.00	3.00	3.00	2.00	Sag	2.00	0.050	0.020	0.000	0.11	2.72	0.11	2.72	0.0	Off
10	CB-10	1.03	0.00	1.03	0.00	Comb	4.0	3.00	3.00	3.00	2.00	Sag	2.00	0.050	0.020	0.000	0.18	6.19	0.18	6.19	0.0	Off
11	CB-13	1.57	0.00	1.57	0.00	Comb	4.0	3.00	3.00	3.00	2.00	Sag	2.00	0.050	0.020	0.013	0.23	8.39	0.23	8.39	0.0	Off
12	CB-14	0.48	0.00	0.48	0.00	Comb	4.0	3.00	3.00	3.00	2.00	Sag	2.00	0.050	0.020	0.013	0.13	3.53	0.13	3.53	0.0	Off
13	CB-11	1.16	0.00	1.16	0.00	Comb	4.0	3.00	3.00	3.00	2.00	Sag	2.00	0.050	0.020	0.000	0.20	6.77	0.20	6.77	0.0	Off
14	CB-12	3.63	0.00	3.63	0.00	Comb	4.0	3.00	3.00	3.00	2.00	Sag	2.00	0.050	0.020	0.000	0.36	15.00	0.36	15.00	0.0	Off

OUT-1502 Storm Sewer Model Number of lines: 14 Run Date: 6/24/2025

NOTES: Inlet N-Values = 0.016; Intensity = 71.47 / (Inlet time + 12.40) ^ 0.80; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are Inclined throat.

Hydraulic Grade Line Computations

Line	Size	Q		Downstream							Len		Upstream Check						k	JL	Minor		
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	loss (ft)
1	18	13.78	326.55	327.53	0.98	1.22	11.27	1.03	328.56	0.000	5.000	326.70	328.07	1.37**	1.70	8.13	1.03	329.10	0.000	0.000	n/a	1.50	n/a
2	18	1.16	326.90	328.07	1.17	0.38	0.78	0.14	328.22	0.000		0327.40	327.80	0.40**	0.38	3.04	0.14	327.95	0.000	0.000	n/a	1.00	n/a
3	18	12.46	326.90	328.40	1.50*	1.77	7.05	0.77	329.17	1.409	30.000	327.10	328.82	1.50	1.77	7.05	0.77	329.60	1.409	1.409	0.423	0.50	0.39
4	18	11.66	327.20	329.21	1.50	1.77	6.60	0.68	329.89	1.233	22.000	327.50	329.48	1.50	1.77	6.60	0.68	330.16	1.233	1.233	0.271	1.59	1.08
5	18	4.41	327.50	330.56	1.50	1.77	2.50	0.10	330.65	0.176	12.000	328.70	330.58	1.50	1.77	2.50	0.10	330.68	0.176	0.176	0.021	1.00	0.10
6	18	0.21	327.50	330.56	1.50	1.77	0.12	0.00	330.56	0.000	27.000	327.90	330.56	1.50	1.77	0.12	0.00	330.56	0.000	0.000	0.000	1.00	0.00
7	18	7.57	327.50	330.56	1.50	1.77	4.28	0.29	330.84	0.520	75.000	328.15	330.95	1.50	1.77	4.28	0.29	331.23	0.519	0.520	0.390	1.00	0.29
8	18	0.37	327.00	327.21	0.21*	0.15	2.41	0.08	327.29	0.000		327.10	327.32	0.22**	0.16	2.23	0.08	327.40	0.000	0.000	n/a	0.83	n/a
9	18	0.34	327.10	327.32	0.22	0.16	2.08	0.07	327.39	0.462		327.25	327.47	0.22**	0.16	2.15	0.07	327.54	0.508	0.485	0.146	1.00	0.07
10	18	1.03	330.25	330.61	0.36*	0.33	3.15	0.13	330.74	0.000		330.40	330.78	0.38**	0.35	2.94	0.13	330.91	0.000	0.000	n/a	1.00	0.13
11	18	1.36 0.48	330.40	330.79	0.39	0.37	3.72 1.62	0.16	330.95	0.000		330.60 0332.30	331.04 332.56 j	0.44**	0.43	3.18 2.39	0.16	331.19 332.64	0.000	0.000	n/a n/a	1.27	n/a n/a
13	15	1.16	330.25	330.61	0.34	0.29	3.97	0.03	330.77	0.000		330.60	331.02	0.42**	0.20	3.16	0.16	331.18	0.000	0.000	n/a	1.00	n/a
14	15	3.63	330.35	331.07	0.72*	0.73	4.95	0.33	331.40	0.000		331.00	331.77	0.77**	0.79	4.58	0.33	332.09	0.000	0.000	n/a	1.00	n/a

OUT-1502 Storm Sewer Model Number of lines: 14 Run Date: 6/24/2025

Notes: * Normal depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

APPENDIX E

STATE OF NORTH CAROLINA WAKE COUNTY

STORMWATER AGREEMENT

THIS AGREEMENT, made and enter and between Wake County, hereinafter referre			
hereinafter referred to as Owner;	•		
	WITNESSETH		
THAT WHEREAS, Owner is this da installed on that certain real property known a	ns	-	water device(s)
Permit Numberas shown Book of Maps, Page, Wal	on the plat thereof re ke County Registry; a	ecorded in the and	
WHEREAS, as a part of the constru County Environmental Services – Watershed device(s) be constructed; and			
WHEREAS, the Owner accepts resp prescribed in the Maintenance Agreement sign			
WHEREAS, the Owner grants access	s to Wake County to	inspect the stormwa	ater device(s); and
WHEREAS, the Owner understands successors in title, whomsoever they may be it	=	shall endure to the l	penefit of his
NOW, THEREFORE, it is understoo	od and agreed by and	between the parties	3:
 The maintenance of the stormwa The responsibility for the maintenance of the Owner's successor in interest. Access is granted to Wake Cour 	enance of the stormw	vater device shall pa	
4. Annually, the Owner shall provi			
The report should be uploaded to the Permit Po contact Watershed Management at watershedn (Subject Line: Add Case Contact)			
Owner:			
Date:			
I,	THE UNDERSIC	SNED notary Public	e of the County and
I,	personally appoing instrument.	eared before me thi	s day and
WITNESS my hand and notarial seal, this the	day of	,	
Notary Public			
My Comm. Exp	Wa 336	er recording return tershed Managemer 5 Fayetteville St. PC eigh, NC 27602	nt Section

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	Р	RE-DEVE	LOPME	NT	POST-DEVELOPMENT					
Drainage Area (Acres)=		0.	80		0.17					
Site Acreage within Drainage=		0.	80			0.	17			
One-year, 24-hour rainfall (in)=				2.	85					
Two-year, 24-hour rainfall (in)=				3.	46					
Ten-year, 24-hour storm (in)=				5.	14					
Total Lake/Pond Area (Acres)=		0.	00			0.	00			
Lake/Pond Area not in the Tc flow path (Acres)=		0.	00			0.	00			
Site Land Use (acres):	Α	В	С	D	Α	В	С	D		
Pasture										
Woods, Poor Condition										
Woods, Fair Condition										
Woods, Good Condition										
Open Space, Poor Condition										
Open Space, Fair condition										
Open Space, Good Condition				0.80				0.06		
Reforestation (in dedicated OS)										
Connected Impervious								0.11		
Disconnected Impervious										
SITE FLOW	PR	E-DEVEL	OPMEN	T T _c	POST-DEVELOPMENT Tc					
Sheet Flow										
Length (ft)=		100	0.00			116	6.00			
Slope (ft/ft)=		0.0	030			0.3	320			
Surface Cover:		Gr	ass		Paved, Gravel, or Bare Soil					
n-value=		0.:	240			0.0	011			
T _t (hrs)=		0.2	214			0.0	008			
Shallow Flow										
Length (ft)=		160	0.00			32	.00			
Slope (ft/ft)=		0.0	012			0.0)51			
Surface Cover:		Unp	aved			Unp	aved			
Average Velocity (ft/sec)=		1.	.77			3.	64			
T _t (hrs)=		0.	.03			0.	00			
Channel Flow 1										
Length (ft)=										
Slope (ft/ft)=										
Cross Sectional Flow Area (ft²)=										
Wetted Perimeter (ft)=										
Channel Lining:										
n-value=										
Hydraulic Radius (ft)=										
Average Velocity (ft/sec)=										
T _t (hrs)=										
·										

DA1 Page 3

OUT-1502 Cookout Zebulon

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T_t (hrs)=		
Tc (hrs)=	0.24	0.10
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number=	PRE-DEVELOPMENT 80	POST-DEVELOPMENT 92
Composite Curve Number=		
Composite Curve Number= Disconnected Impervious Adjustment	80	
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only	80	92
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	80	92
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	80	92
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	80	92
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow)	9 31	92 2 90
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	80 9 38	92 2 90 1.99
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	80 9 38	92 2 90 1.99
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) =	9 1.14 3,307	92 90 1.99 1,227
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} =	9 1.14 3,307	92 90 1.99 1,227
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	1.14 3,307	92 90 1.99 1,227 0.534
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	1.14 3,307 1.051	92 90 1.99 1,227 0.534
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ff³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} =	1.14 3,307 1.051 1.60 4,660	92 90 1.99 1,227 0.534 2.56 1,583
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} =	1.14 3,307 1.051 1.60 4,660	92 90 1.99 1,227 0.534 2.56 1,583
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ff³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} =	1.14 3,307 1.051 1.60 4,660 1.482	92 90 1.99 1,227 0.534 2.56 1,583 0.688

DA1 Page 4

DRAINAGE AREA 2 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT				POST-DEVELOPMENT				
Drainage Area (Acres)=	1.11				1.74				
Site Acreage within Drainage=	1.11					1.	.74		
One-year, 24-hour rainfall (in)=	2.85								
Two-year, 24-hour rainfall (in)=	3.46								
Ten-year, 24-hour storm (in)=	5.14								
Total Lake/Pond Area (Acres)=									
Lake/Pond Area not in the Tc flow path (Acres)=									
Site Land Use (acres):	Α	В	С	D	Α	В	С	D	
Pasture									
Woods, Poor Condition									
Woods, Fair Condition									
Woods, Good Condition									
Open Space, Poor Condition									
Open Space, Fair condition									
Open Space, Good Condition				1.11				0.63	
Reforestation (in dedicated OS)									
Connected Impervious								1.11	
Disconnected Impervious									
SITE FLOW	PR	E-DEVE	OPMEN	ГТс	POST-DEVELOPMENT To				
Sheet Flow									
Length (ft)=		10	0.00			20	8.00		
Slope (ft/ft)=		0.	035		0.026				
Surface Cover:		Gı	ass		Grass				
n-value=		0.	240		0.240				
T _t (hrs)=		0.	201		0.408				
Shallow Flow									
Length (ft)=		21	5.00		105.00				
Slope (ft/ft)=		0.	024			0.	020		
Surface Cover:		Unp	aved			Unp	aved		
Average Velocity (ft/sec)=		2	.48			2	.28		
T _t (hrs)=		0	.02			0	.01		
Channel Flow 1									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)=									
Wetted Perimeter (ft)=									
Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T _t (hrs)=		-		-					

OUT-1502 Cookout Zebulon

DRAINAGE AREA 2 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.20	0.10
DECLUTE		
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	PRE-DEVELOPMENT 80	POST-DEVELOPMENT 91
Composite Curve Number=		
Composite Curve Number= Disconnected Impervious Adjustment		91
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	80	91
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	80	91 1
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	80	91 1
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) =	80	91 1
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow)	99 3,e	91 1 042
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	9 3,9	91 1 1 1,97 12,466
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	3,9 1.14 4,588	91 1 1 1,97 12,466
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) =	3,9 1.14 4,588	91 1 1 1.97 12,466
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} =	3,9 1.14 4,588	91 1 1 1.97 12,466
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	3,9 3,9 1.14 4,588 7,8	91 11 1.97 12,466
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	3,9 1.14 4,588 7,8 1.580	91 1 1 1.97 12,466 378 5.420
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) =	3,9 1.14 4,588 7,8 1.580	91 1 1.97 1.97 12,466 378 5.420 2.55 16,098
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q* _{2-year} =	3,9 1.14 4,588 7,8 1.580	1.97 1.97 12,466 378 5.420 2.55 16,098
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ff³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q _{2-year} =	3,9 1.14 4,588 7,8 1.580 1.60 6,466 2.226	91 1 1.97 1.97 12,466 378 5.420 2.55 16,098 6.998

