

NORTH CAROLINA

TOWN OF ZEBULON JOINT PUBLIC HEARING February 12, 2023 6:00 PM

I. CALL TO ORDER

II. APPROVAL OF AGENDA

III. NEW BUSINESS

- a. PD 2024-01 Zebulon South The Town has received a Planned Development request to develop 320 residential units (townhomes and single-family detached units) on 118.62 acres at 751 S Wakefield Rd, 700 S Arendell Ave, 0 S Wakefield St, and 0 S Arendell.
- b. RZ 2024-01 321 Hospital Rd The Town has received a Zoning Map Amendment request for 321 Hospital Rd to rezone the property from Office Institutional (OI) to General Commercial (GC)

IV. ADJOURNMENT

STAFF REPORT PLANNED DEVELOPMENT 2024-01 ZEBULON SOUTH FEBRUARY 12, 2024

Topic:	PD 2024-01 Zebulon South, Project Number: 886895	
Speaker:	Adam Culpepper, Senior Planner	
From:	Michael J. Clark, AICP, CNU-A, Planning Director	
Prepared by:	Catherine Farrell, Planner II	
Approved by:	Michael J. Clark, AICP, CNU-A, Planning Director Catherine Farrell, Planner II Joseph M. Moore II, PE, Town Manager	

Executive Summary:

The Board of Commissioners will consider a Planned Development Rezoning for 751 S Wakefield St (PIN# 2704492511), 700 S Arendell Ave (PIN# 2705512202), 0 S Wakefield (PIN# 2705413075). This is a legislative case.

Background:

The Town received a Planned Development request to develop 320 residential units (townhomes and single-family detached units) on 116.14 acres. The land is owned by Harold Narron and Fred Corbett (PIN# 2704492511); Joseph Temple Sr and Alexander Harrison (PIN# 2705512202); Watson Family II LLC (PIN# 2705413075), and is currently in the Town of Zebulon ETJ, and zoned R-2 and R-4. The applicant is seeking annexation simultaneously with this rezoning request.

Discussion:

The Board shall consider the following questions to determine whether the rezoning is consistent with the intent of the Unified Development Ordinance (Section 2.2.24.J):

- 1. Does the request advance the public health, safety, or welfare?
- 2. Is the request appropriate for its proposed location, and is consistent with the purposes, goals, objectives, and Town's policies?
- 3. Is the request reasonable and in the public interest?
- 4. Are there other factors which the Board of Commissioners determines relevant?

Policy Analysis:

Grow Zebulon: Comprehensive Land Use Plan (Land Use Plan):

The Land Use Plan (adopted June 2021) designated this area "Suburban Residential" and "General Residential". These designations allow a mixture of product types, with increased open space to preserve an overall suburban character, and encourages some density with the inclusion of single family attached lots (Land Use and Development Page 13 & 14, Attached).

Suburban Residential characteristics include a greater focus on the home and less on driveways consuming a large percentage of the front lawn. These characteristics are preserved through alley-loaded town homes while reserving front-loaded homes to wider lots.

General Residential characteristics include a denser residential buildings. This may include single family detached and single family attached.

STAFF REPORT PLANNED DEVELOPMENT 2024-01 ZEBULON SOUTH FEBRUARY 12, 2024

Grow Zebulon: Comprehensive Transportation Plan (Transportation Plan):

The Transportation Plan calls for the construction of a 4-lane median divided arterial road section along the properties fronting S Wakefield St, and a 2-lane median divided arterial road connecting Hwy 96 to S Wakefield Road. The development satisfies both requirements.

Play Zebulon: Parks and Recreation Master Plan (Park Master Plan):

The Park Master Plan does identify a greenways in this general vicinity. The applicant has proposed the addition of the greenway through the site. They are working with Staff to make sure that it aligns with the Parks Master Plan.

Unified Development Ordinance (UDO):

The UDO (Section 2.2.13) allows flexibility from some standards in exchange for a higher quality development more aggressively accomplishing other goals, such as amenities and diverse housing. The applicant proposes a highly amenitized mixed-product residential neighborhood with multiple attached, and detached home options providing a broader range of housing values.

Fiscal Analysis:

When complete, this development will generate approximately \$405,000 per year in property tax revenue.

Staff Recommendation:

Staff recommends accepting public comment and referring the matter to the Planning Board for consideration.

Attachments:

- 1. Application
- 2. Site Plan
- 3. Planned Development Narrative
- 4. Utility Allocation Worksheet
- 5. TIA Review Letter from Town Engineer
- 6. TIA Applicant Response
- 7. TIA
- 8. Future Land Use and Character Map
- 9. Aerial Map
- 10. Zoning Map
- 11. Site Pictures
- 12. Public Hearing Notice Affidavit
- 13. UDO Section 3.5.5 Planned Development
- 14. Comprehensive Land Use Plan (Excerpts)
- 15. Comprehensive Transportation Plan (Excerpts)

Town of Zebulon

Planning Department

1003 N. Arendell Avenue, Zebulon, NC 27597 Phone: (919) 823-1810 Fax: (919) 887-2824 www.townofzebulon.org

PLANNED DEVELOPMENT APPLICATION

GENERAL INFORMATION:

A Planned Development in accordance with Section 2.2.13 and 3.5.5 of the UDO is intended to provide flexibility by establishing site specific regulations including permitted uses, dimensional standards, phasing schedules and additional details to allow for a development that is better than what would otherwise be permitted under the strict interpretation of the UDO. All site-specific standards and conditions must be consistent with the objectives of these regulations, the adopted Comprehensive Land Use Plan, Transportation Plan, and Vision 2030 Strategic Plan. The review process established in this part provides for the accommodation of such uses by a reclassification of property into a Planned Development, subject to site-specific standards and conditions.

INSTRUCTIONS:

PRE-APPLICATION MEETING: A pre-application meeting with staff in accordance with Section 2.3.2 of the UDO to verify the application requirements, processes, and procedures regarding a proposed request. To schedule a meeting, applicants must e-mail a pdf map, drawing, model, site or sketch plan to Assistant Planning Director Meade Bradshaw (<u>mbradshaw@TownofZebulon.org</u>) no later than five (5) working days prior to the desired meeting day.

NEIGHBORHOOD MEETING: Neighborhood meetings are required in accordance with Section 2.3.4 of the UDO prior to application submission. The applicant is required to notify property owners and any neighborhood association that represents citizens within that area within 300 feet of the subject property via first class mail a minimum of 10 days in advance of the neighborhood meeting. The applicant shall use their own return address on the envelopes as the meeting is a private meeting between the developer and the neighbors. The applicant shall submit the "Certified List of Property Owners" and "Neighborhood Meeting Packet" forms included in this application packet with their initial submittal.

ANNEXATION REQUIREMENTS: If a property or portion thereof subject to this rezoning is outside the corporate limits and ETJ, an annexation petition is **required** to be submitted on the same day as this application in accordance with section 2.2.2 of the UDO.

APPLICATION PROCEDURE – The applicant requesting a Planned Development must submit a written application to the Zebulon Planning Department using the forms included in this packet.

- Completed Application Form
- 8 Full Size Plan Sets and 1 PDF set on USB drive. (see site plan checklist)
- Comprehensive Planned Development Document
- Petition Fee (Please See Fee Schedule)
- One (1) Legal Description (metes and bounds) of subject property
- Registered survey of subject property
- Certified List of Property Owners within 150 feet of subject property

- Owner's Consent Form
- Neighborhood Meeting Packet
- Stamped envelopes addressed to Certified List of Property Owners all the homeowners associations of those properties within 150 feet of the outer boundary subject property or properties affixed with the following return address:

Town of Zebulon Planning Department 1003 N. Arendell Ave Zebulon, NC 27597 Page 5

PUBLIC HEARING PROCEDURE – Upon submittal of a complete application, the Planning Department will schedule the application for a joint public hearing before the Planning Board and the Board of Commissioners. APPLICANTS ARE STRONGLY ENCOURAGED TO CONTACT PLANNING STAFF AS SOON AS POSSIBLE TO ADDRESS ANY QUESTIONS ABOUT THE PUBLIC HEARING. Notices of the public hearing will be mailed to all adjacent property owners of the property being considered for a Planned Development Amendment. At the public hearing, the applicant, proponents, and opponents will be given the opportunity to offer evidence in favor of or against the proposal. After completion of the public hearing, the Planning Board will deliberate and forward its recommendation to the Board of Commissioners for final consideration. Deadline dates and Joint Public Hearing dates can be found on the Town of Zebulon's website.

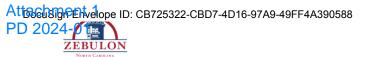
PART 1. DESCRIPTI	ON OF REQUEST/PR	ROP	ERTY		
Street Address of the Property:				Acreage:	
Parcel Identification Number (NC PIN):			Deed Book:	Deed Page(s):	
Existing Zoning of the Property:			Proposed Zoning of the Property:	<u> </u>	
Existing Use of the Property:			Proposed Use of the Property:		
Reason for rezoning to a Planned Unit Deve	elopment:				
PART 2. APPLICAN	I/AGENT INFORMA	TIO			
Name of Applicant/Agent:					
Street Address of Applicant/Agent:					
City:			State:	Zip Code:	
Email of Applicant/Agent:			Telephone Number of Applicant/Agent: Fax Number of Applicant/Agent:		ant/Agent:
Are you the owner of the property? Are you the owner's agent? Image: Property of the property? Image: Property of the property? Image: Property of the property? Image: Property of the property? Image: Property of the property? Image: Property of the property? Image: Property of the property? Image: Property of the property? Image: Property of the pro		No	Note: If you are not the owner of the property, you <u>must</u> obtain the Owner's consent and signature giving you permission to submit this application.		
PART 3 PROPERTV	OWNER INFORMA	TIO	N		
Name of Property Owner:					
Street Address of Property Owner:					
City:		State:		Zip Code:	
Email of Property Owner: Telep		Teleph	phone Number of Property Owner: Fax Number of Property Owner:		ty Owner:
I hereby state that the facts related in this application and any documents submitted herewith are complete, true, correct, and accurate to the best of my knowledge.					
Signature of Applicant:	×		Print Name:		Date:
Andrew Suriano			Andrew Suriano		10/31/2022
Signature of Owner:			Print Name:		Date:

Attachment 1 PD 2024-01

> PIN 2704492511 751 S Wakefield St DB 3452 PG 715 Narron, Harold Corbett, C Fred 3941 Zebulon Rd Zebulon, NC 27597 Email: Phone:

PIN 2705512202 700 S Arendell Ave DB 8545 PG 1076 Temple, Joseph Wood Sr Hughes, Harrison Alexander PO Box 548 Zebulon, NC 27597-0548 Email: Phone:

PIN 2705413075 O S Wakefield St DB 8099 PG 2738 Watson Family II LLC 6220 Forestville Rd Raleigh, NC 27604 Email: Phone:


LEGISLATIVE CONSIDERATIONS – PLANNED DEVELOPMENT

The applicant shall propose site-specific standards and conditions that take into account the following considerations, which are considerations that are relevant to the legislative determination of whether or not the proposed planned development is in the public interest. Therese considerations do not exclude the legislative consideration of any other factor that is relevant to the public interest. Failure to adequately address the findings below may result in denial of the application. Please provide responses to the following standards as outlined in Section 2.2.13 of the Unified Development Ordinance.

1	Please provide details on how the proposed Planned Development advances the public health, safety, or welfare
1.	rease provide details on now the proposed r familed Development advances the public health, safety, of wenare
2.	Please provide details on how the proposed Planned Development is appropriate for its proposed location, and is consistent with
۷.	the purposes, goals, objectives, and policies of the Town's adopted policy guidance.
	the purposes, goals, objectives, and poncies of the rown's adopted poncy guidance.
3.	Please provide details on how the proposed Planned Development is reasonable and in the public interest.
5.	rease provide details on now the proposed r familed Development is reasonable and in the public interest.
4.	Please provide details on how the proposed Planned Unit Development provides for innovative land planning and site design
4.	concepts that support a high quality of life and achieve a high quality of development, environmental sensitivity, energy
	efficiency, and other Town goals and objectives.
	emelency, and other rown gouls and objectives.
5	Please provide details on how the proposed planned unit development provides improved means of access, open space, and
5.	
	design amenities;

6.	Please provide details on how the proposed Planned Unit Development provides a well-integrated mix of residential and nonresidential land uses in the same development, including a mix of housing types, lot sizes, and densities;
7.	Please provide details on how the proposed Planned Unit Development creates a system of incentives for redevelopment and
	infill in order to revitalize established areas;
8.	Please provide details on how the proposed Planned Unit Development promotes a vibrant public realm by placing increased emphasis on active ground floor uses, pedestrian-oriented building façade design, intensive use of sidewalks, and establishment of public gathering areas;
9.	Please provide details on how the proposed Planned Unit Development provides for efficient use of land resulting in smaller networks of utilities and streets and thereby lowering development and housing costs; and
10.	Please provide details on how the proposed Planned Unit Development provides quality design and environmentally sensitive
	development that respects surrounding established land use character and respects and takes advantage of a site's natural and man-made features, such as trees, estuaries, shorelines, special flood hazard area, and historic features.
11.	Other factors as the Board of Commissioners may determine to be relevant.

OWNER'S CONSENT FORM

Name of Project:

Zebulon South

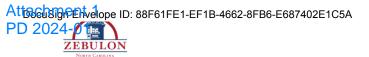
Submittal Date:

11/01/2022

OWNER'S AUTHORIZATION

I hereby give CONSENT to Andrew Suriano, Deacon Development (type, stamp or print clearly full name of agent) to act on my behalf, to submit or have submitted this application and all required material and documents, and to attend and represent me at all meetings and public hearings pertaining to the application(s) indicated above. Furthermore, I hereby give consent to the party designated above to agree to all terms and conditions which may arise as part of the approval of this application.

I hereby certify I have full knowledge the property I have an ownership interest in is the subject of this application. I acknowledge and agree that, pursuant to Section 2.2.13. of the Town of Zebulon Unified Development Ordinance, that lands subject to a Planned Development shall be subject to all the standards, conditions, and plans approved as part of that application. These standards, plans, and approved conditions are perpetually binding on the land as an amendment to this Ordinance and the Official Zoning Map, and may only be changed in accordance with the procedures established in this Ordinance. Development located outside the Town of Zebulon's corporate limits shall comply with all Town policies related to annexation and the extension of utilities. I understand that all other applicable standards and regulations of the UDO will remain applicable to the subject lands unless specifically listed as conditions or deviations as part of this request. I understand that any false, inaccurate or incomplete information provided by me or my agent will result in the denial, revocation or administrative withdrawal of this application. I further consent to the Town of Zebulon to publish, copy or reproduce any copyrighted document submitted as a part of this application for any third party. I further agree to all terms and conditions, which may be imposed as part of the approval of this application.


goly water	Johnny Watson	10/28/2022 11:22 AM PDT
Signature of Owner	Print Name	Date

CERTIFICATION OF PROPERTY OWNER

I hereby certify the statements or information made in any paper or plans submitted herewith are true and correct to the best of my knowledge. I understand this application, related material and all attachments become official records of the Planning Department of the Town of Zebulon, North Carolina, and will not be returned.

DocuSigned by:	Johnny Watson	10/28/2022 11:22 AM PDT
Signature of Owner	Print Name	Date

*Owner of record as shown by the Wake County Revenue Department (<u>www.wakegov.com</u>). An option to purchase does not constitute ownership. If ownership has been recently transferred, a copy of the deed must accompany this form.

OWNER'S CONSENT FORM

Name of Project:

Zebulon South

Submittal Date:

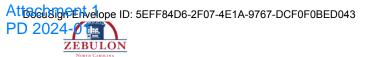
11/01/2022

Temple

OWNER'S AUTHORIZATION

I hereby give CONSENT to Andrew Suriano, Deacon Development (type, stamp or print clearly full name of agent) to act on my behalf, to submit or have submitted this application and all required material and documents, and to attend and represent me at all meetings and public hearings pertaining to the application(s) indicated above. Furthermore, I hereby give consent to the party designated above to agree to all terms and conditions which may arise as part of the approval of this application.

I hereby certify I have full knowledge the property I have an ownership interest in is the subject of this application. I acknowledge and agree that, pursuant to Section 2.2.13. of the Town of Zebulon Unified Development Ordinance, that lands subject to a Planned Development shall be subject to all the standards, conditions, and plans approved as part of that application. These standards, plans, and approved conditions are perpetually binding on the land as an amendment to this Ordinance and the Official Zoning Map, and may only be changed in accordance with the procedures established in this Ordinance. Development located outside the Town of Zebulon's corporate limits shall comply with all Town policies related to annexation and the extension of utilities. I understand that all other applicable standards and regulations of the UDO will remain applicable to the subject lands unless specifically listed as conditions or deviations as part of this request. I understand that any false, inaccurate or incomplete information provided by me or my agent will result in the denial, revocation or administrative withdrawal of this application. I further consent to the Town of Zebulon to publish, copy or reproduce any copyrighted document submitted as a part of this application for any third party. I further agree to all terms and conditions, which may be imposed as part of the approval of this application.


Docusigned by: Joseph W timple, Jr.	Joseph W Temple, Jr.	10/31/2022 8:20 AM PDT
DocuSigned by:	Holly T Hughes Harriso	n Alexand@r⁄29u/g1023 7:28 AM CDT
Holly Thylus Hamson Illy ander tuylus Signature of Owner-DODTRAEGEE4487_	Print Name	Date 10/31/2022 10:26 AM CDT

CERTIFICATION OF PROPERTY OWNER

I hereby certify the statements or information made in any paper or plans submitted herewith are true and correct to the best of my knowledge. I understand this application, related material and all attachments become official records of the Planning Department of the Town of Zebulon. North Carolina, and will not be returned.

tarison llevander trugus_	Print Name	<i>Date</i> 10/31/2022 10:26 AM CDT
DocuSigned by:	Holly T Hughes	Harrison Alexande1042942022 7:28 AM CDT
Joseph W Temple, Jr.	Joseph w Tempre,	JF. 10/31/2022 0.20 AM PDT

*Owner of record as shown by the Wake County Revenue Department (<u>www.wakegov.com</u>). An option to purchase does not constitute ownership. If ownership has been recently transferred, a copy of the deed must accompany this form.

OWNER'S CONSENT FORM

Name of Project:

Zebulon South

Submittal Date:

11/01/2022

Narron

OWNER'S AUTHORIZATION

I hereby give CONSENT to Andrew Suriano, Deacon Development (type, stamp or print clearly full name of agent) to act on my behalf, to submit or have submitted this application and all required material and documents, and to attend and represent me at all meetings and public hearings pertaining to the application(s) indicated above. Furthermore, I hereby give consent to the party designated above to agree to all terms and conditions which may arise as part of the approval of this application.

I hereby certify I have full knowledge the property I have an ownership interest in is the subject of this application. I acknowledge and agree that, pursuant to Section 2.2.13. of the Town of Zebulon Unified Development Ordinance, that lands subject to a Planned Development shall be subject to all the standards, conditions, and plans approved as part of that application. These standards, plans, and approved conditions are perpetually binding on the land as an amendment to this Ordinance and the Official Zoning Map, and may only be changed in accordance with the procedures established in this Ordinance. Development located outside the Town of Zebulon's corporate limits shall comply with all Town policies related to annexation and the extension of utilities. I understand that all other applicable standards and regulations of the UDO will remain applicable to the subject lands unless specifically listed as conditions or deviations as part of this request. I understand that any false, inaccurate or incomplete information provided by me or my agent will result in the denial, revocation or administrative withdrawal of this application. I further consent to the Town of Zebulon to publish, copy or reproduce any copyrighted document submitted as a part of this application for any third party. I further agree to all terms and conditions, which may be imposed as part of the approval of this application.

Charles te. Corbett	Charles K. Corbett	10/28/2022 10:57 AM PDT
SignaturesofiÖwner	Print Name	Date

CERTIFICATION OF PROPERTY OWNER

I hereby certify the statements or information made in any paper or plans submitted herewith are true and correct to the best of my knowledge. I understand this application, related material and all attachments become official records of the Planning Department of the Town of Zebulon, North Carolina, and will not be returned.

Charles te. Corbett	Charles K. Corbett	10/28/2022 10:57 AM PDT
Signature of Owner	Print Name	Date

*Owner of record as shown by the Wake County Revenue Department (<u>www.wakegov.com</u>). An option to purchase does not constitute ownership. If ownership has been recently transferred, a copy of the deed must accompany this form.

CONCEPT PLAN REQUIREMENTS

Every applicant requesting Planned Development approval shall submit 8 copies and 1 pdf (email or USB Drive) of a concept plan drawing with the application for a Planned Development. The concept plan shall contain sufficient information to adequately determine the type of development being proposed. The concept plan drawing shall include, at a minimum, the following features unless otherwise specified by the Planning Department:

CHECK IF SUBMITTED

ITEM

- 1. Plot plan showing all existing and planned structures, building setback lines, perimeter boundaries, and easements.
- 2. Elevation drawings of all buildings indicating the proposed exterior finish materials.
- 3. Landscaping plan, lighting, fencing, screening, and walls, indicating all heights and locations.
- 4. Location of all ingress and egress.
- 5. Off-street parking and loading facilities, with calculations showing how the quantities were obtained.
- 6. All pedestrian walks and open areas for use by residents, tenants, or the public.
- 7. Proposed land uses indicating areas in square feet.
- 8. The location and types of all signs, including lighting and heights, with elevation drawings.
- 9. Existing and/or proposed street names.
- 10. Proposed potable or reuse water, wastewater connections, and storm sewer line; proposed grading and drainage patterns; proposed water and sewer allocations.
- 11. Such additional items and conditions, including design standards as the Planning Board and Board of Commissioners deems necessary.
- 12. Trip generation data and TIA

✓ ✓ ✓ ✓ ✓ ✓ ✓ N/A ✓ ✓ ✓

PROPOSED USES

An application has been duly filed requesting that the property described in this application be rezoned from to ________. It is understood and acknowledged that if the property is rezoned as requested, the property described in this request will be perpetually bound to the use(s) authorized and subject to such conditions as imposed, unless subsequently changed or amended as provided for in the Unified Development Ordinance. It is further understood and acknowledged that final plans for any specific development to be made pursuant to any such Planned Development shall be submitted for site or subdivision plan approval. Use additional pages as needed.

The Rezoned Lands may be used for, and only for, the uses listed immediately below. The permitted uses are subject to the limitations and regulations stated in the Use Table and any additional limitations or regulations stated below. For convenience, some relevant sections of the Unified Development Ordinance may be referenced; such references do not imply that other sections of the Unified Development Ordinance do not apply.

1.	25.
2.	26.
3.	27.
4.	28.
5.	29.
6.	30.
7.	31.
8.	32.
9.	33.
10.	34.
11.	35.
12.	36.
13.	37.
14.	38.
15.	39.
16	40.
17.	41.
18.	42.
19.	43.
20.	44.
21.	45.
22.	46.
23.	47.
24.	48.

PROPOSED DEVELOPMENT CONDITIONS

The applicant hereby requests that the Zebulon Board of Commissioners, pursuant to Section 3.3.5 of the Unified Development Ordinance, approve the Proposed Planned Development with above listed use(s), subject to the following condition(s), requested deviations, and proposed alternative means of compliance. (Attach additional pages as needed)

ADJACENT OWNERS

Provide a certified list of property owners subject to this application and all properties owners within 150-feet feet of the subject property, and any HOA Contacts for developments which fall within 300-feet of the subject property.

Parcel Address	Parcel ID Number	Owner's Name

HOA CONTACTS

Development Name	Contact Person	Address

ADJACENT OWNERS

Provide a certified list of property owners subject to this application and all properties owners within 150-feet feet of the subject property, and any HOA Contacts for developments which fall within 300-feet of the subject property.

Parcel Address	Parcel ID Number	Owner's Name

HOA CONTACTS

Development Name	Contact Person	Address

Beginning at an existing iron pipe along the eastern right of way of Pulley Gordon Road, having a North Carolina State Plane Coordinate (NAD 1983-2011) value of North 749044.53 feet, East 2203638.58 feet. Thence S89° 06' 44"W, 43.52' to a point in the centerline of Pulley Gordon Road; thence with the centerline of Pulley Gordon Road N31° 40' 13"W, 17.82' to a point; thence with a curve to the right having a radius of 745.63', a length of 258.84', and a chord bearing and distance of N21° 43' 32"W, 257.54' to a point; thence N11° 46' 51"W, 141.30' to a point in the centerline of South Wakefield Street; thence with the centerline of South Wakefield Street with a curve to the left having a radius of 898.66', a length of 224.11', and a chord bearing and distance of N1° 14' 44"E, 223.53' to a point; thence N5° 53' 55"W, 188.25' to a point; thence with a curve to the right having a radius of 2330.34', a length of 135.93', and a chord bearing and distance of N4° 13' 39"W, 135.91' to a point; thence N2° 33' 23"W, 47.94' to a point; thence with a curve to the right having a radius of 1695.94', a length of 104.97', and a chord bearing and distance of N0° 47' 00"W, 104.96' to a point; thence with a curve to the left having a radius of 4451.25', a length of 133.35', and a chord bearing and distance of N0° 07' 54"E, 133.35' to a point; thence N0° 43' 36"W, 120.66' to a point; thence leaving the centerline of the aforesaid road S88° 41' 25"E, 331.00' to an existing iron pipe; thence N0° 50' 44"W, 407.57' to an existing iron pipe; thence N89° 19' 57"W, 330.04' to a point in the centerline of South Wakefield Street; thence with the centerline of South Wakefield Street N0° 43' 36"W, 59.99' to a point; thence leaving the aforesaid centerline S89° 19' 57"E, 330.02' to an existing iron pipe; thence N0° 44' 29"W, 389.63' to an existing iron pipe; thence N89° 53' 37"W, 129.83' to an existing iron pipe; thence N3° 52' 53"E, 233.74' to an existing iron pipe; thence S89° 15' 00"E, 1384.54' to an existing iron pipe; thence N1° 20' 40"E, 480.67' to an existing iron pipe; thence N78° 36' 17"E, 124.17' to an existing iron pipe; thence continuing N78° 36' 17"E, 30.59' to a point in the centerline of South Arendell Avenue; thence with the centerline of South Arendell Avenue S28° 50' 24"E, 761.08' to a point; thence S28° 50' 24"E, 425.02' to a point; thence S29° 13' 43"E, 667.05' to a point; thence leaving the centerline of the aforesaid road N88° 26' 36"W, 584.64' to an existing iron pipe; thence S89° 11' 28"W, 68.13' to a 5/8" capped iron rod set; thence S2° 12' 27"E, 1759.55' to a 5/8" capped iron rod set; thence S88° 17' 33"W, 346.50' to an existing iron pipe; thence N3° 17' 33"E, 478.27' to an existing iron pipe; thence S89° 06' 44"W, 1540.50' to the Beginning, containing 118.61 acres more, or less.

SAVE AND EXCEPT the cemetery that exist on the above-described property, described as Beginning at the southeast corner of the cemetery, having a North Carolina State Plane Coordinate (NAD 1983-2011) value as North 751140.59', East 2205340.06'. Thence N90° 00' 00"W, 30.56' to a point; thence N0° 00' 00"E, 32.27' to a point; thence N90° 00' 00"E, 30.56' to a point; thence S0° 00' 00"E, 32.27' to the Beginning, containing 986 square feet more, or less.