DRAINAGE AREA 3 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT				POST-DEVELOPMENT				
Drainage Area (Acres)=									
Site Acreage within Drainage=									
One-year, 24-hour rainfall (in)=				2.	85				
Two-year, 24-hour rainfall (in)=	3.46								
Ten-year, 24-hour storm (in)=	5.14								
Total Lake/Pond Area (Acres)=									
Lake/Pond Area not in the Tc flow path (Acres)=									
Site Land Use (acres):	Α	В	С	D	Α	В	С	D	
Pasture									
Woods, Poor Condition									
Woods, Fair Condition									
Woods, Good Condition									
Open Space, Poor Condition									
Open Space, Fair condition									
Open Space, Good Condition									
Reforestation (in dedicated OS)									
Connected Impervious									
Disconnected Impervious									
SITE FLOW	PR	E-DEVEL	OPMEN	ГТс	POS	T-DEVE	LOPMEN	T Tc	
Sheet Flow									
Length (ft)=						40	.00		
Slope (ft/ft)=						0.	019		
Surface Cover:					Pa	ved, Grave	el, or Bare \$	Soil	
n-value=						0.	011		
T _t (hrs)=						0.	010		
Shallow Flow									
Length (ft)=									
Slope (ft/ft)=									
Surface Cover:									
Average Velocity (ft/sec)=									
T _t (hrs)=									
Channel Flow 1									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)=									
Wetted Perimeter (ft)=									
Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T _t (hrs)=									

OUT-1502 Cookout Zebulon

DRAINAGE AREA 3 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
. ,		
Channel Lining:		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=		
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow)	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year= 2-year, 24-hour storm (LID)	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ft²) = Peak Discharge (cfs)= Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q _{2-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q _{2-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA) Runoff (inches) = Q* _{10-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT

DRAINAGE AREA 4 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT				POST-DEVELOPMENT				
Drainage Area (Acres)=									
Site Acreage within Drainage=									
One-year, 24-hour rainfall (in)=				2.	85				
Two-year, 24-hour rainfall (in)=	3.46								
Ten-year, 24-hour storm (in)=	5.14								
Total Lake/Pond Area (Acres)=									
Lake/Pond Area not in the Tc flow path (Acres)=									
Site Land Use (acres):	Α	В	С	D	Α	В	С	D	
Pasture									
Woods, Poor Condition									
Woods, Fair Condition									
Woods, Good Condition									
Open Space, Poor Condition									
Open Space, Fair condition									
Open Space, Good Condition									
Reforestation (in dedicated OS)									
Connected Impervious									
Disconnected Impervious									
SITE FLOW	PR	RE-DEVEL	OPMEN	T T _c	POS	T-DEVE	LOPMEN	T Tc	
Sheet Flow									
Length (ft)=									
Slope (ft/ft)=									
Surface Cover:									
n-value=									
T _t (hrs)=									
Shallow Flow									
Length (ft)=									
Slope (ft/ft)=									
Surface Cover:									
Average Velocity (ft/sec)=									
T_t (hrs)=									
Channel Flow 1									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)=									
Wetted Perimeter (ft)=									
Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T _t (hrs)=									

DRAINAGE AREA 4 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=		
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow)	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year= 2-year, 24-hour storm (LID)	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year= 2-year, 24-hour storm (LID)	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ftr³) = Peak Discharge (cfs)= Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q* _{2-year} = 10-year, 24-hour storm (DIA)	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ftf³) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ftr³) = Peak Discharge (cfs)= Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q* _{2-year} = 10-year, 24-hour storm (DIA)	PRE-DEVELOPMENT	POST-DEVELOPMENT

DA4 Page 10

DRAINAGE AREA 5 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT				POST-DEVELOPMENT				
Drainage Area (Acres)=									
Site Acreage within Drainage=									
One-year, 24-hour rainfall (in)=				2.	85				
Two-year, 24-hour rainfall (in)=	3.46								
Ten-year, 24-hour storm (in)=	5.14								
Total Lake/Pond Area (Acres)=									
Lake/Pond Area not in the Tc flow path (Acres)=									
Site Land Use (acres):	Α	В	С	D	Α	В	С	D	
Pasture									
Woods, Poor Condition									
Woods, Fair Condition									
Woods, Good Condition									
Open Space, Poor Condition									
Open Space, Fair condition									
Open Space, Good Condition									
Reforestation (in dedicated OS)									
Connected Impervious									
Disconnected Impervious									
SITE FLOW	PR	E-DEVEL	OPMEN	T T _c	POS	T-DEVE	LOPMEN	Г Тс	
Sheet Flow									
Length (ft)=									
Slope (ft/ft)=									
Surface Cover:									
n-value=									
T_t (hrs)=									
Shallow Flow					_				
Length (ft)=									
Slope (ft/ft)=									
Surface Cover:									
Average Velocity (ft/sec)=									
T _t (hrs)=									
Channel Flow 1									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)=									
Wetted Perimeter (ft)=									
Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T_t (hrs)=									

DA5 Page 11

DRAINAGE AREA 5 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)= Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.00	0.00
	0.00	0.00
RESULTS	DDE DEVELORMENT	DOST DEVEL OBMENT
RESULTS Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow)	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft²) = Peak Discharge (cfs)= Q1-year=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft²) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft²) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft²) = Volume change (ft²) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft²) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft²) = Volume change (ft²) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft²) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year= Volume of runoff (ft²) = Peak Discharge (cfs)= Q²_2-year=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year= Volume of runoff (ft²) = Peak Discharge (cfs)= Q2-year= Volume of runoff (ft²) = Peak Discharge (cfs)= Q2-year=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft²) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft²) = Volume change (ft²) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft²) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA) Runoff (inches) = Q* _{10-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT

DA5 Page 12

DRAINAGE AREA 6 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT				POST-DEVELOPMENT				
Drainage Area (Acres)=									
Site Acreage within Drainage=									
One-year, 24-hour rainfall (in)=	2.85								
Two-year, 24-hour rainfall (in)=	3.46								
Ten-year, 24-hour storm (in)=	5.14								
Total Lake/Pond Area (Acres)=									
Lake/Pond Area not in the Tc flow path (Acres)=									
Site Land Use (acres):	Α	В	С	D	Α	В	С	D	
Pasture									
Woods, Poor Condition									
Woods, Fair Condition									
Woods, Good Condition									
Open Space, Poor Condition									
Open Space, Fair condition									
Open Space, Good Condition									
Reforestation (in dedicated OS)									
Connected Impervious									
Disconnected Impervious									
SITE FLOW	PR	E-DEVEL	OPMENT	T _c	POS	T-DEVE	LOPMEN	T Tc	
Sheet Flow									
Length (ft)=									
Slope (ft/ft)=									
Surface Cover:									
n-value=									
T _t (hrs)=									
Shallow Flow									
Length (ft)=									
Slope (ft/ft)=									
Surface Cover:									
Average Velocity (ft/sec)=									
T _t (hrs)=									
Channel Flow 1					_				
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft ²)=									
Wetted Perimeter (ft)=									
Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T _t (hrs)=									

DA6 Page 13

DRAINAGE AREA 6 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.00	0.00
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow)		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID)		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ff³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} =		POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} =		POST-DEVELOPMENT

DA6 Page 14

DRAINAGE AREA 7 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT POST-DE					OST-DEVELOPMENT		
Drainage Area (Acres)=								
Site Acreage within Drainage=								
One-year, 24-hour rainfall (in)=	2.85							
Two-year, 24-hour rainfall (in)=	3.46							
Ten-year, 24-hour storm (in)=	5.14							
Total Lake/Pond Area (Acres)=								
Lake/Pond Area not in the Tc flow path (Acres)=								
Site Land Use (acres):	Α	В	С	D	Α	В	С	D
Pasture								
Woods, Poor Condition								
Woods, Fair Condition								
Woods, Good Condition								
Open Space, Poor Condition								
Open Space, Fair condition								
Open Space, Good Condition								
Reforestation (in dedicated OS)								
Connected Impervious								
Disconnected Impervious								
SITE FLOW	PR	E-DEVEL	OPMEN	T T _c	POS	T-DEVE	LOPMEN	T Tc
Sheet Flow								
Length (ft)=								
Slope (ft/ft)=								
Surface Cover:								
n-value=								
T _t (hrs)=								
Shallow Flow								
Length (ft)=								
Slope (ft/ft)=								
Surface Cover:								
Average Velocity (ft/sec)=								
T _t (hrs)=								
Channel Flow 1								
Length (ft)=								
Slope (ft/ft)=								
Cross Sectional Flow Area (ft²)=								
Wetted Perimeter (ft)=								
Channel Lining:								
n-value=								
Hydraulic Radius (ft)=								
Average Velocity (ft/sec)=								
T _t (hrs)=								

DRAINAGE AREA 7 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)= Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.00	0.00
	0.00	0.00
RESULTS	DDE DEVEL ODMENT	DOST DEVELOPMENT
RESULTS Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow)	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft²) = Peak Discharge (cfs)= Q1-year=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft²) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft²) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft²) = Volume change (ft²) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft²) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft²) = Volume change (ft²) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft²) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year= Volume of runoff (ft²) = Peak Discharge (cfs)= Q²_2-year=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year= Volume of runoff (ft²) = Peak Discharge (cfs)= Q2-year= Volume of runoff (ft²) = Peak Discharge (cfs)= Q2-year=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft²) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft²) = Volume change (ft²) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft²) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA) Runoff (inches) = Q* _{10-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT

DRAINAGE AREA 8 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	Р	RE-DEVE	LOPMEN	IT .	POST-DEVELOPMENT					
Drainage Area (Acres)=										
Site Acreage within Drainage=										
One-year, 24-hour rainfall (in)=				2.	85					
Two-year, 24-hour rainfall (in)=				3.	46					
Ten-year, 24-hour storm (in)=	5.14									
Total Lake/Pond Area (Acres)=										
Lake/Pond Area not in the Tc flow path (Acres)=										
Site Land Use (acres):	Α	В	С	D	Α	В	С	D		
Pasture										
Woods, Poor Condition										
Woods, Fair Condition										
Woods, Good Condition										
Open Space, Poor Condition										
Open Space, Fair condition										
Open Space, Good Condition										
Reforestation (in dedicated OS)										
Connected Impervious										
Disconnected Impervious										
SITE FLOW	PR	E-DEVEL	OPMENT	T _c	POST-DEVELOPMENT To					
Sheet Flow										
Length (ft)=										
Slope (ft/ft)=										
Surface Cover:										
n-value=										
T _t (hrs)=										
Shallow Flow										
Length (ft)=										
Slope (ft/ft)=										
Surface Cover:										
Average Velocity (ft/sec)=										
T _t (hrs)=										
Channel Flow 1										
Length (ft)=										
Slope (ft/ft)=										
Cross Sectional Flow Area (ft²)=										
Wetted Perimeter (ft)=										
Channel Lining:										
n-value=										
Hydraulic Radius (ft)=										
Average Velocity (ft/sec)=										
T _t (hrs)=										

DA8 Page 17

Project Name:	OUT-1502 Cookout Zebulon

DRAINAGE AREA 8 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
· ·		
Wetted Perimeter (ft)= Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.00	0.00
10 (1110)	0.00	0.00
RESULTS	DDE DEVELORMENT	DOST DEVELOPMENT
RESULTS Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow)	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year= 2-year, 24-hour storm (LID)	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ft²) = Peak Discharge (cfs)= Q² _{2-year} = Volume of runoff (ft²) = Peak Discharge (cfs)= Q _{2-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ft²) = Peak Discharge (cfs)= Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q _{2-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA) Runoff (inches) = Q* _{10-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT

DA8 Page 18

DRAINAGE AREA 9 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	Р	RE-DEVE	LOPMEN	IT .	POST-DEVELOPMENT					
Drainage Area (Acres)=										
Site Acreage within Drainage=										
One-year, 24-hour rainfall (in)=				2.	85					
Two-year, 24-hour rainfall (in)=				3.	46					
Ten-year, 24-hour storm (in)=	5.14									
Total Lake/Pond Area (Acres)=										
Lake/Pond Area not in the Tc flow path (Acres)=										
Site Land Use (acres):	Α	В	С	D	Α	В	С	D		
Pasture										
Woods, Poor Condition										
Woods, Fair Condition										
Woods, Good Condition										
Open Space, Poor Condition										
Open Space, Fair condition										
Open Space, Good Condition										
Reforestation (in dedicated OS)										
Connected Impervious										
Disconnected Impervious										
SITE FLOW	PR	E-DEVEL	OPMENT	T _c	POST-DEVELOPMENT To					
Sheet Flow										
Length (ft)=										
Slope (ft/ft)=										
Surface Cover:										
n-value=										
T _t (hrs)=										
Shallow Flow										
Length (ft)=										
Slope (ft/ft)=										
Surface Cover:										
Average Velocity (ft/sec)=										
T _t (hrs)=										
Channel Flow 1										
Length (ft)=										
Slope (ft/ft)=										
Cross Sectional Flow Area (ft²)=										
Wetted Perimeter (ft)=										
Channel Lining:										
n-value=										
Hydraulic Radius (ft)=										
Average Velocity (ft/sec)=										
T _t (hrs)=										

DA9 Page 19

OUT-1502 Cookout Zebulon

DRAINAGE AREA 9 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.00	0.00
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year= Volume of runoff (ft³) = Peak Discharge (cfs)= Q2-year=	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q1-year= Volume of runoff (ft³) = Peak Discharge (cfs)= Q2-year= Volume of runoff (ft³) = Peak Discharge (cfs)= Q2-year=	PRE-DEVELOPMENT	POST-DEVELOPMENT

DA9 Page 20

DRAINAGE AREA 10 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT				POST-DEVELOPMENT				
Drainage Area (Acres)=					, , , , , , , , , , , , , , , , , , , ,				
Site Acreage within Drainage=									
One-year, 24-hour rainfall (in)=				2.	85				
Two-year, 24-hour rainfall (in)=	3.46								
Ten-year, 24-hour storm (in)=				5.	14				
Total Lake/Pond Area (Acres)=									
Lake/Pond Area not in the Tc flow path (Acres)=									
Site Land Use (acres):	Α	В	С	D	Α	В	С	D	
Pasture									
Woods, Poor Condition									
Woods, Fair Condition									
Woods, Good Condition									
Open Space, Poor Condition									
Open Space, Fair condition									
Open Space, Good Condition									
Reforestation (in dedicated OS)									
Connected Impervious									
Disconnected Impervious									
SITE FLOW	PRE-DEVELOPMENT T _c POST-DEVELOPME				LOPMEN	T Tc			
Sheet Flow									
Length (ft)=									
Slope (ft/ft)=									
Surface Cover:									
n-value=									
T _t (hrs)=									
Shallow Flow									
Length (ft)=									
Slope (ft/ft)=									
Surface Cover:									
Average Velocity (ft/sec)=									
T _t (hrs)=									
Channel Flow 1									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft²)=									
Wetted Perimeter (ft)=									
Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T _t (hrs)=									

DA10 Page 21

DRAINAGE AREA 10 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.00	0.00
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=		
Disconnected Impervious Adjustment		
<u> </u>		
Disconnected impervious area (acre) =		
Disconnected impervious area (acre) = CN _{adjusted (1-year)} =		
CN _{adjusted (1-year)} =		
CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA		
CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =		
CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft²) = 1-year, 24-hour storm (Peak Flow)		
CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =		
CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =		
CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft²) =		
CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} =		
CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)		
CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =		
CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q _{2-year} = 10-year, 24-hour storm (DIA)		
CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q _{2-year} =		
CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q _{2-year} = 10-year, 24-hour storm (DIA)		

DA10 Page 22

<u>DA SITE SUMMARY</u> STORMWATER PRE-POST CALCULATIONS

		SITE S	SUMMAR	'							
DRAINAGE AREA SUMMARIES											
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10	
		1	(1-year, 24-	hour storr	n)		1		1		
Runoff (in) = Q _{pre,1-year} =	1.14	1.14									
Peak Flow (cfs)=Q _{1-year} =	1.051	1.580				L					
		I	(1-year, 24	-hour stor	m)		T		T		
Proposed Impervious Surface (acre) =	0.11	1.11									
Runoff (in)=Q _{1-year} =	1.99	1.97									
Peak Flow (cfs)=Q _{1-year} =	0.534	5.420									
Increase in volume per DA (ft³)_1-yr storm= Minimum Volume to be Managed for DA		7,878									
HIGH DENSITY REQUIREMENT = (ft ³) =	390	3,942									
TARGET CURVE NUMBER (TCN)											
		Si	te Data								
	:	SITE \SOIL	COMPOSI	TION							
HYDROLOGIC SOIL GRO	UP			Site	<u>Area</u>		<u>%</u>		Target CN		
A				0.	00	C)%		N/A		
В				0.	00	C)%		N/A		
С	1				00	C)%		N/A		
D	1.91 100%					N/A					
		То	tal Site Area	a (acres) =			1.	1.91			
Percent E	BUA (Include	es Existing	Lakes/Pond	Areas) =		64%					
		Project	Density =	High							
Target Curve Number					per (TCN) = N/A						
			CN _{adju}	sted (1-year)=			9	11			
Minimum Volume to be Mana	ged (Total s	Site) Per TO	CN Requirer	nent= ft ³ =			N	/A			
	•	Site Nitroge	en Loading	Data				1			
HSG			TN export coefficient (lbs/ac/yr)		Site Acreage			N Export			
Pasture			1.2		0.00			0.00			
Woods, Poor Condition			1.6		0.00			0.00			
Woods, Fair Condition			1.2			0.00		0.00			
Woods, Good Condition			0.8			0.00		0.00			
Open Space, Poor Condition			1.0			0.00		0.00			
Open Space, Fair Condition			8.0			0.00		0.00			
Open Space, Good Condition			0.6			0.69		0.41			
Reforestation (in dedicated OS)			0.6			0.00		0.00			
Impervious	21.2					1.22			25.86		
SITE NITROGEN LOADING RATE	E (lbs/ac/yr)= 13.76										
	oad (lbs/yr)= 26.28										
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)_We						19.40					
	Site Nitroge	n Loading	Data For E	xpansions	Only						
			Existing					New			
Impervious(acres)=			NA					NA			
"Expansion Area" (acres=)											
Nitrogen Load (lbs/yr)=			NA					NA			
SITE NITROGEN LOADING RATE (lbs/ac/yr)=			NA					NA			
Total Site loading rate (lbs/ac/yr)											
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)=		NA									

SITE SUMMARY Page 23

Project Name:

DRAINAGE AREA 1 BMP CALCULATIONS

NORTH CAROLINA											
DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA1 Site Acreage=				0.17	7						
DA1 Off-Site Acreage=											
Total Required Storage Volume for Site				N/A							
TCN Requirement (ft ³)=				IN/A							
Total Required Storage Volume for DA1 1" Rainfall for High Density (ft ³)=				390							
Will site use underground detention/cistern?	No	Enter %	of the year	water will be reused=		0%				nation/details ite water usa	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
		Sub-E	DA1(a)	Sub-E	DA1(b)	Sub-E	DA1(c)	Sub-I	DA1(d)	Sub-l	DA1(e)
	HSG	(A	Ac)	(A			(c)		Ac)		Ac)
Pasture		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition											
Reforestation (in dedicated OS)											
Impervious											
Sub-DA1(a) BMP(s)											
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)			Provided Volume that will drawdown 2-5 days (ft ³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
		-						0%	0.00	0.00	
								0%	0.00	0.00	
							0%	0.00	0.00		
Tot	 al Nitrogen remaining leaving the subbasin (lbs):							070	0.00	0.00	
	al Midogen remaining leaving the subbasin (ibs).										
	If Sub-DA1(b) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)			Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
					0			0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1 (c) BMP(s)		•									
	If Sub-DA1(c) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi			Provided olume that www. 2-5 constitution (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				_				0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	

DA1_BMPs Page 24

DRAINAGE AREA 1 BMP CALCULATIONS

Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	50
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):						
	DA	A1 BMP SUMMARY					
	Total Volume Treated (ft ³)=						
	Nitrogen Mitigated(lbs)=						
1-year, 24-hour storm							
	Post BMP Volume of Runoff (ft ³) _(1-year) =		1,227				
	Post BMP Runoff (inches) = Q*(1-year)=		1.99				
	Post BMP CN _(1-year) =		91				
	Post BMP Peak Discharge (cfs)= Q _{1-year} =						
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3) _(2-year) =		1,583				
	Post BMP Runoff (inches) = Q* _(2-year) =		2.56				
	Post BMP CN _(2-year) =		91				
	Post BMP Peak Discharge (cfs)= Q _(2-year) =						
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =		12,162				
-	Post BMP Runoff (inches) = $Q^*_{(10-year)}$ =		19.71				
1	Post BMP CN(10-year)=		98				
	Post BMP Peak Discharge (cfs)= Q _(10-year) =						

DA1_BMPs Page 25

DRAINAGE AREA 2 BMP CALCULATIONS

NORTH CAROLINA											
DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA2 Site Acreage=				1.74	l .						
DA2 Off-Site Acreage=											
Total Required Storage Volume TCN Requirement (ft ³)=				N/A							
Total Required Storage Volume for DA2 1" Rainfall for High Density (ft3)=				3,942	2						
Will site use underground detention/cistern?	Yes	Enter %	of the year v	water will be reused=		0%		Note: Supp submitted to	orting inform o demonstra	nation/details ite water usa	s should be age.
ENTER ACREAGE FOR ALL SUB-DRAINAGE	: AREAS IN DA										
	нѕс	(A	DA2(a) Ac)		ic)	(A	DA2(c)	(A	DA2(d) Ac)	(4	DA2(e) Ac)
Pasture		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition		0.42				0.08		0.13			
Reforestation (in dedicated OS)						0.01					
Impervious Sub-DA1(a) BMP(s)		0.07		0.01			1.02				
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³) Output Provided Volume that will drawdown 2-5 days (ft³)					Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)	
								0%	1.74	0.00	
								0%	1.74	0.00	
			153					0%	1.74	0.00	
								0%	1.74	0.00	
								0%	1.74	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):					1.	74			II.	
Sub-DA1(b) BMP(s)											
	If Sub-DA1(b) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ft			Provided olume that www. 2-5 co. (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.21	0.00	
								0%	0.21	0.00	
			2					0%	0.21	0.00	
								0%	0.21	0.00	
								0%	0.21	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):					0.	21				
Sub-DA1 (c) BMP(s)											
	If Sub-DA1(c) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ft			Provided olume that www. 2-5 co. (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.26	0.00	
								0%	0.26	0.00	
			18					0%	0.26	0.00	
								0%	0.26	0.00	
								0%	0.26	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):					0	26	-			

DA2_BMPs Page 26

DRAINAGE AREA 2 BMP CALCULATIONS

Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
Underground Detention	Cistern/Underground Detention			0%	21.70	0.00	120
StormFilter	Sand Filter			35%	21.70	7.60	120
		2,411	2,399	0%	14.11	0.00	
				0%	14.11	0.00	
				0%	14.11	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):		14.11				
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):			_			
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):						
	DA	A2 BMP SUMMARY					
	Total Volume Treated (ft ³)=		2,399				
	Nitrogen Mitigated(lbs)=		7.60				
1-year, 24-hour storm							
	Post BMP Volume of Runoff (ft ³) _(1-year) =		10,067				
	Post BMP Runoff (inches) = Q* _(1-year) =		1.59				
	Post BMP CN _(1-year) =		86				
	Post BMP Peak Discharge (cfs)= Q _{1-year} =		1.174				
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3) _(2-year) =		13,699				
	Post BMP Runoff (inches) = Q* _(2-year) =		2.17				
	Post BMP CN _(2-year) =		87				
	Post BMP Peak Discharge (cfs)= Q _(2-year) =		1.631				
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =		14,402				
	Post BMP Runoff (inches) = Q* _(10-year) =		2.28				
	Post BMP CN(_{10-year})=		88				
1	Post BMP Peak Discharge (cfs)= Q _(10-year) =		2.823				
	. (,)						

DA2_BMPs Page 27

DRAINAGE AREA 3 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA3 Site Acreage=											
DA3 Off-Site Acreage=											
Total Required Storage Volume				N/A							
TCN Requirement (ft ³)= Total Required Storage Volume for DA3											
1" Rainfall for High Density (ft3)=		ı									
Will site use underground detention/cistern?		Enter %	of the year	water will be reused=						nation/details ite water usa	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
			DA3(a)		DA3(b)		DA3(c)		DA3(d)		DA3(e)
	HSG	Site	Ac) Off-site	Site	Ac) Off-site	Site	Ac) Off-site	Site	Ac) Off-site	Site	Ac) Off-site
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition											
Reforestation (in dedicated OS)											
Impervious											
Sub-DA1(a) BMP(s)		I						ı			I
Device Name (As Shown on Plan)	Device Type	for Sub DA (#3) drawdown 2-5 days				Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)		
							0%	0.00	0.00		
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1(b) BMP(s)											
	If Sub-DA1(b) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):										T
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (f			Provided of the transfer of th		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot Sub-DA1 (c) BMP(s)	al Nitrogen remaining leaving the subbasin (lbs):										
	If Sub-DA1(c) is connected to upstream subbasin(s),										
	the nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (f			Provided olume that vividown 2-5 (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										

DA3_BMPs Page 28

DRAINAGE AREA 3 BMP CALCULATIONS

If Sub-DA1(e) is connected to upstream subbasin(s), enter the nitrogen leaving the most upstream subbasin(lbs): Device Name (As Shown on Plan)	Sub-DA1(d) BMP(s)							
Device Name (As Shown on Plan) Device Type Device Type Post ShiP CALL (III) Device Type Device Type Type Type Type Type Type Type Typ	If Sub-DA1(d) is connected to upstream subb							
Total Nitrogen remaining leaving the subbasin (lab.) Total Nitrogen remaining leaving the subbasin (lab.) Total Nitrogen remaining leaving the subbasin (lab.) Total Nitrogen remaining leaving the most upstream subbasin(s), efter the nitrogen leaving the subbasin (lab.) Total Nitrogen Milingated (lib.) Total Nitrogen remaining leaving the subbasin (lab.) Total Nitrogen remaining leaving the subbasin (lab.) Total Nitrogen remaining leaving the subbasin (lab.) Total Nitrogen Milingated (lib.) Total Nitrogen Remaining leaving the subbasin (lab.) Total Nitrogen Remaining	Device Name (As Shown on Plan)	Device Type		Volume that will drawdown 2-5 days	Removal	Nitrogen	Removed	Time
Total Nitrogen remaining leaving the subbasin (lbs): Sub-DATe(s) BMP(s) Sub-DATe(s) BMP(s) BMP(s) Sub-DATe(s) BMP(s) BMP					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (bas)					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (the subbasin the subbasin (the subbasin (the subbasin the subbasin					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (iba)					0%	0.00	0.00	
Sub-DAt(e) is connected to upstream subbasin(s), enter the nitrogen leaving the most upstream subbasin(tbs): Device Name (As Shown on Plan) Device Type Water Quality Volume for Sub-DA (Rt) Provided (Volume that will drawdown 2.5 days (Rt) Volume that will drawdown 2.5 days (Rt) Volume (Provided (Rt) Volume (0%	0.00	0.00	
ff Sub-Dat (e) is connected to upstream subbasin(s), enter the nitrogen leaving the most upstream subbasin(s). Device Name (As Shown on Plan) Device Type Device Type Water Quality Volume for Sub-Da (rt') Volume developed 25 days (rt') Volume that will developed 25 days (rt') Volume for Sub-Da (rt') Volume for	Tot	al Nitrogen remaining leaving the subbasin (lbs):						
Subbasin(the) Device Name (As Shown on Plan) Device Type Device Type Water Quality Volume Volume that will grawdown 2.5 days (nt²) Volume that will grawdown 2.5 days (nt²) Os (bb) Nitrogen	Sub-DA1(e) BMP(s)							
Device Name (As Shown on Plan) Device Type Device Type Water Quality Volume for Sub-DA (R*) Colume that will grawdown 2.5 days (R*) Colume (Efficiency) Colume (Removal Efficiency) Colume (Removal Effi	If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
10	Device Name (As Shown on Plan)	Device Type		Volume that will drawdown 2-5 days	Removal	Nitrogen	Removed	Time
0% 0.00 0.00 0					0%	0.00	0.00	
0% 0.00 0.00					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (libs): DA3 BMP SUMMARY					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (ibs): DA3 BMP SUMMARY Total Volume Treated (it³) = Nitrogen Mitigated (ibs) = 1-year, 24-hour storm Post BMP Volume of Runoff (it³)(-year) = Post BMP Runoff (inches) = Q*(-year) = Post BMP Peak Discharge (cfs) = Q _{1-year} = Post BMP Volume of Runoff (ft3)(-year) = Post BMP Volume of Runoff (inches) = Q*(-year) = Post BMP Volume of Runoff (inches) = Post BMP Volume of Runoff (inches) = Post BMP Volume of Runoff (inches					0%	0.00	0.00	
Total Volume Treated (ft²)					0%	0.00	0.00	
Total Volume Treated (t^3)= Nitrogen Mitigated([bs)= 1-year, 24-hour storm Post BMP Volume of Runoff (t^3) _{1-year)} = Post BMP Runoff (inches) = $Q^*_{(1-year)}$ = Post BMP CN _(1-year) = Post BMP Peak Discharge (ofs) = Q_{1-year} = 2-year, 24-hour storm (LID) Post BMP Volume of Runoff (t^3) _{1-year)} = Post BMP CN _(2-year) = Post BMP CN _(2-year) = Post BMP CN _(2-year) = Post BMP Peak Discharge (ofs) = $Q_{(2-year)}$ = Post BMP Volume of Runoff (t^3) _{1-year)} = Post BMP Peak Discharge (ofs) = $Q_{(2-year)}$ = Post BMP Volume of Runoff (t^3) _{1-year)} = Post BMP Volume of Runoff (t^3) _{1-year)} = Post BMP Volume of Runoff (t^3) _{1-year)} = Post BMP Volume of Runoff (t^3) _{1-year)} = Post BMP Runoff (inches) = $Q^*_{(1-year)}$ = Post BMP Runoff (inches) = $Q^*_{(1-year)}$ = Post BMP Runoff (inches) = $Q^*_{(1-year)}$ =	Tot	al Nitrogen remaining leaving the subbasin (lbs):						
Nitrogen Mitigated(libs)= 1-year, 24-hour storm Post BMP Volume of Runoff (ft³) _(1-year) = Post BMP Runoff (inches) = Q* _(1-year) = Post BMP CN _(1-year) = Post BMP Peak Discharge (of\$)= Q _{1-year} = 2-year, 24-hour storm (LID) Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = Q* _(2-year) = Post BMP Peak Discharge (of\$)= Q _(2-year) = Post BMP CN _(2-year) = Post BMP Peak Discharge (of\$)= Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) =		DA	A3 BMP SUMMARY					
Post BMP Volume of Runoff (ft ²) _(1-year) = Post BMP Runoff (inches) = O*(1-year)= Post BMP CN _(1-year) = Post BMP Peak Discharge (cfs)= Q _(1-year) = Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = O*(2-year)= Post BMP CN _(2-year) = Post BMP CN _(2-year) = Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs)= Q _(2-year) = Post BMP CN _(1-year) =		Total Volume Treated (ft ³)=						
Post BMP Volume of Runoff ($(h^2)_{(1-year)}$ = Post BMP Runoff (inches) = $O^*_{(1-year)}$ = Post BMP CN _{$(1-year)$} = Post BMP Peak Discharge (ofs) = Q_{1-year} = 2-year, 24-hour storm (LID) Post BMP Volume of Runoff ($(h^3)_{(2-year)}$ = Post BMP Runoff (inches) = $Q^*_{(2-year)}$ = Post BMP CN($(2-year)$) = Post BMP Peak Discharge (ofs) = $Q_{(2-year)}$ = Post BMP Peak Discharge (ofs) = $Q_{(2-year)}$ = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff ($(h^3)_{(1-year)}$ = Post BMP CN($(1-year)$) = Post BMP Runoff (inches) = $Q^*_{(1-year)}$ = Post BMP Runoff (inches) = $Q^*_{(1-year)}$ = Post BMP Runoff (inches) = $Q^*_{(1-year)}$ =		Nitrogen Mitigated(lbs)=						
Post BMP Runoff (inches) = $Q^*_{(1\cdot y_0 ay)^2}$ Post BMP CN _{(1\cdot y_0 ay)^2} Post BMP Peak Discharge (cfs) = $Q_{1\cdot y_0 ay}$ Post BMP Peak Discharge (cfs) = $Q_{1\cdot y_0 ay}$ Post BMP Volume of Runoff (it3) _{$(2\cdot y_0 ay)^2$} Post BMP Runoff (inches) = $Q^*_{(2\cdot y_0 ay)^2}$ Post BMP CN($(2\cdot y_0 ay)^2$ Post BMP Peak Discharge (cfs) = $Q_{(2\cdot y_0 ay)^2}$ Post BMP Peak Discharge (cfs) = $Q_{(2\cdot y_0 ay)^2}$ Post BMP Volume of Runoff (it 3) _{$(1\cdot y_0 ay)^2$} Post BMP Runoff (inches) = $Q^*_{(1\cdot y_0 ay)^2}$ Post BMP Runoff (inches) = $Q^*_{(1\cdot y_0 ay)^2}$ Post BMP CN($(1\cdot y_0 ay)^2$ Post BMP CN($(1\cdot y_0 ay)^2$	1-year, 24-hour storm							
Post BMP CN _(1-year) = Post BMP Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = Q* _(2-year) = Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = Post BMP CN _(2-year) = Post BMP Volume of Runoff (ft ³) _(1-year) = Post BMP Volume of Runoff (ft ³) _(1-year) = Post BMP Runoff (inches) = Q* _(1-year) = Post BMP CN _(1-year) = Post BMP CN _(1-year) =		Post BMP Volume of Runoff (ft ³) _(1-year) =						
Post BMP Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = Q* _(2-year) = Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs)= Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(1-year) = Post BMP Runoff (inches) = Q* _(1-year) = Post BMP CN(_{10-year)} = Post BMP CN(_{10-year)} =		Post BMP Runoff (inches) = Q* _(1-year) =						
2-year, 24-hour storm (LID) Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = Q* _(2-year) = Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(1-0-year) = Post BMP Runoff (inches) = Q* _(1-0-year) = Post BMP CN(_(10-year) =		Post BMP CN _(1-year) =						
Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = 0* _(2-year) = Post BMP CN _(2-year) = Post BMP Peak Discharge (ofs) = Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN _(10-year) =		Post BMP Peak Discharge (cfs)= Q _{1-year} =						
Post BMP Runoff (inches) = Q* _(2-year) = Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN _(10-year) =	2-year, 24-hour storm (LID)							
Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ²) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN _(10-year) =		Post BMP Volume of Runoff (ft3) _(2-year) =						
Post BMP Peak Discharge (cfs) = Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_{10-year)} =		Post BMP Runoff (inches) = Q* _(2-year) =						
10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_{10-year)} =		Post BMP CN _(2-year) =						
Post BMP Volume of Runoff (ft²) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_{10-year)} =		Post BMP Peak Discharge (cfs)= Q _(2-year) =						
Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_{10-year)} =	10-year, 24-hour storm (DIA)							
Post BMP CN(_{10-year})=		Post BMP Volume of Runoff (ft ³) _(10-year) =						
		Post BMP Runoff (inches) = Q*(10-year)=						
Post BMP Peak Discharge (cfs)= Q _(10-year) =		Post BMP CN(_{10-year})=						
		Post BMP Peak Discharge (cfs)= Q _(10-year) =						