THIS DESCRIPTION IS PROVIDED WITHOUT THE BENEFIT OF A TITLE COMMIMENT

5410 Trinity Road Suite 102 Raleigh, NC 27607

P 919.866.4951 F 919.859.5663 www.timmons.com

September 22, 2022

Notice of Proposed Zoning Change

Wake County PINs 2705-41-3075, 2704-49-2511, & 2705-51-2202

Dear Property Owner:

On behalf of the applicant and property owners, Timmons Group would like to invite you to attend a neighborhood information meeting concerning the following proposal. Timmons Group will be submitting a request to rezone the property located between the intersections of S Wakefield Street and Morphus Bridge Road and the intersection at S Arendell Ave and Perry Curtis Road. The parcels under consideration are shown on the attached map.

The existing zoning is Zebulon Residential Neighborhood District (R4) & Residential Suburban District (R2), and the proposed zoning classification requested is Zebulon Planned Development District (PD). The proposed rezoning will not change the existing zoning status of surrounding properties. The proposed development will consist of a variety of lot sizes, including attached and detached single family.

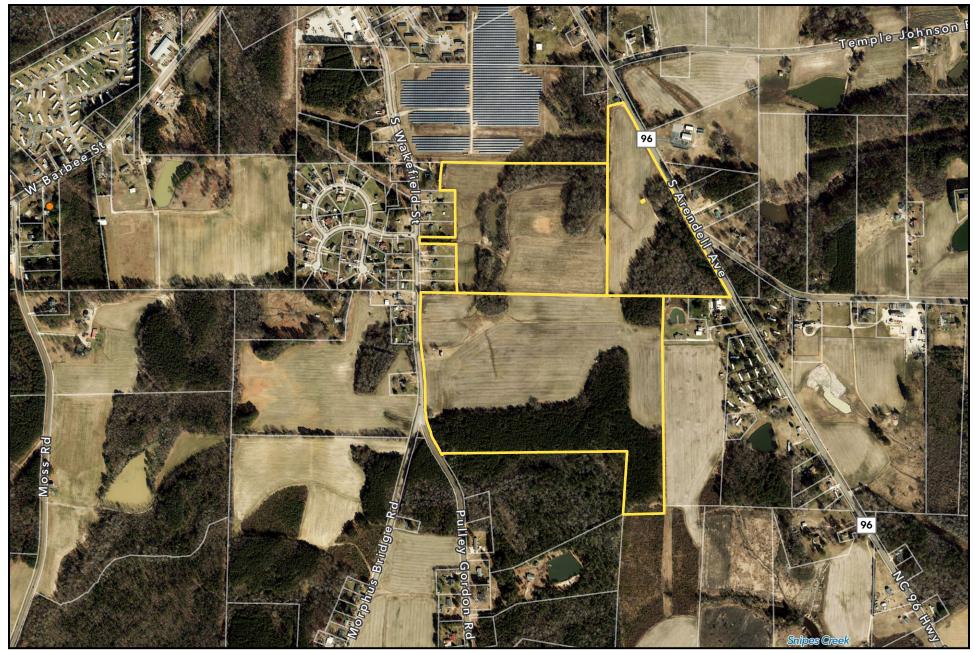
Per Town of Zebulon ordinance requirements, we are notifying you of this meeting because your property is located within the written notification area for public hearings. While this meeting is not a public hearing, it is an opportunity for you to meet with the owners and/or applicants to hear about their intention to rezone the land. You are encouraged to ask questions and express concerns so that we may help you to understand the proposed project more fully. There will not be an in-person meeting.

The meeting participation options are as follows:

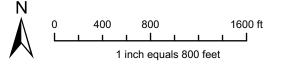
- 1. An online virtual meeting to be held on October 05, 2022 at 6:00 pm.
 - a) Virtual meeting link: https://timmons.zoom.us/j/99067768952?pwd=MGU0WGRRampkMWgvOGhOYV grUEgzQT09
 - b) Password: **942736**
 - c) Instructions: You may join from any browser. Upon joining, you be placed in the waiting room until the meeting host allows entrance. At the start of the meeting, we will take some time to gather the required information (Name, Address, Email and Phone number) though the chat feature on screen.

- 2. A toll-free conference call for audio only access to the virtual meeting held on October 05, 2022 at 6:00 pm.
 - a) Call about five (5) minutes prior to the aforementioned date and time:
 - Phone Number: +1 646 558 8656
 - b) You may be asked to dial the following information:
 - Meeting ID: 990 6776 8952
 - Password: **942736**

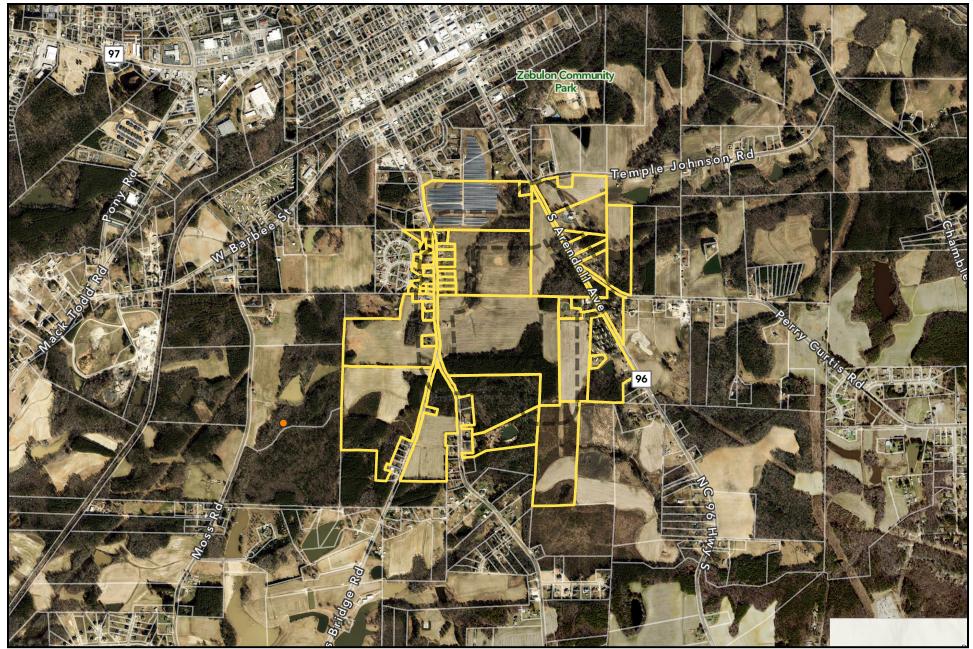
If you have any questions about this neighborhood information meeting, or if you are unable to attend and would like to leave comments for our consideration, please feel free to contact me at 919-866-4509 or <u>beth.blackmon@timmons.com</u>.

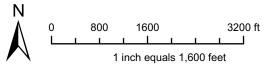

Thank you for your interest.

Sincerely,


Beth Blackpm

Beth Blackmon, PE Sr. Project Manager


Attachment 1 PD 2024-01


Zebulon South Neighborhood Meeting

<u>Disclaimer</u> iMaps makes every effort to produce and publish the most current and accurate information possible. However, the maps are produced for information purposes, and are **NOT** surveys. No warranties, expressed or implied ,are provided for the data therein, its use,or its interpretation.

Zebulon South Mailing List

Disclaimer iMaps makes every effort to produce and publish the most current and accurate information possible. However, the maps are produced for information purposes, and are **NOT** surveys. No warranties, expressed or implied , are provided for the data therein, its use, or its interpretation.

Attachment 1 PD 2024-01

PIN_NUM	OWNER	ADDR1	ADDR2
—	84644 AGARWAL ASSOCIATES LLC	2000 KILLEARN MILL CT	CARY NC 27513-4293
27053	03716 BARRERA, EMILIO VILLEGAS AI	RMENTA, BE301 SIR DAVID DR	ZEBULON NC 27597-6
27053	05594 BLOUNT, BARBARA ANN	707 S WAKEFIELD ST	ZEBULON NC 27597-2
27053	06724 BRADSHAW, BETTIE SUE	697 S WAKEFIELD ST	ZEBULON NC 27597-2
27053	02989 C W S SYSTEMS INC	500 W MONROE ST STE 360	0 CHICAGO IL 60661-37
27043	92692 CARRILLO, JOSE SANTOS CARR	ILLO, MARY 812 S WAKEFIELD ST	ZEBULON NC 27597-2
27055	18689 CHURCH OF GOD EASTERN NC	STATE OFFIPO BOX 100	KENLY NC 27542-010
27053	06922 CONYERS, BEVERLY A CONYER	S, CASSAND 631 S WAKEFIELD ST	ZEBULON NC 27597-2
27055	20074 CREECH, ROBERT E CREECH, KA	ATHEY P 13713 POSSUM TRACK RD	RALEIGH NC 27614-9
27053	11337 DAVID BULLOCK CONSTRUCTIO	ON INC 2805 AUBURN KNIGHTDALE	RD RALEIGH NC 27610-9
27054	29117 DEAN, ATWELL STUART	604 S ARENDELL AVE	ZEBULON NC 27597-8
27056	01533 ESTRADA, JILBER VELAZQUEZ	106 WOODGATE DR	GARNER NC 27529-2
27056	01920 FOX, JEFFERY M FOX, PENNY N	1 753 S ARENDELL AVE	ZEBULON NC 27597-8
27053	01515 FUENTES, BAYRON JOSUE LOP	EZ HILARIO, 709 CHANCE CIR	ZEBULON NC 27597-
27053	16027 GARCIA, LAURA A REYES, GERA	ARDO REYES 621 S WAKEFIELD ST	ZEBULON NC 27597-2
27053	02523 GILL, W E	PO BOX 474	ZEBULON NC 27597-0
27053	03532 GILL, W E GILL, GENEVIEVE M	PO BOX 474	ZEBULON NC 27597-0
27053	02424 GILL, WILLIAM E GILL, GENEVI	EVE M PO BOX 474	ZEBULON NC 27597-0
27053	03434 GILL, WILLIAM E GILL, GENEVI	EVE M PO BOX 474	ZEBULON NC 27597-0
27053	01927 HANNAH, KRYSTAL	304 SIR DAVID DR	ZEBULON NC 27597-
27053	02674 HERNANDEZ, LYDIA FABIOLA N	ATEO 610 S WAKEFIELD ST	ZEBULON NC 27597-2
27053	02314 HICKS, MELVILLE HOWARD JR	PO BOX 660	ZEBULON NC 27597-0
27056	10110 HILL, TIMOTHY GORDON HILL,	LILLIAN AVI745 S ARENDELL AVE	ZEBULON NC 27597-8
27053	06404 HINTON, MARY E HEIRS HOLDI	ER, MARY A 709 S WAKEFIELD ST	ZEBULON NC 27597-2
27055	18284 HOLLAND, JIMMY LEON HOLLA	AND, HELEN 737 S ARENDELL AVE	ZEBULON NC 27597-8
27046	93410 JAYS ARENDELL PROPERTIES LI	C 2709 BELMONT VIEW LOOP	CARY NC 27519-7725
27055	06134 LONG, RANDALL S	908 S ARENDELL AVE	ZEBULON NC 27597-8
27044	85074 MARTIN, COY BERKLEY SR MAI	RTIN, COY B 2202 NC 561 HWY	LOUISBURG NC 2754
27053	16119 MCCULLERS, JAMIE	611 S WAKEFIELD ST	ZEBULON NC 27597-2
27055	26056 MCNABB, INEZ PITTS HEIRS	1900 LITTLE ELM TRL APT 70	CEDAR PARK TX 7861
27044	92511 NARRON, HAROLD CORBETT, O	CFRED 3941 ZEBULON RD	ZEBULON NC 27597-8
27055	09203 PARKER, LARRY N	900 S ARENDELL AVE	ZEBULON NC 27597-8
27045	97445 PARKER, LARRY N PARKER, TAI	MMY M 900 S ARENDELL AVE	ZEBULON NC 27597-8
27045	74734 PARKER, LARRY N PARKER, TAI	MMY M 900 S ARENDELL AVE	ZEBULON NC 27597-8
		PER, JEAN D 1317 MORPHUS BRIDGE RD	WENDELL NC 27591-
27053	12399 ROSSMAN, MAXINE	108 REGGIE OWENS DR	HARBINGER NC 2794
27053	15336 SANTOS, ALEJANDRO WILIBAL	DO ROSALE: PO BOX 332	WENDELL NC 27591-
27053	03119 SHAW, SHIRLEY D	738 S WAKEFIELD ST	ZEBULON NC 27597-2
27042	97696 SILBER, EVA TRUSTEE EVA SILB	ER LIVING 15117 MELBOURNE RD	RALEIGH NC 27606-1
27053	01759 SPRUILL, JOSEPH PAUL SPRUIL	L, CONNIE S 305 SIR DAVID DR	ZEBULON NC 27597-0
	05694 STANCIL, L J	701 S WAKEFIELD ST	ZEBULON NC 27597-2
27055	13114 TEMPLE, J M	PO BOX 548	ZEBULON NC 27597-0
27056	14179 TEMPLE, JOSEPH WOOD	PO BOX 548	ZEBULON NC 27597-0
	12202 TEMPLE, JOSEPH WOOD SR HU		ZEBULON NC 27597-0
27053	02076 TISDALE, ALICE KIRK DUNN, M	ARY FRANCI748 S WAKEFIELD ST	ZEBULON NC 27597-2
27053	00426 VILLAFRANCA, IRIS	713 CHANCE CIR	ZEBULON NC 27597-0
27055	16356 VILLALPANDO, MIGUEL ANGEL	. 110 LEGEND VALLEY LN UNI	T 13 ZEBULON NC 27597-9
27054	10911 VINSON, MARTHA H	500 PERRY CURTIS RD	ZEBULON NC 27597-8
27054	13075 WATSON FAMILY II LLC	6220 FORESTVILLE RD	RALEIGH NC 27604-8
27055	20074 Current Resident	614 S ARENDELL AVE	ZEBULON NC 27597
27053	03532 Current Resident	720 S WAKEFIELD ST	ZEBULON NC 27597
27053	03434 Current Resident	728 S WAKEFIELD ST	ZEBULON NC 27597
27053	02314 Current Resident	734 S WAKEFIELD ST	ZEBULON NC 27597
27044	85074 Current Resident	1131 PULLEY GORDON RD	ZEBULON NC 27597
27053	12399 Current Resident	600 S WAKEFIELD ST	ZEBULON NC 27597

DDR2 ARY NC 27513-4293 2680100 NC 27597-6801 ZEBULON NC 27597-2567 2680100 NC 27597-2565 HICAGO IL 60661-3779 ZEBULON NC 27597-2568 ENLY NC 27542-0100 ZEBULON NC 27597-2565 RALEIGH NC 27614-9381 ALEIGH NC 27610-9712 2680100 NC 27597-8202 GARNER NC 27529-2738 ZEBULON NC 27597-8205 2680100 NC 27597-6809 ZEBULON NC 27597-2565 2680100 NC 27597-0474 ZEBULON NC 27597-0474 EBULON NC 27597-0474 2680100 NC 27597-0474 ZEBULON NC 27597-6800 2680100 NC 27597-2564 ZEBULON NC 27597-0660 ZEBULON NC 27597-8205 2680100 NC 27597-2567 ZEBULON NC 27597-8205 ARY NC 27519-7725 ZEBULON NC 27597-8208 OUISBURG NC 27549-8469 2680100 NC 27597-2565 EDAR PARK TX 78613-2834 ZEBULON NC 27597-8187 ZEBULON NC 27597-8208 2680100 NC 27597-8208 2680100 NC 27597-8208 WENDELL NC 27591-8377 HARBINGER NC 27941-9704 WENDELL NC 27591-0332 ZEBULON NC 27597-2566 ALEIGH NC 27606-1747 ZEBULON NC 27597-6801 2680100 NC 27597-2567 ZEBULON NC 27597-0548 ZEBULON NC 27597-0548 ZEBULON NC 27597-0548 ZEBULON NC 27597-2566 2680100 NC 27597-6809 ZEBULON NC 27597-9503 EBULON NC 27597-8877 ALEIGH NC 27604-8618 EBULON NC 27597 EBULON NC 27597 EBULON NC 27597 EBULON NC 27597 EBULON NC 27597

Attachment 1 PD 2024-01

2705315336 Current Resident **Current Resident** Current Resident **Current Resident** Current Resident **Current Resident Current Resident Current Resident** Current Resident Current Resident **Current Resident** Current Resident **Current Resident** Current Resident **Current Resident Current Resident** Current Resident Current Resident **Current Resident** Current Resident Current Resident Current Resident Current Resident Current Resident **Current Resident Current Resident Current Resident** Current Resident Current Resident **Current Resident Current Resident Current Resident** Current Resident Current Resident **Current Resident** Current Resident **Current Resident** Current Resident **Current Resident Current Resident Current Resident Current Resident** Current Resident Current Resident **Current Resident Current Resident** Current Resident Current Resident Current Resident **Current Resident Current Resident Current Resident Current Resident** Current Resident **Current Resident Current Resident** 601 S WAKEFIELD ST 100 Bingo Blvd 100 Bingo Blved LT 27 100 Green Grove Ln 100 Green Grove Ln LT 5 100 Legend Valley Ln 100 Legend Valley Ln LT 12 100 Long Park Dr 100 Long Park Dr LOT 1 100 Rocky Road Dr 100 Rocky Road Dr LT 19 100 Royal View Dr 100 Royal View Dr LT 34 1007 S Arendell Ave 1014 S Arendell Ave 1020 S Arendell Ave 1028 S Arendell Ave 105 Rocky Road Dr 105 Rocky Road Dr LT 15 106 Long Park Dr 106 Long Park Dr LT 11 108 Long Park Dr 108 Long Park Dr LT 10 110 Bingo Blvd 110 Bingo Blvd LT 28 110 Green Grove Ln 110 Green Grove Ln LT 6 110 Legend Valley Ln LT 13 110 Long Park Dr 110 Long Park Dr LT 9 110 Rocky Road Dr 111 Rocky Road Dr LT 20 110 Royal View Dr 110 Royal View Dr LT 23 1100 S Arendell Ave 115 Rocky Road Dr 115 Rocky Road Dr LT 16 120 Bingo Blvd 120 Bingo Blvd LT 29 120 Legend Valley Ln 120 Legend Valley Ln LT 14 120 Long Park Dr 120 Long Park Dr LT 8 120 Rocky Road Dr 120 Rocky Road Dr LT 21 120 Royal View Dr 120 Royal View Dr LT 24 125 Legend Valley Ln 125 Legend Valley Ln LT 33 125 Rocky Road Dr 125 Rocky Road Dr LT 17 130 Bingo Blvd 130 Bingo Blvd LT 30 130 Long Park Dr 130 Long Park Dr LT 7 130 Rocky Road Dr

ZEBULON NC 27597 ZEBULON NC 27597 ZEBULON NC 27597 **ZEBULON NC 27597 ZEBULON NC 27597 ZEBULON NC 27597 ZEBULON NC 27597** ZEBULON NC 27597 **ZEBULON NC 27597 ZEBULON NC 27597** ZEBULON NC 27597 **ZEBULON NC 27597 ZEBULON NC 27597** ZEBULON NC 27597 **ZEBULON NC 27597 ZEBULON NC 27597**

Current Resident 130 Rocky Road Dr LT 22
130 Royal View Dr
130 Royal View Dr LT 25
135 Rocky Road Dr
135 Rocky Road Dr LT 18
140 Bingo Blvd
140 Bingo Blvd LT 31
140 Royal View Dr
150 Bingo Blvd LT 32
805 S Arendell Ave
805 S Arendell Ave

 ZEBULON NC 27597

 ZEBULON NC 27597

NORTH CAROLINA WAKE COUNTY

AFFIDAVIT OF MAILING

I, Elizabeth Ange, Project Engineer III with Timmons Group, being first duly sworn, deposes and says as follows:

1. That I am a project engineer regarding a rezoning petition to be filed with the Town of Zebulon (the "Town"), for a project known as "Zebulon South" (the "Project").

2. In accordance with the Town's Unified Development Ordinance (the "UDO"), a Neighborhood Meeting for the Project was scheduled for and did occur on October 5, 2022.

3. In accordance with the Town's UDO, a notice of the Neighborhood Meeting was mailed to those individuals and property addresses identified on the exhibit attached hereto. To the best of my knowledge, the individuals identified on the attached exhibit are all of the landowners and occupants within 300 linear feet of the outer perimeter of the site where the Project is proposed.

4. The notice of the Neighborhood Meeting was mailed no less than ten days prior to the date of the Neighborhood Meeting.

This the <u>22</u> day of <u>September</u>, 2022. beth Ange

Project Engineer III Timmons Group 5410 Trinity Road, Suite 102 Raleigh, NC 27607

NORTH CAROLINA COUNTY OF Wake

BEFORE ME, the undersigned authority, this day personally appeared Elizabeth Ange, who, being first duly sworn, deposes and says that she has read the foregoing Affidavit of Mailing and knows the facts contained therein to be true and correct to the best of her knowledge and belief.

SWORN TO AND SUBSCRIBED before me this	Oct. 12,	2022.	
Horen & Load	, Notary Public	9	
RIGIOI		(SEA)	L)
My commission expires: $8/8/26$	-	Karen L. I NOTARY PU Wake Con North Carr My Commission Expires	JBLIC unty plina
		202122500	189

TIMMONS GROUP

Meeting Sign-in Sheet Project: Zebulon South Meeting Date: 5-Oct-22 Faciliator: **Timmons Group** Place/ Room: Zoom Sent presentation Name Address Phone Email to 5410 Trinity Rd, Suite 102, Raleigh NC 27607 **Beth Blackmon** 919-866-4509 beth.blackmon@timmons.com 5410 Trinity Rd, Suite 102, Raleigh NC 27607 Elizabeth Ange 984-255-2366 elizabeth.ange@timmons.com PO Box 1478, Fuquay-Varina, NC 27526 919-552-6600 John Adcock john@adcocklawfirm.com PO Box 1080, Wake Forest, NC 27588 Andrew Suriano 919-608-3542 andrew@deaconcompanies.com 5410 Trinity Rd, Suite 102, Raleigh NC Jeff Hochanadel 27607 919-866-4511 jeff.hochanadel@timmons.com 5410 Trinity Rd, Suite 102, Raleigh NC Hunter Mullins 27607 919-532-3272 hunter.mullins@timmons.com 1900 Little Elm Trail Apt. 70, Cedar Park Тх Х Lynn Mcnabb mcnabbvolunteer1@aol.com PO Box 251, Pittsfield, ID 919-868-7592 Tracie Hicks tracie.hicks@whitetailproperties.com Х Jane Mccullers 611 S Wakefield St, Zebulon NC 27597 jamie.mccullers@yahoo.com Temple PO Box 548. Zebulon NC 27597 Chuck, Fred Corbett Х Apurva JAYSArendellProperties@gmail.com Х Jack Yen jackyen@gmail.com

YOUR VISION ACHIEVED THROUGH OURS.

-	ssion From the Neighborhoo		
Project:	Zebulon South	Meeting Date:	Wednesday, October 5, 2022
Applicant:	Timmons Group - Beth Blackmon	Place/ Room:	Zoom
Contact Information:	beth.blackmon@timmons.com 919-866-4509	Time:	6:00 PM
Summary of questions/ co	mments and responses from the neighbor	hood meeting:	
Questions/ Concern #1:	Is there a chance that I might have to mo	ve?	
Applicant Response:	No ma'am, your property is not on site and we are not allowed to put anything on your property. Additionally, there is environmental, streams and wetlands, behind your home and will likely not be putting anything except recreation area behind you.		
Questions/ Concern #2:	Are you going to build the thoroughfare r	bad? That will be g	good for the town!
Applicant Response:	Yes, because it shows on the transportation plan, it is required to be built. It is a 2 lane divided road.		
Questions/ Concern #3:	What's the plan for this site? Will there be	e a new developm	ent?
Applicant Response:	There are 3 properties and the developed rezone to PD, Planned Development. Th now, it is proposed to be a residential de townhomes. The proposed density is 2.6	e PD allows for an velopment with sin	initiative design. As of right gle family housing and

ZEBULON SOUTH NEIGHBORHOOD MEETING

TIMMONS®ROUP

October 5, 2022

INTRODUCTIONS PURPOSE OF MEETING THE DEVELOPMENT PROCESS PROJECT INFORMATION LOCATION

AGENDA

CURRENT ZONING

FUTURE LAND USE MAP

COMPREHENSIVE TRANSPORTATION PLAN

EXISTING CONDITIONS

PD REZONING TIMELINE

Q & A

INTRODUCTIONS

TIMMONS GROUP:

Beth Blackmon, PE

Sr. Project Manager

9 | 9 - 8 6 6 - 4 5 0 9

beth.blackmon@timmons.com

ADCOCK LAW FIRM:

John Adcock, Esq.

9 | 9 - 5 5 2 - 6 6 0 0

john@adcocklawfirm.com

Attendees

PURPOSE

WHO RECEIVED NOTIFICATION?

Property owners within 300 feet of the proposal

WHY ARE WE HOLDING THIS MEETING?

Unified Development Ordinance requirement to meet with adjacent property owners

To have an opportunity before submittal to receive feedback

To improve the proposal with that feedback

HOW WILL WE DO THAT?

Following tonight's meeting, the applicant & Town staff will discuss your comments Look for ways to improve the proposal using your comments

THE DEVELOPMENT PROCESS

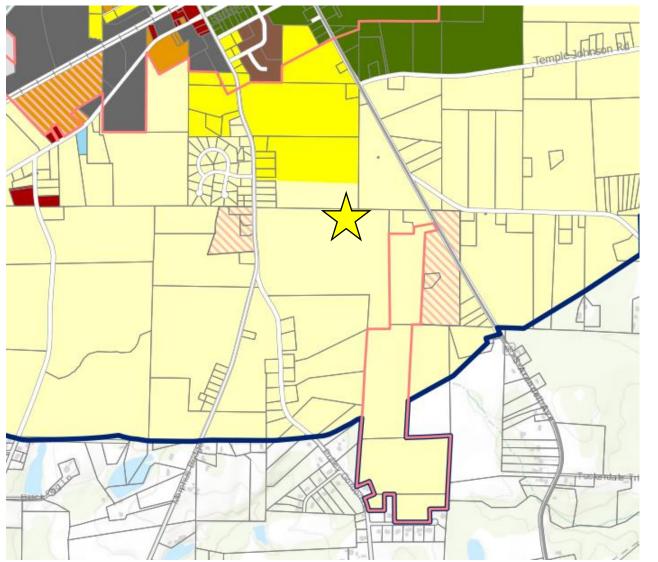
PLANNED DEVELOPMENT REZONING (PD)

Master plan rezoning with concept plan and conditions to guide future development

PRELIMINARY SUBDIVISION PLAT/CONSTRUCTION DOCUMENTS

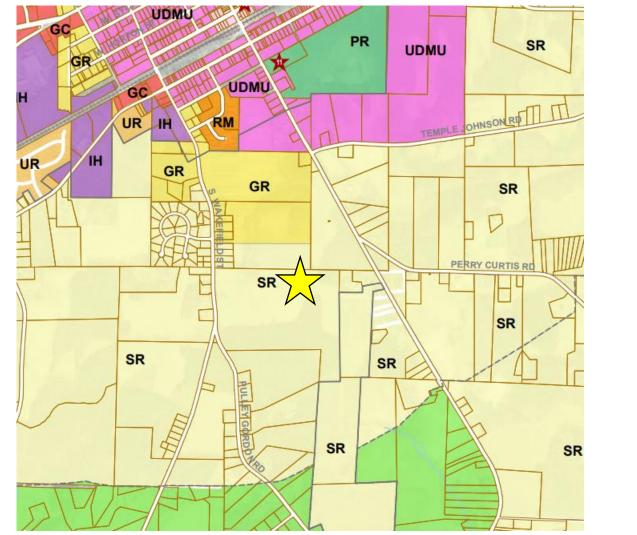
Detailed subdivision plans to establish streets, lot layout and utilities Proposing single family detached homes and attached townhomes Both rear load and front load homes will be proposed Reviewed by staff for conformance with PD master plan rezoning