DA3_BMPs Page 29

DRAINAGE AREA 4 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA4 Site Acreage=											
DA4 Off-Site Acreage=											
Total Required Storage Volume				N/A							
TCN Requirement (ft ³)= Total Required Storage Volume for DA4											
1" Rainfall for High Density (ft3)=											
Will site use underground detention/cistern?	Yes	Enter %	of the year	water will be reused=		0%				ation/details te water usa	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
	uno		DA4(a)	Sub-E			DA4(c)		DA4(d)	Sub-E	
	HSG	Site	Ac) Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition											
Reforestation (in dedicated OS)											
Impervious											
Sub-DA1(a) BMP(s)											
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi			Provided olume that www. 2-5 of (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1(b) BMP(s)											
	If Sub-DA1(b) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):							1			
Device Name (As Shown on Plan)	Device Type		er Quality Voor or Sub-DA (fi			Provided olume that www. 2-5 of (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1 (c) BMP(s)											
	If Sub-DA1(c) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Voor Sub-DA (fi			Provided olume that www. 2-5 of (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										

DA4_BMPs Page 30

DRAINAGE AREA 4 BMP CALCULATIONS

Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ²)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):						
	DA	4 BMP SUMMARY					
	Total Volume Treated (ft ³)=						
	Nitrogen Mitigated(lbs)=						
1-year, 24-hour storm							
	Post BMP Volume of Runoff (ft ³) _(1-year) =						
	Post BMP Runoff (inches) = Q* _(1-year) =						
	Post BMP CN _(1-year) =						
	Post BMP Peak Discharge (cfs)= Q _{1-year} =						
2-year, 24-hour storm (LID)	,						
	Post BMP Volume of Runoff (ft3) _(2-year) =						
	Post BMP Runoff (inches) = Q* _(2-year) =						
	Post BMP CN _(2-year) =						
	Post BMP Peak Discharge (cfs)= Q _(2-year) =						
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =						
	Post BMP Runoff (inches) = Q* _(10-year) =						
	Post BMP CN(10-year)=	·					
	1 OSt DIVII ON (10.year)						

DA4_BMPs Page 31

DRAINAGE AREA 5 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA5 Site Acreage=											
DA5 Off-Site Acreage=											
Total Required Storage Volume				N/A							
TCN Requirement (ft ³)= Total Required Storage Volume for DA5											
1" Rainfall for High Density (ft3)=											
Will site use underground detention/cistern?		Enter %	of the year	water will be reused=						ation/details te water usa	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
			DA5(a)	Sub-E			DA5(c)		DA5(d)	Sub-E	
	HSG	Site	Ac) Off-site	Site	Off-site	Site (A	Off-site	Site (A	Off-site	Site	.c) Off-site
Pasture							Ç., 2,12		<u> </u>		V. 1.1.1
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition											
Reforestation (in dedicated OS)											
Impervious											
Sub-DA1(a) BMP(s)											
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi			Provided olume that www. 2-5 of (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):								ļ.		
Sub-DA1(b) BMP(s)											
	If Sub-DA1(b) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi			Provided olume that www. 2-5 of (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1 (c) BMP(s)											
	If Sub-DA1(c) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):							T.	T		
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fl			Provided olume that with the widown 2-5 of the first (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										

DA5_BMPs Page 32

DRAINAGE AREA 5 BMP CALCULATIONS

Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ²)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):						
	DA	15 BMP SUMMARY					
	Total Volume Treated (ft ³)=						
	Nitrogen Mitigated(lbs)=						
1-year, 24-hour storm							
	Post BMP Volume of Runoff (ft ³) _(1-year) =						
	Post BMP Runoff (inches) = Q* _(1-year) =						
	Post BMP CN _(1-year) =						
	Post BMP Peak Discharge (cfs)= Q _{1-year} =						
2-year, 24-hour storm (LID)	,						
	Post BMP Volume of Runoff (ft3) _(2-year) =						
	Post BMP Runoff (inches) = Q* _(2-year) =						
	Post BMP CN _(2-year) =						
	Post BMP Peak Discharge (cfs)= Q _(2-year) =						
10-year, 24-hour storm (DIA)	,						
	Post BMP Volume of Runoff (ft ³) _(10-year) =						
	Post BMP Runoff (inches) = Q* _(10-year) =						
· · · · · · · · · · · · · · · · · · ·	Post BMP CN(10-year)=						

DA5_BMPs Page 33

DRAINAGE AREA 6 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA6 Site Acreage=	İ										
DA6 Off-Site Acreage=											
Total Required Storage Volume				N/A							
TCN Requirement (ft ³)= Total Required Storage Volume for DA6				IN/A							
1" Rainfall for High Density (ft3)=											
Will site use underground detention/cistern?		Enter %	of the year v	water will be reused=						ation/details te water usa	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
	uae.		DA6(a)	Sub-D			DA6(c)		DA6(d)		DA6(e)
	HSG	Site	off-site	Site (A	Off-site	Site	Ac) Off-site	Site	Ac) Off-site	Site (A	Off-site
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition											
Reforestation (in dedicated OS)											
Impervious											
Sub-DA1(a) BMP(s)								ı		I	
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ft			Provided folume that was a construction of the		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1(b) BMP(s)											
	If Sub-DA1(b) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ff			Provided folume that was a widown 2-5 of the first following the first following the f		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1 (c) BMP(s)											
	If Sub-DA1(c) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):							T	T		
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ft			Provided of olume that was a constant of the c		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):							0%	0.00	0.00	
100	ogen remaining leaving the subbasili (ibs).										

DA6_BMPs Page 34

DRAINAGE AREA 6 BMP CALCULATIONS

NORTH CAROLINA							
Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):						
	DA	A6 BMP SUMMARY					
	Total Volume Treated (ft ³)=						
	Nitrogen Mitigated(lbs)=						
1-year, 24-hour storm							
	Post BMP Volume of Runoff (ft ³) _(1-year) =						
	Post BMP Runoff (inches) = Q* _(1-year) =						
	Post BMP CN _(1-year) =						
	Post BMP Peak Discharge (cfs)= Q _{1-year} =						
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3) _(2-year) =						
	Post BMP Runoff (inches) = Q* _(2-year) =						
	Post BMP CN _(2-year) =						
	Post BMP Peak Discharge (cfs)= Q _(2-year) =						
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =						
	Post BMP Runoff (inches) = Q*(10-year)=						
	Post BMP CN(_{10-year})=						
	Post BMP Peak Discharge (cfs)= Q _(10-year) =						
	. (,,						

DA6_BMPs Page 35

DRAINAGE AREA 7 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA7 Site Acreage=											
DA7 Off-Site Acreage=											
Total Required Storage Volume				N/A							
TCN Requirement (ft ³)= Total Required Storage Volume for DA7											
1" Rainfall for High Density (ft3)=											
Will site use underground detention/cistern?		Enter %	of the year	water will be reused=						nation/details ite water usa	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
			DA7(a)		DA7(b)		DA7(c)		DA7(d)		DA7(e)
	HSG	Site	Ac) Off-site	Site	Ac) Off-site	Site	Ac) Off-site	Site	Ac) Off-site	Site	Ac) Off-site
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition											
Reforestation (in dedicated OS)											
Impervious											
Sub-DA1(a) BMP(s)								ı			I
Device Name (As Shown on Plan)	Device Type	for Sub DA (#3) drawdown 2-5 days				Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)		
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1(b) BMP(s)											
	If Sub-DA1(b) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										T
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (f			Provided of the transfer of th		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1 (c) BMP(s)	If Sub-DA1(c) is connected to upstream subbasin(s),										
	ne nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (f			Provided folume that was widown 2-5 of (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):							·			

DA7_BMPs Page 36

DRAINAGE AREA 7 BMP CALCULATIONS

If Sub-DA1(e) is connected to upstream subbasin (s), enter the nitrogen leaving the most upstream subbasin (his). Device Name (As Shown on Plan) Device Type D	Sub-DA1(d) BMP(s)							
Device Type Device Type Type Type Type Type Type Type Typ	If Sub-DA1(d) is connected to upstream subb							
Post BMP Volume of Runoff (if*) Post BMP Pask Discharge (dis) Post BMP Pask Discharge (d	Device Name (As Shown on Plan)	Device Type		Volume that will drawdown 2-5 days	Removal	Nitrogen	Removed	Time
Total Nitrogen remaining leaving the subbasin (the):					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (ba) Sub-DA1(e) BMP(s)					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (this)					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (ibs)					0%	0.00	0.00	
Sub-DAt (p BMP(s) If Sub-DAt (p) is connected to upstream subbasin(s), enter the nitrogen leaving the most upstream subbasin(this): Device Name (As Shown on Plan) Device Type Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Wolume that will drawdom 2.5 days (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Water Quality Volume for Sub-DA (ft ²) Water Quality Volume for Sub					0%	0.00	0.00	
If Sub-DA1(e) is connected to upstream subbasin(s), enter the nitrogen leaving the most upstream subbasin(s). Bevice Name (As Shown on Plan) Device Type Povice Type Povic	Tot	al Nitrogen remaining leaving the subbasin (lbs):						
Device Name (As Shown on Plan) Device Type Water Quality Volume for Sub-DA (R*) Volume f	Sub-DA1(e) BMP(s)							
Device Name (As Shown on Plan) Device Type Walter Qualify Volume for Sub-DA (RT*) Volume that will grand/own 2-5 days (RT*) Rt*	If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
0% 0.00 0.00 0% 0.00	Device Name (As Shown on Plan)	Device Type		Volume that will drawdown 2-5 days	Removal	Nitrogen	Removed	Time
0% 0.00 0.00 0% 0.00					0%	0.00	0.00	
0% 0.00 0.					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (lbs): DA7 BMP SUMMARY					0%	0.00	0.00	
Total Nitrogen remaining leaving the subbasin (lbs): DAT BMP SUMMARY Total Volume Treated (ft²) = Nitrogen Mitigated(lbs) = Post BMP Volume of Runoff (ft²) _{1(1-year)} = Post BMP Runoff (inches) = Q* _{1-year} = Post BMP Pake Discharge (cfs) = Q _{1-year} = Post BMP Volume of Runoff (ft3) _{1(1-year)} = Post BMP Volume of Runoff (ft²) _{1(1-year)} = Post BMP Peak Discharge (cfs) = Q* _{1-year} = Post BMP Volume of Runoff (ft²) _{1(1-year)} = Post BMP Volume of Runoff (ft²) _{1(1-year)} = Post BMP Notume of Runoff (ft²) _{1(1-year)} = Post BMP Runoff (inches) = Q* _{1-year} = Post BMP Runoff (inches) = Q*					0%	0.00	0.00	
Total Volume Treated (ft²) = Nitrogen Mitigated(lbs) = Nitrogen Mitigated(lbs) = Note and Post BMP Volume of Runoff (ft²) _(1-year) = Post BMP Runoff (inches) = Q* _(1-year) = Post BMP Peak Discharge (cfs) = Q _(1-year) = Post BMP Peak Discharge (cfs) = Q _(1-year) = Post BMP Runoff (inches) = Q* _(1-year) = Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP CN(_(1-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = Post BMP CN(_(1-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = Post BMP CN(_(1-year) = Post BMP Volume of Runoff (ft3) _(10-year) = Post BMP Volume of Runoff (ft3) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_(10-year) = Post BMP CN(_(10-year) =					0%	0.00	0.00	
Total Volume Treated (ft ³) = Nitrogen Mitigated(lbs) = 1-year, 24-hour storm Post BMP Volume of Runoff (ft ³) _(1-year) = Post BMP Runoff (inches) = $\Omega^*_{(1-year)}$ = Post BMP Peak Discharge (ofs) = $\Omega_{(1-year)}$ = Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = $\Omega^*_{(2-year)}$ = Post BMP Runoff (inches) = $\Omega^*_{(2-year)}$ = Post BMP Runoff (inches) = $\Omega^*_{(2-year)}$ = Post BMP Peak Discharge (ofs) = $\Omega_{(2-year)}$ = Post BMP Peak Discharge (ofs) = $\Omega_{(2-year)}$ = Post BMP Runoff (inches) = $\Omega^*_{(2-year)}$ = Post BMP Runoff (inches) = $\Omega^*_{(2-year)}$ = Post BMP Runoff (inches) = $\Omega^*_{(1-year)}$ =	Tot	al Nitrogen remaining leaving the subbasin (lbs):						
Nitrogen Mitigated(lbs)= I-year, 24-hour storm Post BMP Volume of Runoff (ft³) _(1-year) = Post BMP Runoff (inches) = Q* _(1-year) = Post BMP CN(_{1-year)} = Post BMP Peak Discharge (ofs)= Q _(1-year) = Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = Q* _(2-year) = Post BMP CN(_{2-year)} = Post BMP Peak Discharge (ofs)= Q _(2-year) = Post BMP Peak Discharge (ofs)= Q _(2-year) = Post BMP Volume of Runoff (ft³) _(10-year) = Post BMP Volume of Runoff (ft³) _(10-year) = Post BMP Volume of Runoff (ft³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_{10-year)} = Post BMP CN(_{10-year)} =		DA	A7 BMP SUMMARY					
I-year, 24-hour storm Post BMP Volume of Runoff (ft^3) _(1-year) = Post BMP Runoff (inches) = $Q^*_{(1-year)}$ = Post BMP CN _(1-year) = Post BMP Peak Discharge (cfs) = Q_{1-year} = Post BMP Volume of Runoff (ft^3) _(2-year) = Post BMP Volume of Runoff (ft^3) _(2-year) = Post BMP CN _(2-year) = Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs) = $Q_{(2-year)}$ = Post BMP CN _(2-year) = Post BMP CN _(2-year) = Post BMP Volume of Runoff (ft^3) _(10-year) = Post BMP Volume of Runoff (ft^3) _(10-year) = Post BMP Volume of Runoff (ft^3) _(10-year) = Post BMP CN _(10-year) =		Total Volume Treated (ft ³)=						
Post BMP Volume of Runoff ($(t^2)_{(1-y_0y_0)^2}$ Post BMP Runoff (inches) = $Q^*_{(1-y_0y_0)^2}$ Post BMP Peak Discharge (cfs) = $Q_{(1-y_0y_0)^2}$ Post BMP Peak Discharge (cfs) = $Q_{(1-y_0y_0)^2}$ Post BMP Volume of Runoff ($(t^3)_{(2-y_0y_0)^2}$ Post BMP Volume of Runoff ($(t^3)_{(2-y_0y_0)^2}$ Post BMP Runoff (inches) = $Q^*_{(2-y_0y_0)^2}$ Post BMP Peak Discharge (cfs) = $Q_{(2-y_0y_0)^2}$ Post BMP Peak Discharge (cfs) = $Q_{(2-y_0y_0)^2}$ Post BMP Volume of Runoff ($(t^3)_{(10-y_0y_0)^2}$ Post BMP Runoff (inches) = $Q^*_{(10-y_0y_0)^2}$ Post BMP Runoff (inches) = $Q^*_{(10-y_0y_0)^2}$ Post BMP Runoff (inches) = $Q^*_{(10-y_0y_0)^2}$		Nitrogen Mitigated(lbs)=						
Post BMP Runoff (inches) = $Q^*_{(1\cdot p_0 e)^2}$ Post BMP Post BMP Peak Discharge (cfs) = $Q_{1\cdot p_0 e^2}$ Post BMP Peak Discharge (cfs) = $Q_{1\cdot p_0 e^2}$ Post BMP Volume of Runoff (ft3) _{$(2\cdot p_0 e)^2$} Post BMP Runoff (inches) = $Q^*_{(2\cdot p_0 e)^2}$ Post BMP Runoff (inches) = $Q^*_{(2\cdot p_0 e)^2}$ Post BMP Peak Discharge (cfs) = $Q_{(2\cdot p_0 e)^2}$ Post BMP Peak Discharge (cfs) = $Q_{(2\cdot p_0 e)^2}$ Post BMP Runoff (inches) = $Q^*_{(10\cdot p_0 e)^2}$ Post BMP CN($(10\cdot p_0 e)^2$ Post BMP CN($($	1-year, 24-hour storm							
Post BMP CN _(1-year) = Post BMP Peak Discharge (cfs) = Q_{1-year} = 2-year, 24-hour storm (LID) Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = $Q^*_{(2-year)}$ = Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs) = $Q_{(2-year)}$ = Post BMP Volume of Runoff (ft³) _(10-year) = Post BMP Volume of Runoff (ft³) _(10-year) = Post BMP Volume of Runoff (ft³) _(10-year) = Post BMP Nunoff (inches) = $Q^*_{(10-year)}$ = Post BMP CN _(10-year) =		Post BMP Volume of Runoff (ft ³) _(1-year) =						
Post BMP Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = Q* _(2-year) = Post BMP CN(_{2-year)} = Post BMP Peak Discharge (cfs) = Q(_{2-year)} = Post BMP CN(2-year) = Post BMP CN(2-year) = Post BMP CN(10-year) = Po		Post BMP Runoff (inches) = Q* _(1-year) =						
Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = $Q^*_{(2-year)}$ = Post BMP CN _(2-year) = Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs)= $Q_{(2-year)}$ = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(10-year) = Post BMP Runoff (inches) = $Q^*_{(10-year)}$ = Post BMP CN _(10-year) =		Post BMP CN _(1-year) =						
Post BMP Volume of Runoff (ft3) _(2-year) = Post BMP Runoff (inches) = $Q^*_{(2-year)}$ = Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs)= $Q_{(2-year)}$ = Post BMP Volume of Runoff (ft3) _(10-year) = Post BMP Volume of Runoff (ft3) _(10-year) = Post BMP Runoff (inches) = $Q^*_{(10-year)}$ = Post BMP CN _(10-year) =		Post BMP Peak Discharge (cfs)= Q _{1-year} =						
Post BMP Runoff (inches) = Q* _(2-year) = Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs) = Q _(2-year) = Post BMP Peak Discharge (rfs) = Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN _(10-year) =	2-year, 24-hour storm (LID)							
Post BMP CN _(2-year) = Post BMP Peak Discharge (cfs) = $Q_{(2-year)}$ = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff $(ft^3)_{(10-year)}$ = Post BMP Runoff (inches) = $Q^*_{(10-year)}$ = Post BMP CN $_{(10-year)}$ =		Post BMP Volume of Runoff (ft3) _(2-year) =						
Post BMP Peak Discharge (cfs)= Q _(2-year) = 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft ³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_{10-year)} =		Post BMP Runoff (inches) = Q* _(2-year) =						
Post BMP Volume of Runoff (ft ³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_{10-year)} =		Post BMP CN _(2-year) =						
Post BMP Volume of Runoff (ft ³) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_{10-year)} =		Post BMP Peak Discharge (cfs)= Q _(2-year) =						
Post BMP Runoff (inches) = Q*_(10-year)= Post BMP CN(_10-year)=	10-year, 24-hour storm (DIA)							
Post BMP CN(10-year)=		Post BMP Volume of Runoff (ft ³) _(10-year) =						
		Post BMP Runoff (inches) = Q* _(10-year) =						
Post BMP Peak Discharge (cfs)= Q _(10-year) =		Post BMP CN(10-year)=						
		Post BMP Peak Discharge (cfs)= Q _(10-year) =						

DA7_BMPs Page 37

DRAINAGE AREA 8 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA8 Site Acreage=											
DA8 Off-Site Acreage=											
Total Required Storage Volume		N/A									
TCN Requirement (ft ³)= Total Required Storage Volume for DA8											
1" Rainfall for High Density (ft3)=											
Will site use underground detention/cistern?		Enter % of the year water will be reused= Note: Supporting information/details st submitted to demonstrate water usage									
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
			DA8(a)	Sub-E			DA8(c)		DA8(d)	Sub-E	
	HSG	Site	Ac) Off-site	Site	Off-site	Site (A	off-site	Site (A	Off-site	Site	.c) Off-site
Pasture							<u> </u>		<u> </u>		VII 2.112
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition											
Reforestation (in dedicated OS)											
Impervious											
Sub-DA1(a) BMP(s)											
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)			Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1(b) BMP(s)											
	If Sub-DA1(b) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Voor or Sub-DA (fi			Provided olume that www. 2-5 of (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1 (c) BMP(s)											
	If Sub-DA1(c) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):							T.	I		
Device Name (As Shown on Plan)	Device Type		er Quality Voor Sub-DA (fi			Provided olume that www. 2-5 of (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										

DA8_BMPs Page 38

DRAINAGE AREA 8 BMP CALCULATIONS

Sub DA4(d) BMB(a)							
Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):						
	DA	A8 BMP SUMMARY					
	Total Volume Treated (ft ³)=						
	Nitrogen Mitigated(lbs)=						
1-year, 24-hour storm							
	Post BMP Volume of Runoff (ft ³) _(1-year) =						
	Post BMP Runoff (inches) = Q* _(1-year) =						
	Post BMP CN _(1-year) =						
	Post BMP Peak Discharge (cfs)= Q _{1-year} =						
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3) _(2-year) =						
	Post BMP Runoff (inches) = Q* _(2-year) =						
	Post BMP CN _(2-year) =						
	Post BMP Peak Discharge (cfs)= Q _(2-year) =						
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =						
	Post BMP Runoff (inches) = Q*(10-year)=						
	Post BMP CN(_{10-year})=						
	Post BMP Peak Discharge (cfs)= Q _(10-year) =						

DA8_BMPs Page 39

DRAINAGE AREA 9 BMP CALCULATIONS

DRAINAGE ADEA 4 DMD DEWOED A	ND AD HIGTMENTO										
DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA9 Site Acreage=											
DA9 Off-Site Acreage= Total Required Storage Volume											
TCN Requirement (ft ³)=				N/A							
Total Required Storage Volume for DA9 1" Rainfall for High Density (ft3)=											
1 Rainiali for High Density (It3)=											
Will site use underground detention/cistern?		Enter %	of the year	water will be reused=						nation/details ite water usa	
								oubillitiou (no mator acc	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA	ı		ı		ı		T			
	HSG		DA9(a) Ac)		DA9(b) Ac)		DA9(c) Ac)		DA9(d) Ac)		DA9(e) Ac)
		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition											
Reforestation (in dedicated OS)											
Impervious											
Sub-DA1(a) BMP(s)		ı						T	I	I	
		Wate	er Quality Vo	olume	V	Provided olume that	will	Nitrogen	Sub-DA	Nitrogen	Drawdown
Device Name (As Shown on Plan)	Device Type		or Sub-DA (f			wdown 2-5		Removal Efficiency	Nitrogen (lbs)	Removed (lbs)	Time (hours)
						(ft ³)		Lineiditoy	(150)	(120)	(modio)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1(b) BMP(s)											
	If Sub-DA1(b) is connected to upstream subbasin(s),										
enter ti	he nitrogen leaving the most upstream subbasin(lbs):				I			T		1	I
		Wate	er Quality Vo	olume	V	Provided olume that	will	Nitrogen	Sub-DA	Nitrogen	Drawdown
Device Name (As Shown on Plan)	Device Type		or Sub-DA (f			wdown 2-5		Removal Efficiency	Nitrogen (lbs)	Removed (lbs)	Time (hours)
						(ft ³)		Lineiditoy	(150)	(120)	(modio)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1 (c) BMP(s)											
	If Sub-DA1(c) is connected to upstream subbasin(s),										
enter ti	he nitrogen leaving the most upstream subbasin(lbs):				I			T		1	I
		Wate	er Quality Vo	dume	V	Provided olume that	adill .	Nitrogen	Sub-DA	Nitrogen	Drawdown
Device Name (As Shown on Plan)	Device Type		or Sub-DA (f		dra	wdown 2-5	days	Removal Efficiency	Nitrogen (lbs)	Removed (lbs)	Time (hours)
						(ft ³)		Lineiditoy	(150)	(150)	(modio)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										

DA9_BMPs Page 40

DRAINAGE AREA 9 BMP CALCULATIONS

Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):						
	DA	A9 BMP SUMMARY					
	Total Volume Treated (ft ³)=						
	Nitrogen Mitigated(lbs)=						
1-year, 24-hour storm							
	Post BMP Volume of Runoff (ft ³) _(1-year) =						
	Post BMP Runoff (inches) = Q* _(1-year) =						
	Post BMP CN _(1-year) =						
	Post BMP Peak Discharge (cfs)= Q _{1-year} =						
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3) _(2-year) =						
	Post BMP Runoff (inches) = Q* _(2-year) =						
	Post BMP CN _(2-year) =						
	Post BMP Peak Discharge (cfs)= Q _(2-year) =						
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =						
	Post BMP Runoff (inches) = Q* _(10-year) =						
	Post BMP CN(_{10-year})=						
	Post BMP Peak Discharge (cfs)= Q _(10-year) =						
l .							