Detailed plans to be utilized for construction of infrastructure Including erosion control, road improvements, streets, utilities and stormwater


Attachment 1 PD 2024-01

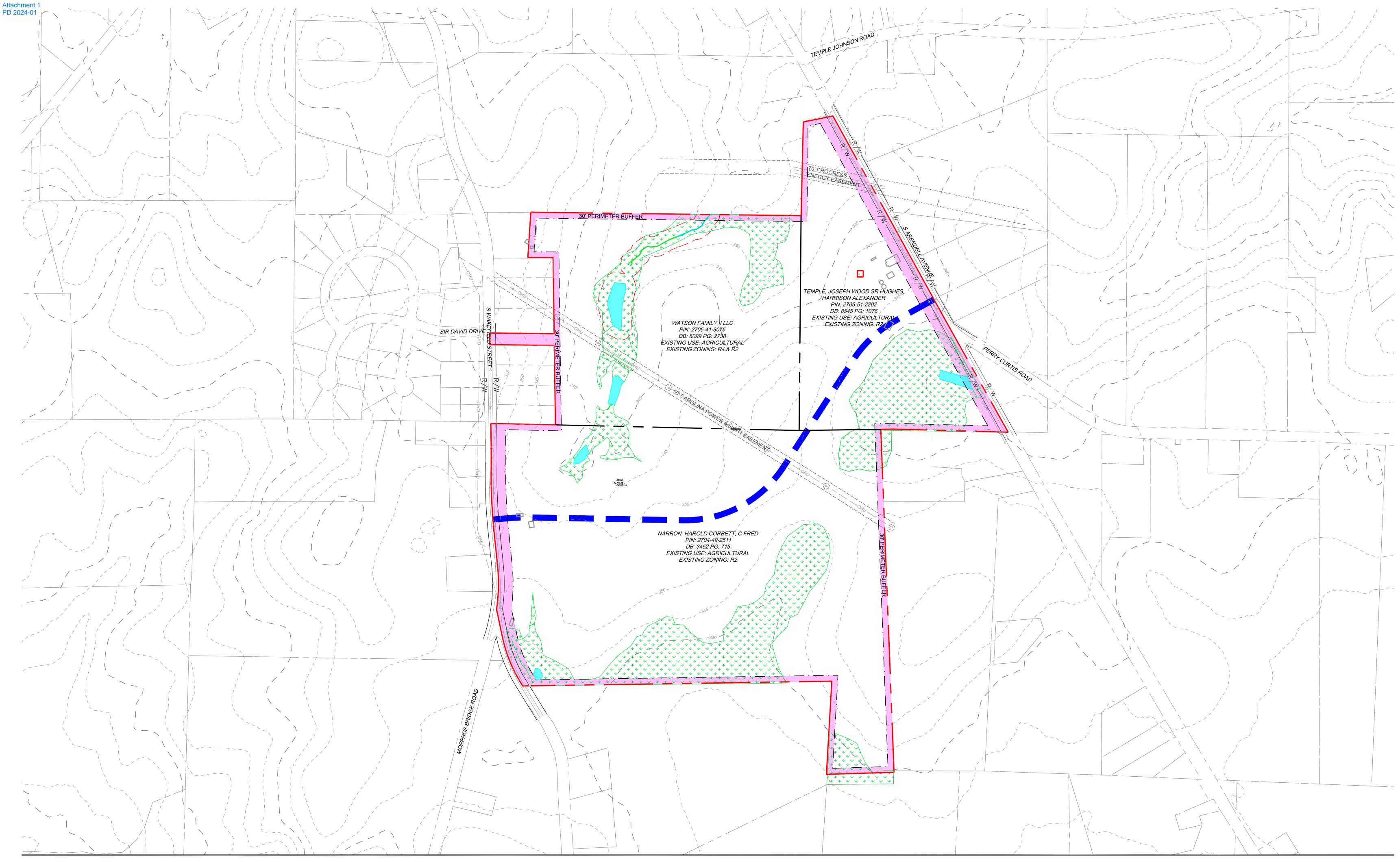
LOCATION

MONS®ROUP

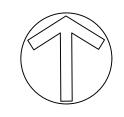

CURRENT ZONING

R2, RESIDENTIAL SUBURBAN R4, RESIDENTIAL NEIGHBORHOOD

FUTURE LAND USE MAP


Suburban Residential (SR) General Residential (GR)

COMPREHENSIVE TRANSPORTATION PLAN



ZEBULON SOUTH

Existing Conditions - October 4, 2022

PD REZONING TIMELINE

NEIGHBORHOOD MEETING DATE:

October 5, 2022

ANTICIPATED APPLICATION SUBMITTAL DATE:

November I, 2022

ANTICIPATED JOINT PUBLIC HEARING MEETING:

January 23, 2023

ANTICIPATED PLANNING BOARD RECOMMENDATION:

January 30, 2023

ANTICIPATED BOARD OF COMMISSIONERS DECISION:

February 6, 2023

Q & A

TIMMONS GROUP:

Beth Blackmon, PE

Sr Project Manager

9 | 9 - 8 6 6 - 4 5 0 9

<u>beth.blackmon@timmons.com</u>

ADCOCK LAW FIRM:

John Adcock, Esq.

9 | 9 - 5 5 2 - 6 6 0 0

john@adcocklawfirm.com

ZEBULON PLANNING DEPARTMENT CONTACT:

Michael Clark

Planning Director

9 | 9 - 8 2 8 - | 8 0 8

mclark@townofzebulon.org

Attachment 1 NS GROUP RALEIGH NC 275 Research Triangle Region 28 SEP 2022 PM 3 L **ROSSMAN, MAXINE 108 REGGIE OWENS DR** HARBINGER NC 27941-9704 Z76 NEE 1 42110210/03/22 TIME EXP RTN TO SEND FORWARD ROSSMAN 600 S W/ Zebulon WAKEFIELD ST N NC 27597-2564 . A 93 93 93 93 82 89 92 8 9 88 8 ΙŇΤ RETURN TO SENDER 27597 > 5093 27941 - 970408

Returned Letter

RALEIGH NC 275 Research Triangle Region 28 SEP 2022 PM 3 L

ROSSMAN, MAXINE 108 REGGIE OWENS DR HARBINGER NC 27941-9704

> 276 NEE 1 42110210/03/22 FORWARD TIME EXP RTN TO SEND G00 5 WAKEFIELD ST ZEBULON NC 27597-2564

. A 9 9 3 B I B I B J B 9 Z B D B B B

Attachment 1 PD 2024-01 NS GROUP

> INT 27597>5003 27941-970408

RETURN TO SENDER

RALEIGHINC 275 **Research Triangle Region** 28 SEP 2022 PM 3 1

Current Resident 110 Royal View Dr LT 23 **ZEBULON NC 27597**

> NIXIE 276 CE 1 0210/08/22 RETURN TO SENDER VACANT TO FORWARD UNABLE

2759×45569 27607>6093 * 8888-92677-28-41

28 SEP 2022 PM 3 1

TEMPLE, JOSEPH WOOD **PO BOX 548** ZEBULON NC 27597-0548

Attachment 1 **DRN SOCGROUP**

> NIXIE 276 NEE 1 2210210/01/22 RETURN TO SENDER NOT DELIVERABLE AS ADDRESSED UNABLE TO FORWARD INT MANUAL FROC REQ * 0880-02599-28-41 28 SEP 2022 PM 3 뢽

275375-054646

TEMPLE, JOSEPH WOOD . HARRISON ALEXANDER PO BOX 548 ZEBULON NC 27597-0548

1: 9400922 802812

FWD 27697 - 6993

ADDRESSED TO FORWARD UNABLE 8C: 27607600327 * 0880-03099-28-41

SENDER

TO

2200210/08/22

276 NCE 1

URN

RE

1

NOT

308920860821988

NIXIE 276 4E 1 0210/05/22 RETURN TO SENDER NG SUCH STREET UNABLE TO FORWARD NSS BC: 27607600327 * 0780-00772-28-41 2788752565709

HINTON, MARY E HEIRS HOLDER, MARY 709 S WAKEFIELD ST ZEBULON NC 27597-2567

0210/08/22 CE 1 276 NIXIE ETURN TO SENDER FURWARD TU UNABLE * 0880-02774-03-43 2753 1759 1^{8 C1} 27 607 6003 27 27607>6003