DA9_BMPs Page 41

DRAINAGE AREA 10 BMP CALCULATIONS

NORTH CAROLINA											
DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA10 Site Acreage=											
DA10 Off-Site Acreage=											
Total Required Storage Volume				N/A							
TCN Requirement (ft ³)=				IN/A							
Total Required Storage Volume for DA10 1" Rainfall for High Density (ft3)=											
Will site use underground detention/cistern?		Enter %	of the year v	water will be reused=						nation/details te water usa	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
	HSG	(A	DA10(a) Ac)	(A	A10(b) Ac)	()	DA10(c) Ac)	Sub-DA10(d) (Ac)		(A	A10(e) Ac)
Dartina		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site
Pasture											
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition											
Reforestation (in dedicated OS)											
Impervious											
Sub-DA1(a) BMP(s)						•	•				
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ft			Provided followed that was awdown 2-5 (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	 al Nitrogen remaining leaving the subbasin (lbs):							070	0.00	0.00	
	ar introgen remaining leaving the subbasin (ibs).										
	If Sub-DA1(b) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ft			Provided followed that was a widown 2-5 (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1 (c) BMP(s)											
	If Sub-DA1(c) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):										
oner a	J					Described:					
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ft			Provided olume that wawdown 2-5 (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
		1						0%	0.00	0.00	
		1							0.00	0.00	
								0%	0.00	0.00	

DA10_BMPs Page 42

DRAINAGE AREA 10 BMP CALCULATIONS

Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tot	tal Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tot	tal Nitrogen remaining leaving the subbasin (lbs):						
	DA	10 BMP SUMMARY					
	Total Volume Treated (ft ³)=						
	Nitrogen Mitigated(lbs)=						
1-year, 24-hour storm							
	Post BMP Volume of Runoff (ft ³) _(1-year) =						
	Post BMP Runoff (inches) = Q* _(1-year) =						
	Post BMP CN _(1-year) =						
	Post BMP Peak Discharge (cfs)= Q _{1-year} =						
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3) _(2-year) =						
	Post BMP Runoff (inches) = Q* _(2-year) =						
	Post BMP CN _(2-year) =						
	Post BMP Peak Discharge (cfs)= Q _(2-year) =						
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =						
	Post BMP Runoff (inches) = Q* _(10-year) =						
	Post BMP CN(10-year)=						
	Post BMP Peak Discharge (cfs)= Q _(10-year) =						
		<u> </u>					

DA10_BMPs Page 43

Dualant Names	
Project Name:	

DA SITE SUMMARY BMP CALCULATIONS

BMP SUMMARY										
DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-	Developm	ent (1-yeaı	r, 24-hour s	storm)						
Runoff (in)=Q* _{1-year} =	1.14	1.14								
Peak Flow (cfs)=Q _{1-year} =	1.051	1.580								
Post-Development (1-year, 24-hour storm)										
Target Curve Number (TCN) =					N.A	٨				
Post BMP Runoff (inches) = Q* _(1-year) =	1.99	1.59								
Post BMP Peak Discharge (cfs)= Q _{1-year} =		1.174								
Post BMP CN _(1-year) =					86	j				
	Post-BN	IP Nitroge	n Loading							
TOTAL SITE NITROGEN MITIGATED (lbs)=					7.6	0				
SITE NITROGEN LOADING RATE (lbs/ac/yr)=	9.78									
TOTAL SITE NITROGEN LEFT TO MITIGATE_Wendell Only (lbs)=					11.8	31				

BMP SUMMARY Page 44

LOW IMPACT DEVELOPMENT SUMMARY

DRAINAGE AREA SUMMARIES											
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10	
		ı	Pre-Devel	pment				ı	ı		
Runoff (in) = Q _{pre_2-year} =	1.60	1.60									
Total Runoff Volume (ft ³)=	4,660	6,466									
Peak Flow (cfs)=Q _{2-year} =	1.482	2.226									
2 24 4 415			Post-Devel	opment							
2-year, 24-hour storm (LID)	0.50	0.47	I	1		I		I	I	1	
Post BMP Runoff (inches) = Q* _(2-year) = Post BMP Peak Discharge (cfs)= Q _(2-year) =	2.56	2.17									
Post BMP Volume of Runoff (ft3) _(2-year) =	1,583	1.631 13,699									
Does Runoff meet LID requirements?	No	No									
Does Peak Flow meet LID requirements?		Yes Yes									
Does Runoff Volume meet LID requirements?	Yes	No									
SITE SUMMARY		110									
			Site D	ata							
Target CN =					N	/A					
Post-Development CN =					8	7					
Does CN meet LID requirements?											
Con	plete the b	oelow check	LID CHEC		have been	met above:					
valuable features.											
LID Techniques (check all that apply) At least one of the following techniques must be	used to ac	hieve LID o	lassification	n:							
	Bioretentic	on									
	On-site inf	iltration									
Additional LID Techniques (check all that app At least two (one for Wendell) of the following to		must be us	ed to achie	ve LID clas	sification:						
	Retention	of 50% of v	egetated a	ea, includi	ng open spa	ace, landsca	aping or for	ests			
	Use of per	meable pav	ement for	all private o	Iriveways, p	rivate road	s, sidewalk	s and parki	ng areas		
	Installation	of one rain	cistern pe	r lot or thre	e rain barre	ls per lot					
		of vegetati									
				ian buffer a	zone or the	Flood Prote	ction Zone	, whichever	is greater,	by 50 feet	
										*	
Use of reclaimed water for all buildings Use of innovative LID techniques subject to approval											

LID SUMMARY Page 45

Project Name:	

DOWNSTREAM IMPACT ANALYSIS SITE SUMMARY

DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development Pre-Development										
Peak Discharge (cfs)=Q _{10-year} =	2.78	4.18								
Volume of Runoff (ft ³) _(10-year) =	8,757	12,150								
Post-Development										
10-year, 24-hour storm (DIA)										
Post BMP Peak Discharge (cfs)= Q _(10-year) =		2.82								
Post BMP Volume of Runoff (ft ³) _(10-year) =	12,162	14,402								

DIA Page 46

CALCULATIONS AND REFERENCE

TARGET CURVE NUMBER						
MAXIMUM CURVE NUMBER AFTER DEVELOPMENT						
PROJECT DENSITY	Α	В	С	D		
Ultra-Low	43	63	76	81		
Low 48 66 78 83						
High	N/A	N/A	N/A	N/A		

WEIGHTED CURVE NUMBER							
RUNOFF CURVE NUMBERS FOR URBAN AREAS							
LAND USE	Α	В	С	D			
Pasture	39	61	74	80			
Woods, Poor Condition ¹	45	66	77	83			
Woods, Fair Condition ²	36	60	73	79			
Woods, Good Condition ³	30	55	70	77			
Open Space, Poor Condition ⁴	68	79	86	89			
Open Space, Fair Condition ⁵	49	69	79	84			
Open Space, Good Condition ⁶	39	61	74	80			
Reforestation (in dedicated OS) ⁷	30	55	70	77			
Impervious ⁸	98	98	98	98			

Notes:

SCS RUNOFF METHOD

 $Q*=(P-.2S)^2/(P+.8S)$

Where: Q*= Runoff (in)

P= Precipitation (in)

S= Potential max retention after runoff begins (in) = (1000/CN)-10

Notes:

Calculations used on Drainage Area Sheets

DISCRETE RUNOFF METHOD (HIGH DENSITY ONLY)

 $\mathsf{Q}^{\star}_{\mathsf{High}} = \mathsf{Q}^{\star}_{(\mathsf{imp}) \, \mathsf{X}} \, \mathsf{DA}_{(\mathsf{imp})} + \, \mathsf{Q}^{\star}_{(\mathsf{pervious})} \, \mathsf{X} \, \, \mathsf{DA}_{(\mathsf{pervious})}$

Q*_(imp)= Runoff from Impervious Area (in)

DA_(imp) = Drainage from impervious area (acre)

 $Q^{\star}_{(pervious)}$ = Runoff from pervious area (in)

DA_(pervious)= Drainage from pervious area (acre)

PEAK FLOW

Method: TR-55 Graphical Peak Discharge Method for Type II Distribution

 $Q_p = q_uAmQ*Fp$

Where:

Q_p = Peak Discharge (cfs)

q_u = Unit peak discharge (csm/in) TR-55 Appendix F

A_m = Drainage Area (mi²) Q* = runoff (inches)

F_p = pond adjustment factor

 $\log(q_u) = C_o + C_1 \log(Tc) + C_2 [\log(Tc)]^2$

Where:

 C_0 , C_1 , C_2 = coefficient from Table F-1

 T_c = time of concentration (hr)

Limitations: The watershed must be hydrologically homogeneous

The watershed may have only one main stream or, if more than one, the branches must have nearly equal T $_{\rm c}$'s.

The Fp factor can be applied only for ponds or swamps that are not in the T $_{\rm c}$ flow path

This method should be used only if the weighted CN is greater than 40.

When this method is used to develop estimates of peak discharge for both pre and post development, use the same procedure for estimating Tc.

 $T_{\text{\tiny C}}$ values with this method may range from 0.1 to 10 hours.

¹ Poor Condition = Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

 $^{^2}$ Fair Condition = Woods are grazed but not burned, and some forest litter covers the soil.

³Good Condition = Woods that are protected from grazing, litter, and brush adequately cover the soil

⁴Poor Condition = Grass Cover <50% (lawns, parks, golf courses, cemeteries, etc.)

⁵Fair Condition = Grass Cover = 50% - 75% (lawns, parks, golf courses, cemeteries, etc.)

⁶Good Condition = Grass Cover >75% (lawns, parks, golf courses, cemeteries, etc.)

⁷Includes paved/gravel/compacted soil driveways and roads, roofs, etc.

⁸Includes paved/gravel/compacted soil driveways and roads, roofs, etc.

TIME OF CONCENTRATION $T_t = \frac{L}{3600V}$ T_t =travel time (hr) L = flow length (ft) V = average velocity (ft/s) 3600 = conversion factor from seconds to hours T_c = sum of T_t values for consecutive flow segments $T_c = T_1 + T_2 + T_3 + ... T_m$ T_c = time of concentration (hr) m = # of flow segments Note: Minimal 5 minute Tc SHEET FLOW (FOR FLOW LESS THAN 300 FEET) SHALLOW FLOW Surface Cover Unpaved: $T_t = 0.0007(nL)^{0.8}$ $V = 16.1345(s)^{0.5}$ $(P_2)^{0.5}s^{0.4}$ Paved: $V=20.3282(s)^{0.6}$ T_t =travel time (hr) V=Average Velocity (ft/s) n = Manning's roughness coefficient (Table 3-1) s = slope of hydraulic grade line (watercourse slope, ft/ft) L = flow length (ft) P₂ = 2-year, 24-hour rainfall (in) s = slope of hydraulic grade line (land slope, ft/ft) T_t =travel time (hr) L = flow length (ft) V = average velocity (ft/s) 3600 = conversion factor from seconds to hours Modified Table 3-1 for Stormwater Tool OPEN CHANNEL FLOW V= 1.49r^{2/3}s^{1/2} SURFACE DESCRIPTION Paved, Gravel, or Bare Soil 0.011 Grass 0.24 Woods 0.40 V=Average Velocity (ft/s) r = hydraulic radius (ft) TABLE 4-1, TR-55 s = slope of hydraulic grade line (channel slope, ft/ft) la values for runoff curve numbers n = Manning's roughness coefficient for open channel flow CN l_a (in) CN l_a (in) CN l_a (in) 40 3.000 60 1.333 80 0.500 1.279 $T_t = \frac{L}{3600V}$ 41 2.878 61 81 0.469 42 2.762 62 1.226 82 0.439 43 2.651 63 1.175 83 0.410 44 2.545 1.125 84 0.381 64 T_t =travel time (hr) a = cross sectional flow area (ft2) 45 2.444 65 1.077 85 0.353 p_w=wetted perimeter (ft) L = flow length (ft) 46 2.348 66 1.030 86 0.326 V = average velocity (ft/s) 47 2.255 67 0.985 87 0.299 3600 = conversion factor (sec-hrs) 48 2.167 68 0.941 88 0.273 49 2.082 69 0.899 89 0.247 TABLE 3-9. TR-55 50 2.000 70 0.857 90 0.222 Rational Runoff Coefficients 51 1.922 71 0.817 91 0.198 52 53 72 73 CHANNEL LINING 1.846 0.778 92 0.174 1.774 93 0.016 0.740 0.151 Asphalt 0.128 Concrete, finished 0.012 54 1.704 74 0.703 94 55 75 0.667 95 0.105 Concrete, unfinished 0.014 1.636 56 1.571 76 0.632 96 0.083 Grass 0.035 1.509 0.597 0.062 Gravel Bottom/riprap sides 0.033 1.448 78 0.564 0.041 Weeds 0.040