RALEIGH NC 275

Research Triangle Region 28 SEP 2022 PM 3 L

276 NCE 1

TO SENDER

UNABLE TO FORWARD

RETURN T

11 M m

8C: 27607500327

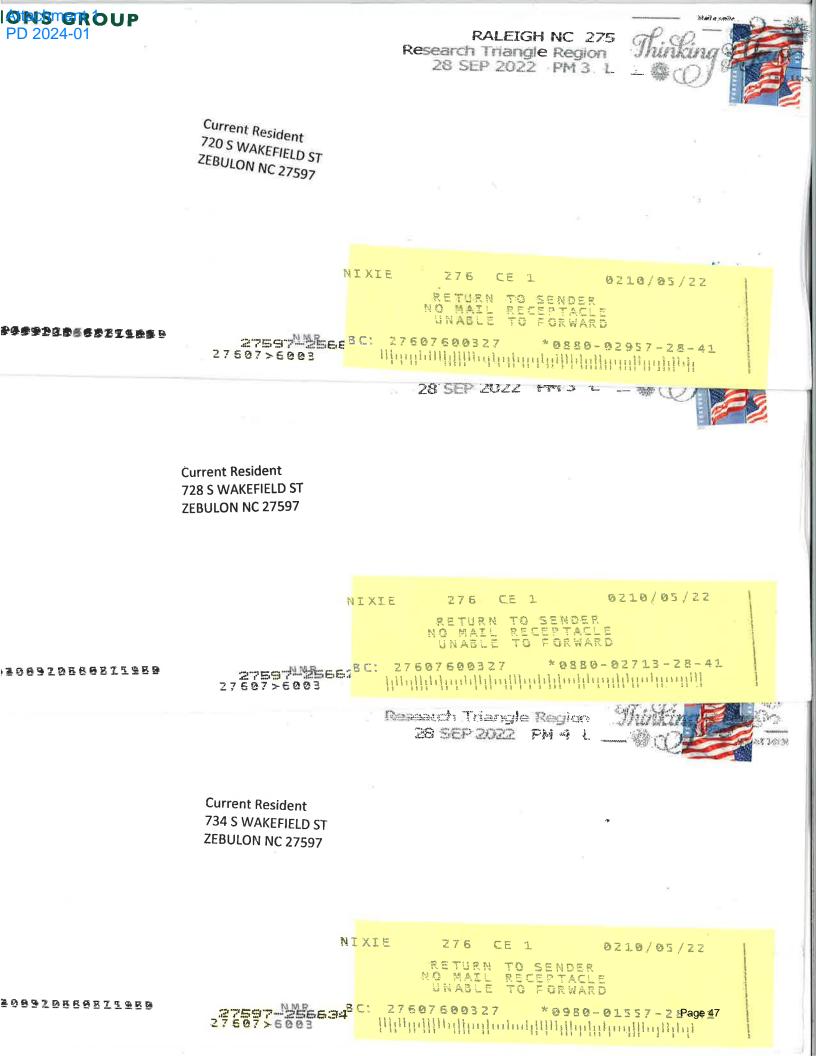
4313 FRIENDSHIP RD APEX NC 27539-8759

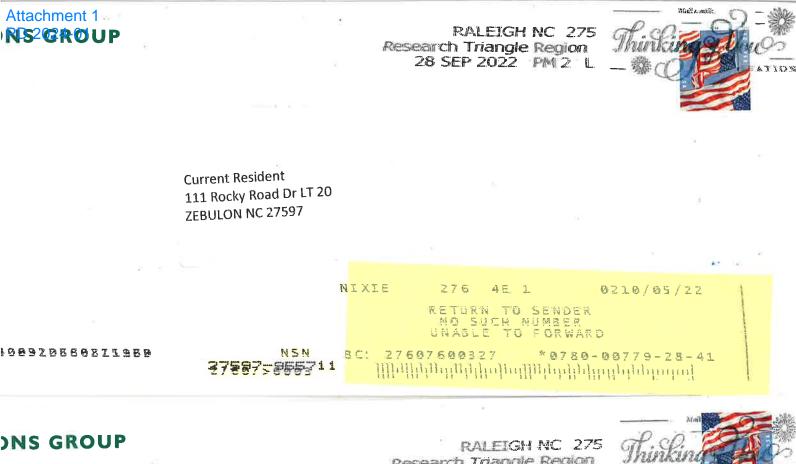
BEHNKE, DEBRA ANN

FWD 27607>6003 27597-054848

\1:94009227802812

Attachment 1


PD 2024-01


TEMPLE, J M **PO BOX 548** ZEBULON NC 27597-0548

2 10

2200210/08/22

*0880-02709-28-41

Research Triangle Region 16 SEP 2022 PM 3 L

RALEIGH NC 275 Research Triangle Region 28 SEP 2022 PM 3 L

Current Resident 110 Royal View Dr ZEBULON NC 27597

> NIXIE 276 4E 1 0210/09/22 RETURN TO SENDER VACANT UNABLE TO FORWARD

se998>9999

ZEBULON SOUTH PRELIMINARY PLAN TOWN OF ZEBULON, WAKE COUNTY, NORTH CAROLINA

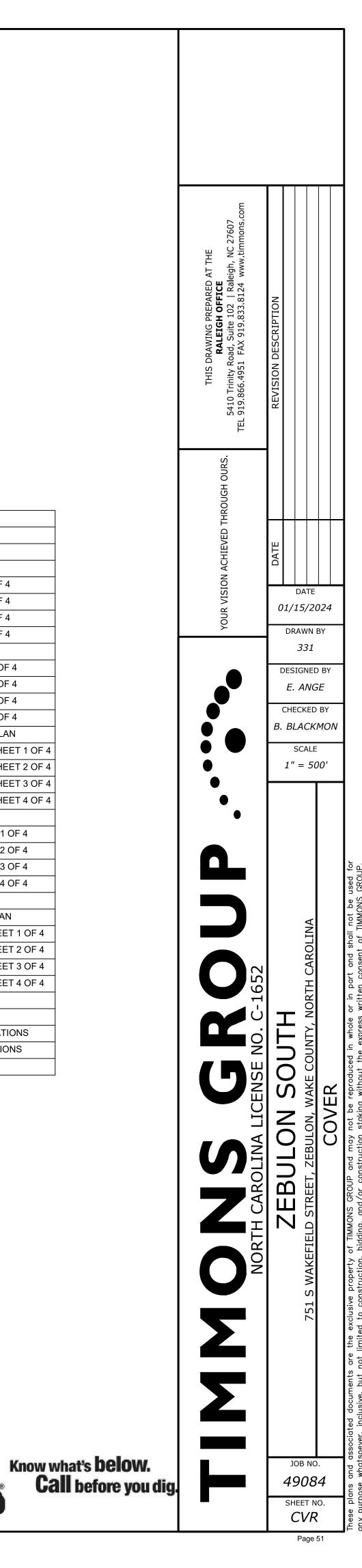
SITE DATA

PROJECT:	ZEBULON SOUTH
ENGINEER:	TIMMONS GROUP 5410 TRINITY ROAD, SUITE 102 RALEIGH, NC 27607 PHONE: 919-866-4509 FAX: 919-859-5663 BETH BLACKMON, PE EMAIL: BETH.BLACKMON@TIMMONS.COM
DEVELOPER:	DEACON DEVELOPMENT GROUP PO BOX 1080 WAKE FOREST, NC 27588 PHONE: 919 608-3542 ANDREW SURIANO ANDREW@DEACONCOMPANIES.COM
PROPERTY LOCATION:	751 S WAKEFIELD ROAD 700 S ARENDELL AVE 0 S WAKEFIELD STREET 0 S ARENDELL AVE
PIN:	2705-41-3075, 2704-49-2511, & 2705-51-2202, 2705-51-3114
EXISTING ZONING:	R4 & R2
PROPOSED ZONING:	PD
EXISTING USE:	AGRICULTURAL
TOTAL TRACT AREA:	118.62 ACRES

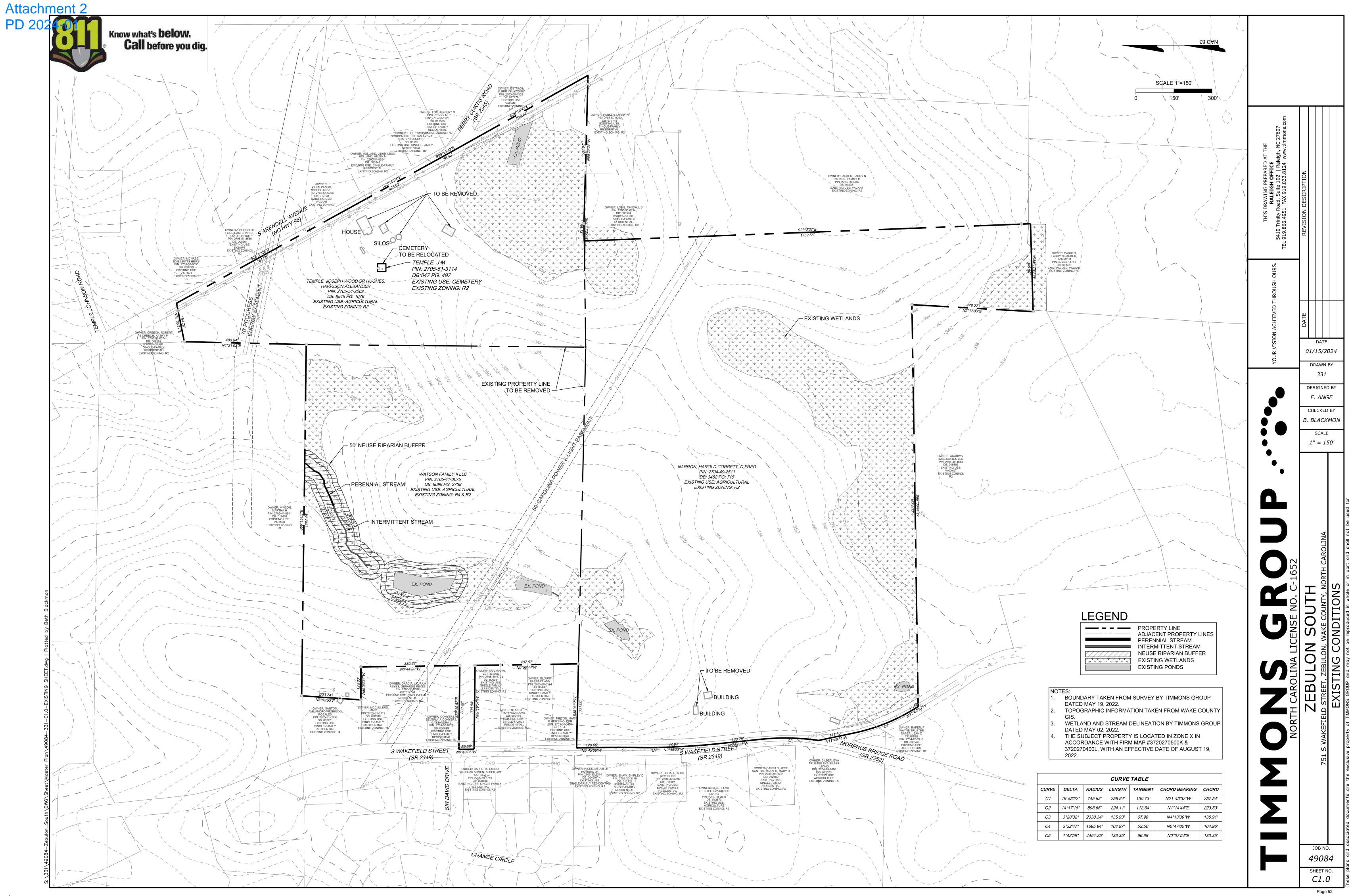
L

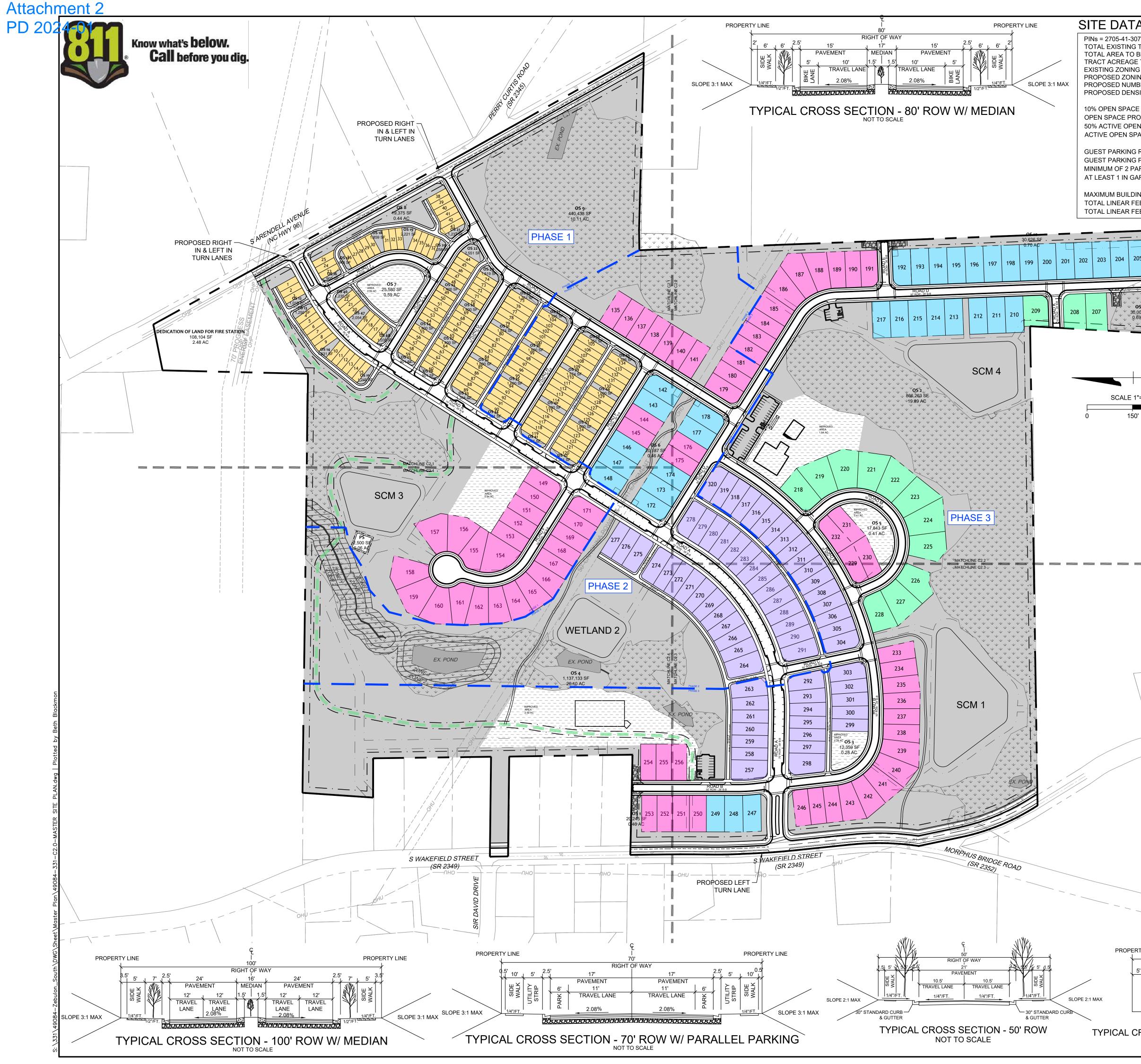
VICINITY MAP - 1" = 500'