DISCONNECTED IMPERVIOUS CALCULATION

0.532

1 390

 $CN_{adjusted} = CN_p + [(P_{imp}/100)*(98-CN_p)*(1-(0.5*R))]$ Where:

Where:

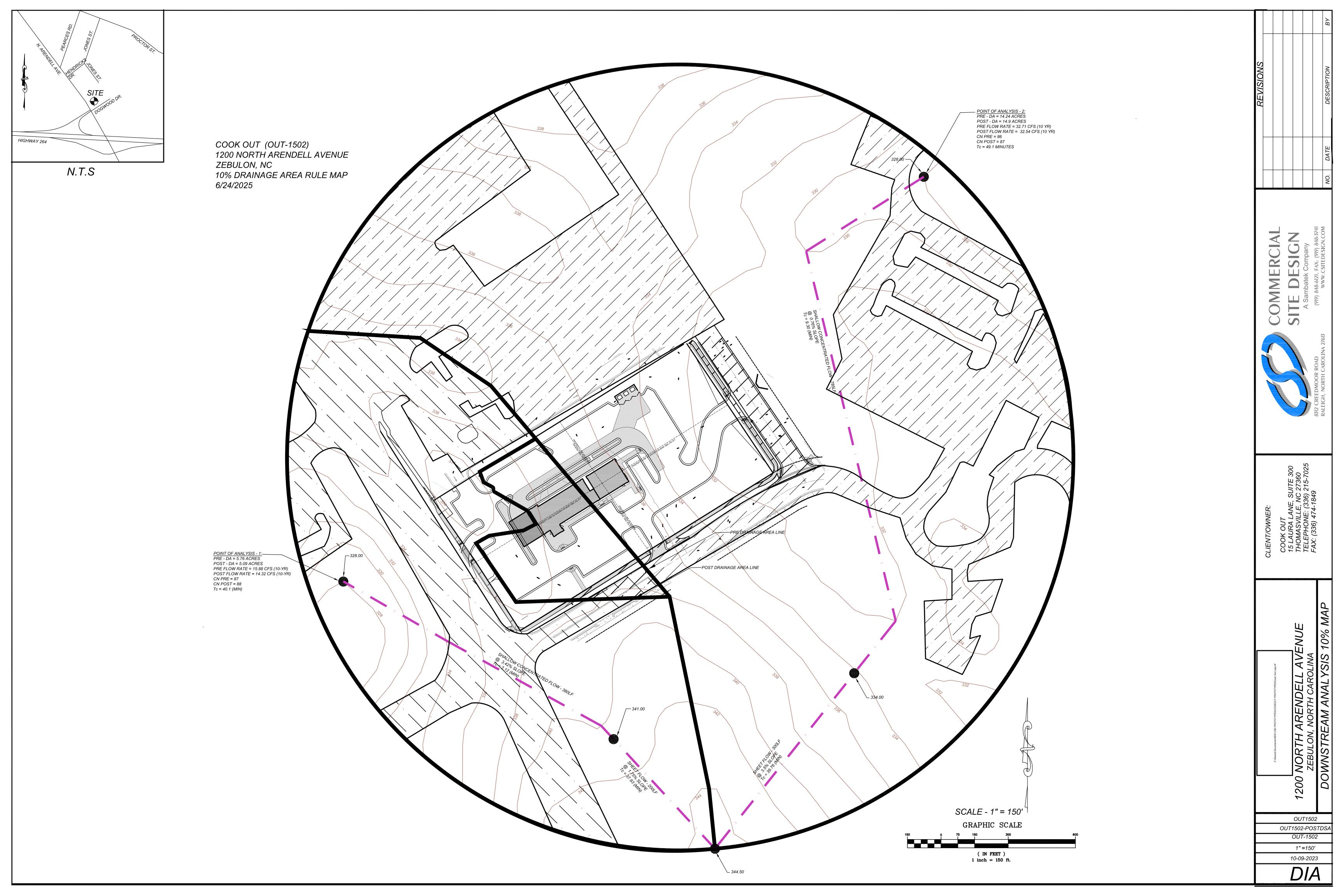
 $CN_{adjusted}$ = Composite Curve Number

 CN_p = Pervious runoff curve number =(PostCN - (Pimp/100)*98)/(1 -(Pimp/100))

P_{imp} = Percent Imperviousness

 $\ensuremath{\mathsf{R}}$ = ratio of unconnected impervious area to total impervious area

TABLE 4-1, SW BMP MANUAL					
BMP ABILIT	Y FOR				
SW QUANTITY	CONTROL				
BMP	TSS	TN			
Bioretention without IWS	85%	35%			
Bioretention with IWS	85%	40%			
Stormwater Wetlands	85%	40%			
Wet Detention Basin	85%	25%			
Sand Filter	85%	35%			
Filter Strip	25-40%	20%			
Grass Swale	35%	20%			
Restored Riparian Buffer	60%	30%			
Infiltration Device	85%	30%			
Dry Extended Detention Basin	50%	10%			
Permeable Pavement	0%	0%			
Rooftop Runoff Management 0% 0%					
Cistern/Underground Detention See Note 100%					


¹ Use of underground detention reduces total volume required for storage as well total nitrogen load. To receive total reduction,

engineer must show year-round use of reclaimed water. If water is not reused year-round, a percent of the total reduction may be given (See DA BMP sheets).

APPENDIX F

COOK OUT 1200 N. ARENDELL AVE. ZEBULON, NC 27597 OUT-1502

APPENDIX G

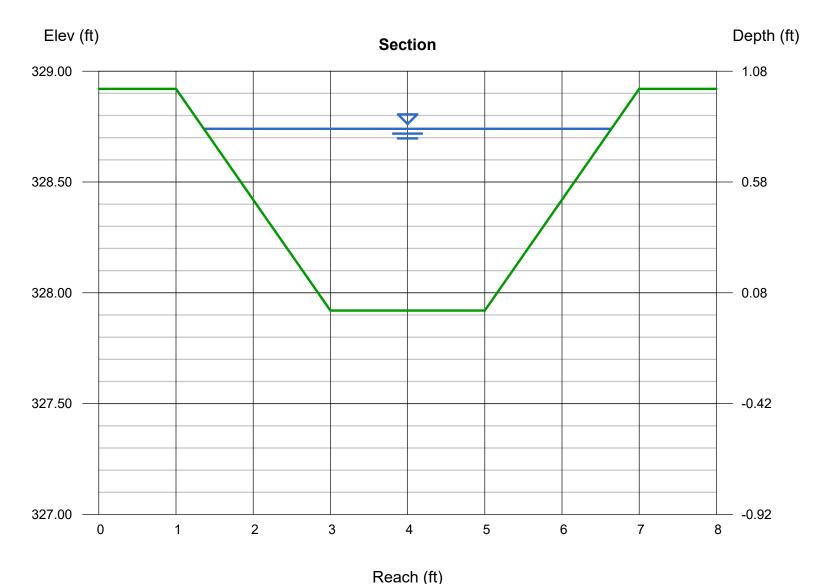
COOK OUT 1200 N. ARENDELL AVE. ZEBULON, NC 27597 OUT-1502

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Mar 27 2025

Clean Water Diversion

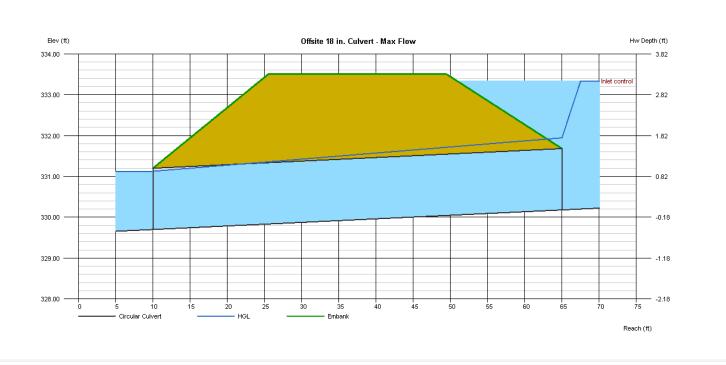

Trapezoidal

Bottom Width (ft) = 2.00 Side Slopes (z:1) = 2.00, 2.00 Total Depth (ft) = 1.00 Invert Elev (ft) = 327.92 Slope (%) = 1.40 N-Value = 0.025

Calculations

Compute by: Known Q Known Q (cfs) = 13.50 Highlighted

Depth (ft) = 0.82Q (cfs) = 13.50Area (sqft) = 2.98Velocity (ft/s) = 4.52Wetted Perim (ft) = 5.67Crit Depth, Yc (ft) = 0.85Top Width (ft) = 5.28EGL (ft) = 1.14

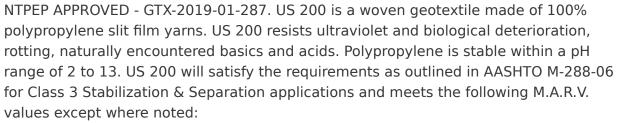

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Mar 27 2025

Offsite 18 in. Culvert - Max Flow

Invert Elev Dn (ft)	= 329.70	Calculations	
Pipe Length (ft)	= 55.00	Qmin (cfs)	= 13.00
Slope (%)	= 0.87	Qmax (cfs)	= 13.60
Invert Elev Up (ft)	= 330.18	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 13.00
No. Barrels	= 1	Qpipe (cfs)	= 13.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 7.50
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.36
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 331.13
		HGL Up (ft)	= 331.94
Embankment		Hw Elev (ft)	= 333.33
Top Elevation (ft)	= 333.50	Hw/D (ft)	= 2.10
Top Width (ft)	= 24.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		



PROPERTY	TEST METHOD	ENGLISH	METRIC
Weight Typical	ASTM D-5261	4 oz/y²	135.6 g/m ²
Grab Tensile Strength	ASTM D-4632	200 lbs	889 N
Elongation @ Break	ASTM D-4632	15 %	15 %
Mullen Burst ⁽³⁾	ASTM D-3786	400 psi	2,758 kPa
Pin Puncture ⁽³⁾	ASTM D-4833	90 lbs	400 N
CBR Puncture	ASTM D-6241	700 lbs	3,115 N
Trapezoidal Tear	ASTM D-4533	75 lbs	334 N
Apparent Opening Size ^(1,2)	ASTM D-4751	40 US Sieve	0.425 mm
Permittivity ⁽¹⁾	ASTM D-4491	0.05 Sec ⁻¹	0.05 Sec ⁻¹
Water Flow Rate ⁽¹⁾	ASTM D-4491	5 g/min/f²	204 L/min/m²
UV Resistance @ 500 Hours	ASTM D-4355	70 %	70 %

⁽¹⁾ At the time of manufacturing. Handling, storage, and shipping may change these properties.

US 200 Shipping & Packaging Information

SIZE	DIAMETER	WIDTH	WEIGHT	AREA	ROLLS PER TRAILER
12.5' x 432'	12"	12.5'	200 lbs	600 y²	240
15' x 360'	12"	15'	200 lbs	600 y²	240
17.5' x 309'	12"	17.5'	200 lbs	600 y²	210

⁽²⁾ Maximum average roll value (MaxARV).

⁽³⁾ Historical reference values. These properties are no longer recognized by ASTM or AASHTO for geosynthetics.