OWNERS OF RECORD

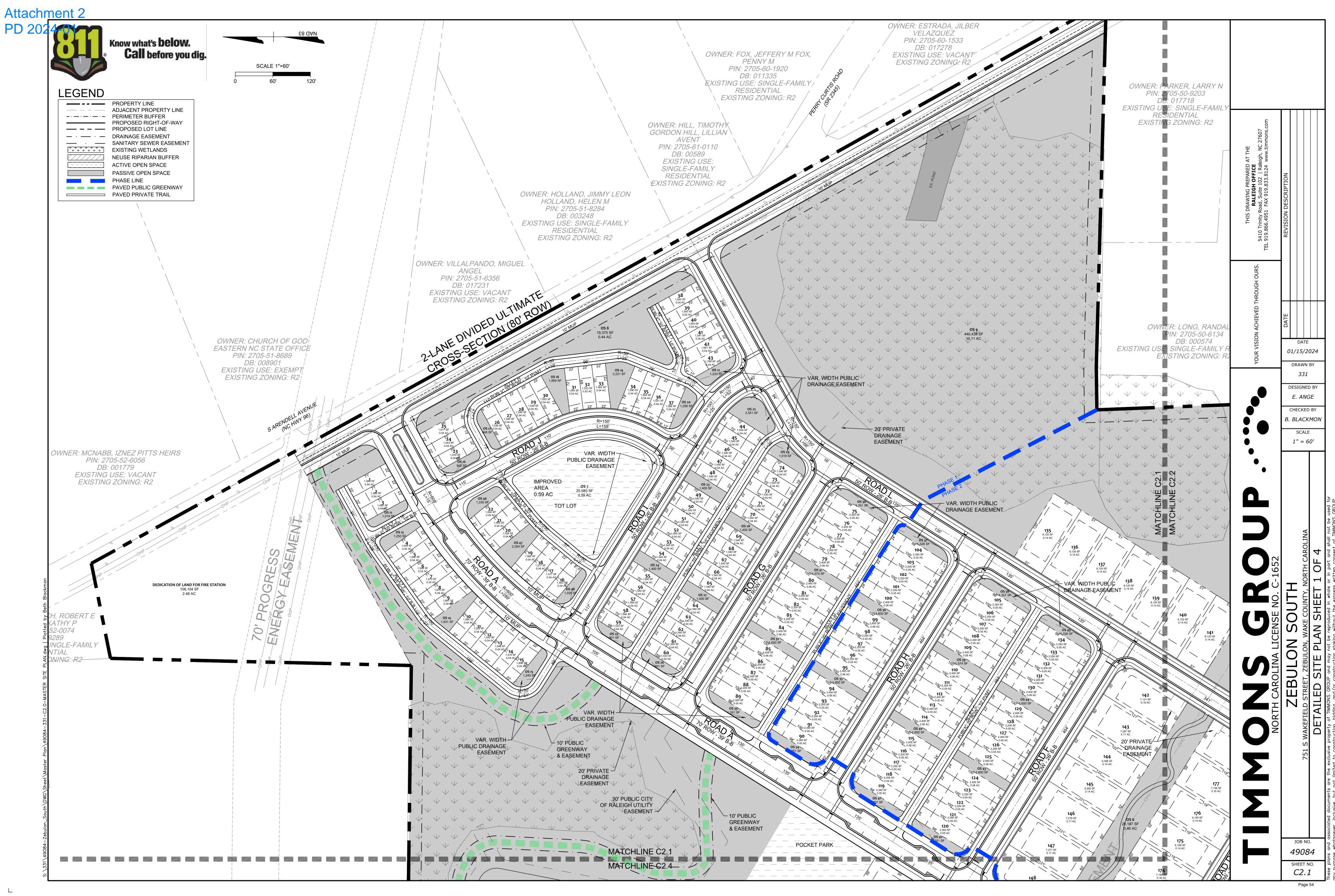

PIN: 2704-49-2511 NARRON, HAROLD CORBETT, C FRED 3941 ZEBULON RD ZEBULON, NC 27597

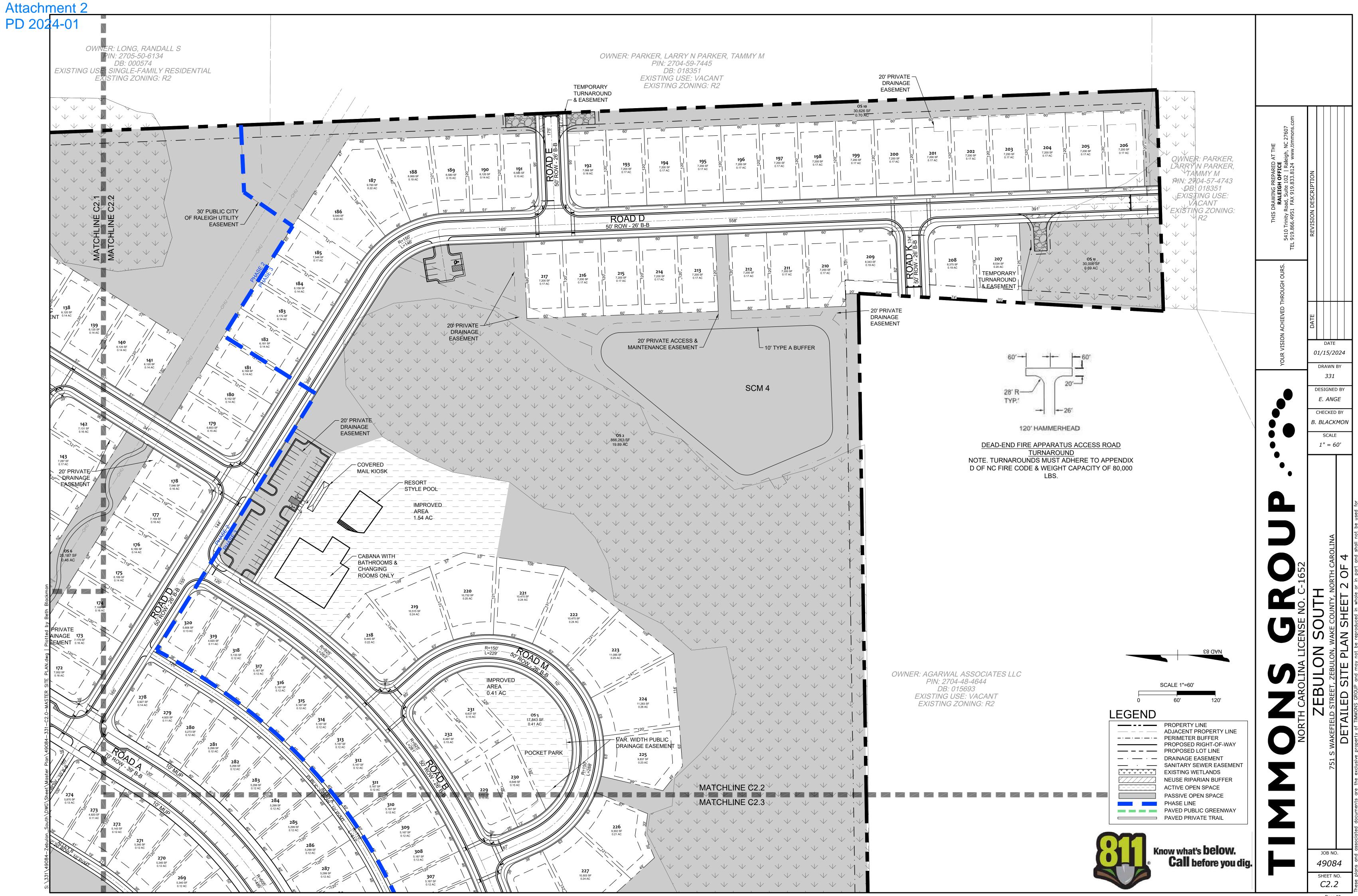
PIN: 2705-41-3075 WATSON FAMILY LLC. 6220 FORESTVILLE RD RALEIGH, NC 27604


PIN: 2705-51-2202 TEMPLE, JOSEPH WOOD SR HUGHES, HARRISON ALEXANDER PO BOX 548 ZEBULON, NC 27597

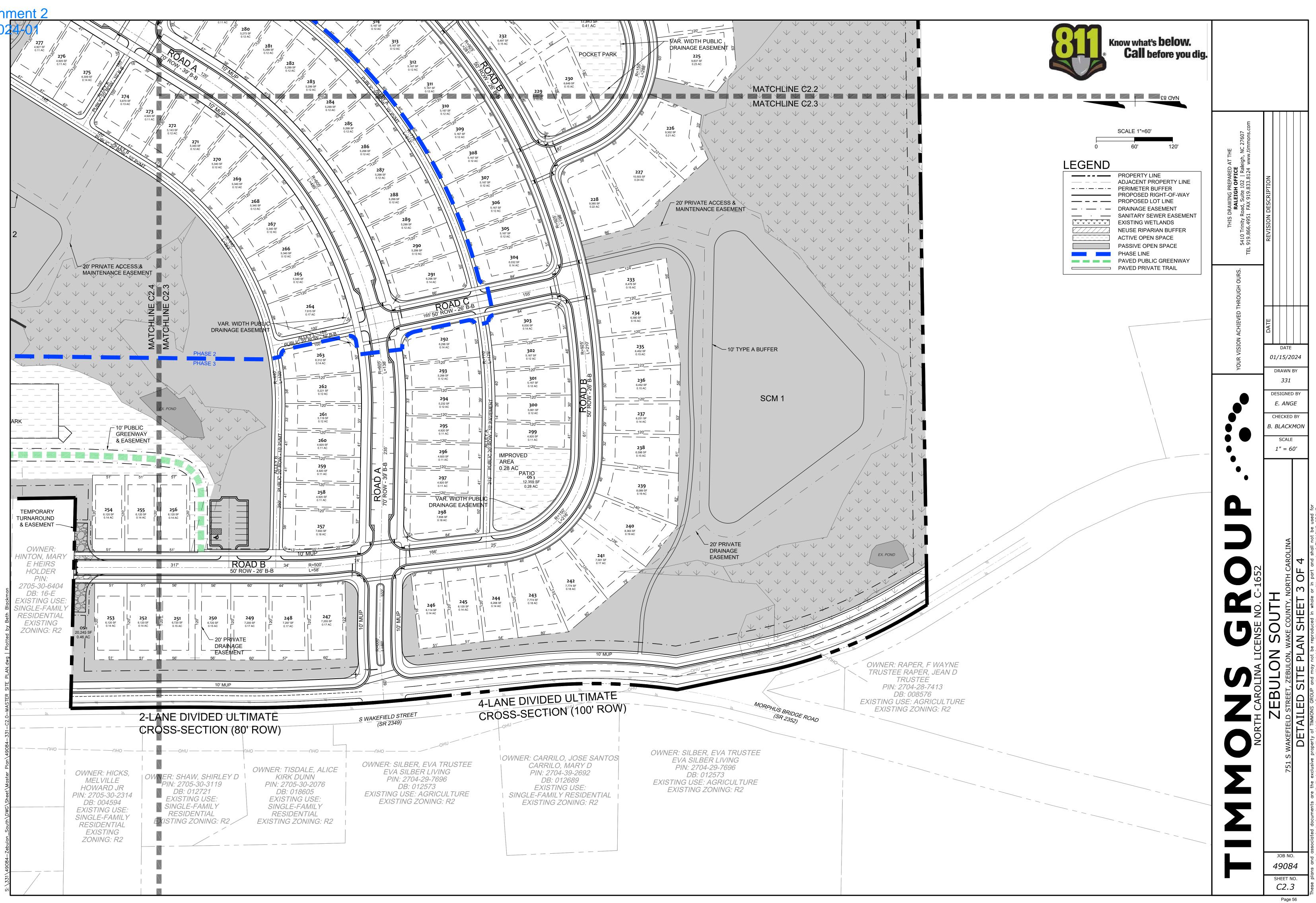

PIN: 2705-51-3114 TEMPLE, J M 1424 S HOLLYBROOK RD WENDELL NC 27591-9584

Sheet List Table							
Sheet Number	Sheet Title						
CVR	COVER						
C1.0	EXISTING CONDITIONS						
C2.0	OVERALL SITE PLAN						
C2.1	DETAILED SITE PLAN SHEET 1 OF 4						
C2.2	DETAILED SITE PLAN SHEET 2 OF 4						
C2.3	DETAILED SITE PLAN SHEET 3 OF 4						
C2.4	DETAILED SITE PLAN SHEET 4 OF 4						
C3.0	OVERALL UTILITY PLAN						
C3.1	DETAILED UTILITY PLAN SHEET 1 OF 4						
C3.2	DETAILED UTILITY PLAN SHEET 2 OF 4						
C3.3	DETAILED UTILITY PLAN SHEET 3 OF 4						
C3.4	DETAILED UTILITY PLAN SHEET 4 OF 4						
C4.0	OVERAL GRADING & DRAINAGE PLAN						
C4.1	DETAILED GRADING & DRAINAGE PLAN SHEET 1 OF 4						
C4.2	DETAILED GRADING & DRAINAGE PLAN SHEET 2 OF 4						
C4.3	DETAILED GRADING & DRAINAGE PLAN SHEET 3 OF 4						
C4.4	DETAILED GRADING & DRAINAGE PLAN SHEET 4 OF 4						
C5.0	OVERALL LANDSCAPE PLAN						
C5.1	DETAILED LANDSCAPE PLAN SHEET 1 OF 4						
C5.2	DETAILED LANDSCAPE PLAN SHEET 2 OF 4						
C5.3	DETAILED LANDSCAPE PLAN SHEET 3 OF 4						
C5.4	DETAILED LANDSCAPE PLAN SHEET 4 OF 4						
C6.0	LIGHTING PLAN						
C7.0	OVERALL SIGNS & MARKINGS PLAN						
C7.1	DETAILED SIGNS & MARKINGS PLAN SHEET 1 OF 4						
C7.2	DETAILED SIGNS & MARKINGS PLAN SHEET 2 OF 4						
C7.3	DETAILED SIGNS & MARKINGS PLAN SHEET 3 OF 4						
C7.4	DETAILED SIGNS & MARKINGS PLAN SHEET 4 OF 4						
C8.0	DETAILED AMENITY PLAN						
C8.1	DETAILED AMENITY PLAN						
C9.1	SINGLE FAMILY CONCEPTUAL ELEVATIONS						
C9.2	TOWNHOME CONCEPTUAL ELEVATIONS						
C9.3	CONCEPUTUAL AMENITY						

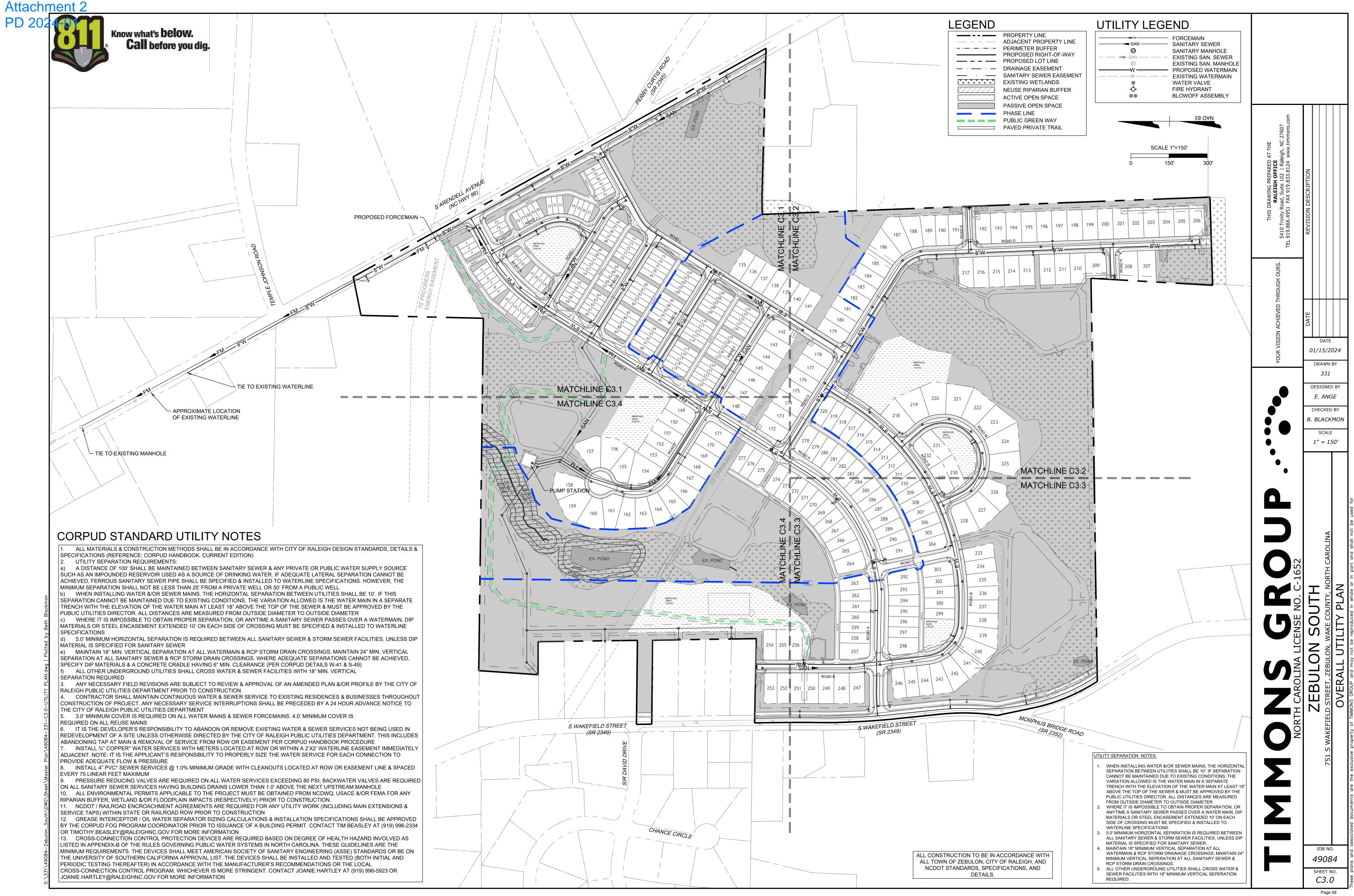


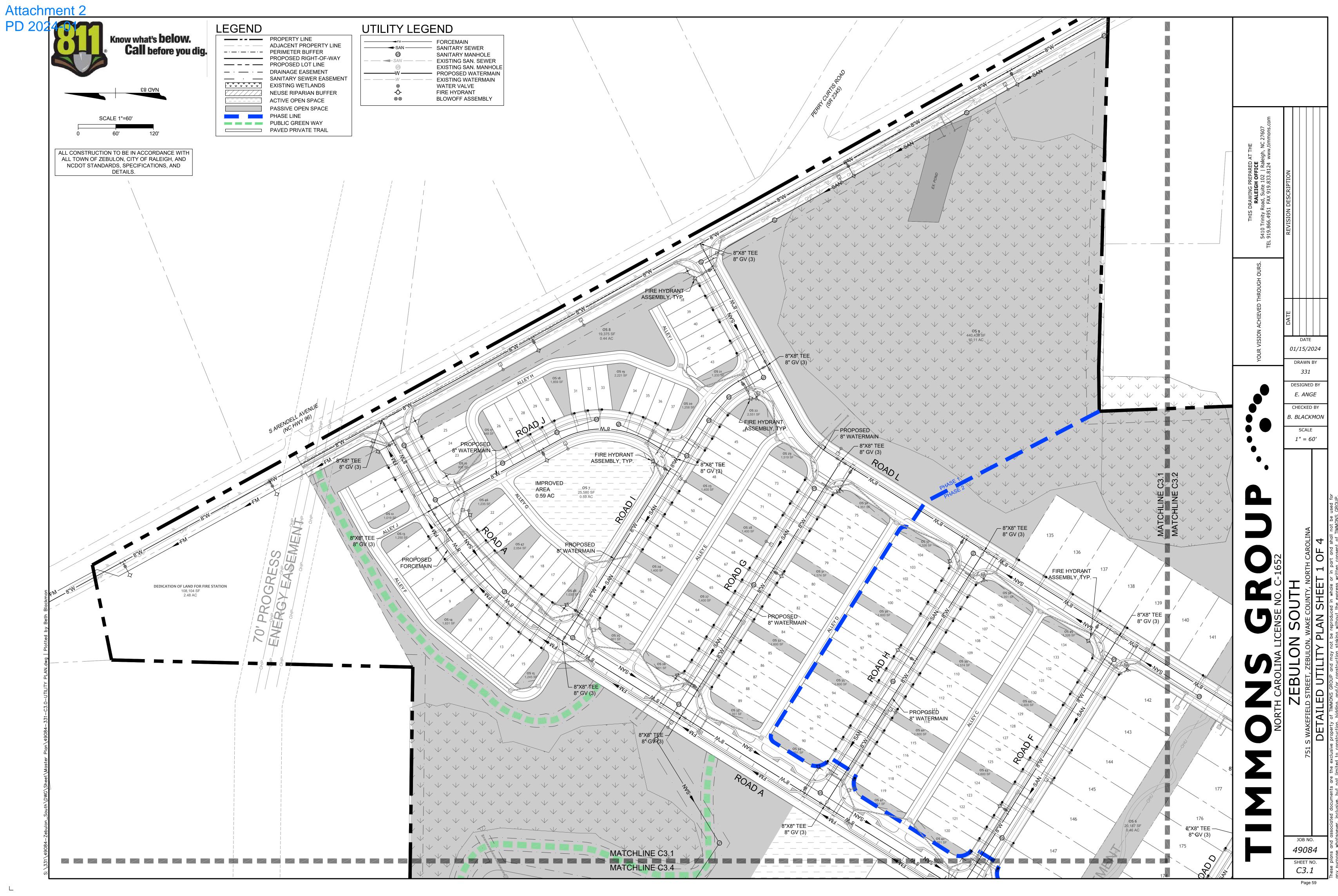


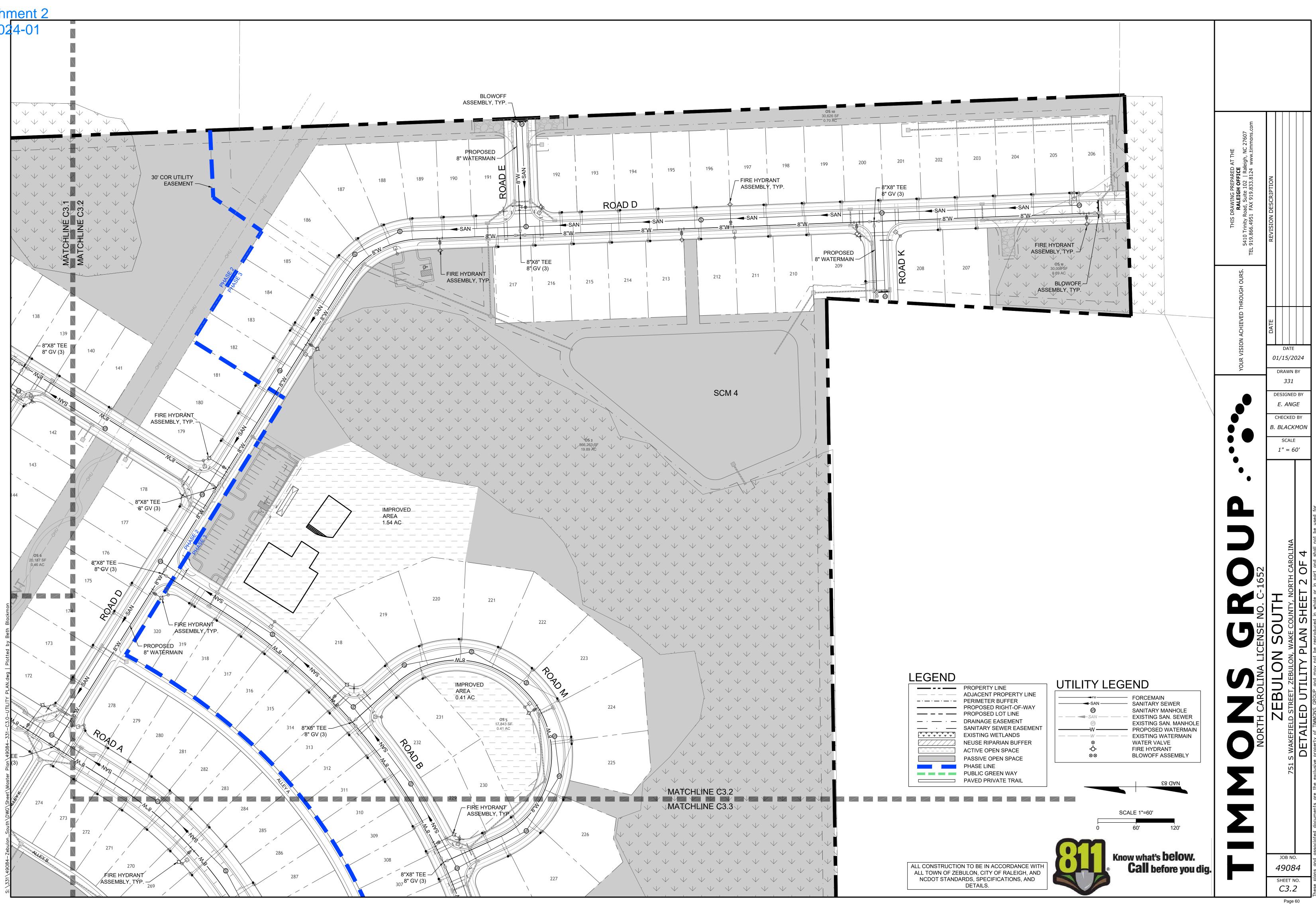
TA	1-2202 & 2705-51-31								
3075, 2704-49-2511, &705-5 G TRACT ACREAGE = 118 D BE DEDICATED = 2.48 A0	.62 AC	· •	MINIMUM L	OT SIZE PRO	SINGLE FAMILY ATT DVIDED: 1,523' OVIDED: 1,880'				
G BE DEDICATED = 2.48 AG GE TO BE DEVELOPED = 1 NG = R2 & R4		AVERAGE L MINIMUM L DRIVEWAY	OT WIDTH: 1						
NG = R2 & R4 NING = PD MBER OF LOTS = 320		MINIMUM D							
NSITY = 2.75 DU/A					NGLE FAMILY DVIDED: 4,920'				
CE REQUIRED = 11.61 acre		AVERAGE L	OT SIZE PR	OVIDED: 5,410'					
ROVIDED = 61.36 acres (52 PEN SPACE REQUIRED = 5		MINIMUM LOT WIDTH: 40' DRIVEWAY LENGTH: 20' MINIMUM DRIVEWAY WIDTH: 10'							
SPACE PROVIDED = 6.27 a	cres				SINGLE FAMILY LO	rs	ШOS		
G REQUIRED 0.25 UNITS = G PROVIDED = 174 spaces	•		MINIMUM L	OT SIZE PRO	OVIDED: 6,114' OVIDED: 6,963'		AT THE eigh, NC 27607 www.timmons.com		
PARKING SPACES PROVIE GARAGE AND 1 IN DRIVEW		MINIMUM L		HE NC 2 v. timn					
	VAT		MINIMUM D						
DING HEIGHT = 50' FEET OF 10' PUBLIC GREE	ENWAY = 3,415'				SINGLE FAMILY LO	rs	PREPARED H OFFICE 102 Ral 833.8124	z	
FEET OF 6' PRIVATE GREI		AVERAGE L	OT SIZE PR	G PRE GH O te 102 9.833	DITqI				
			DRIVEWAY MINIMUM D				DRAWING PF RALEIGH Road, Suite 1 1 FAX 919.8	REVISION DESCRIPTION	
			14 - REAF	R LOAD SI	NGLE FAMILY		HC io		
205 206			AVERAGE L	OT SIZE PR	OVIDED: 8,343 OVIDED: 9,878'		THIS [10 Trinity R 9.866.4951	VISI	
			DRIVEWAY				54	RE	
			MINIMUM D				TEL		
OS 11 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓					N SPACE	0.47 AC	<u>v</u>		
	OTDEE	- -		OS 2	866,263 SF	19.89 AC	H OUR		
	STREE		LENGTH (LF)	OS 3 OS 4	12,359 SF 1,137,133 SF	0.28 AC 26.10 AC	OUG		
<u> </u>	ROAD A ROAD B	70 50	2,775 2,023	OS 5 OS 6	17,843 SF 20,187 SF	0.41 AC 0.46 AC	O THR	┠╂┼┤	
E8 DAN	ROAD C	50	320	OS 7	25,580 SF	0.59 AC	YOUR VISION ACHIEVED THROUGH OURS.	DATE	
1"-150'	ROAD D ROAD E	50 50	2,112 175	OS 8 OS 9	19,375 SF 440,438 SF	0.44 AC 10.11 AC	N ACh	Ď	
1"=150'	ROAD F ROAD G	50 50	1,060 464	OS 10 OS 11	30,626 SF 30,006 SF	0.70 AC 0.69 AC	JOISI,	DA	I I TE
50' 300'	ROAD H	50	464	OS 12 OS 13	1,019 SF 1,250 SF	0.02 AC 0.03 AC	V NUC	01/15/	/2024
	ROAD I ROAD J	50 50	537 439	OS 14	1,631 SF	0.04 AC	Ж	DRAW	
	ROAD K ROAD L	50 50	134 1,314	OS 15 OS 16	1,245 SF 902 SF	0.03 AC 0.02 AC		DESIGN	
	ROAD M ALLEY A	50 20	698 1,125	OS 17 OS 18	948 SF 1,859 SF	0.02 AC 0.04 AC		E. Al	
	ALLEY B ALLEY C	20 20	967 464	OS 19 OS 20	2,221 SF 1,258 SF	0.05 AC 0.03 AC		CHECK	ED BY
	ALLEY D	20	464	OS 21 OS 22	1,233 SF 2,551 SF	0.03 AC 0.06 AC		B. BLAC	CKMON
	ALLEY E ALLEY F	20 20	464 563	OS 23	1,400 SF	0.03 AC		SCA 1" =	
	ALLEY G ALLEY H	20 20	248 533	OS 24 OS 25	1,400 SF 901 SF	0.03 AC 0.02 AC	•		150
	ALLEY I ALLEY J	20 20	123 116	OS 26 OS 27	901 SF 1,400 SF	0.02 AC 0.03 AC			
	ALLEY K ALLEY L	20 20	165 165	OS 28 OS 29	1,400 SF 1,519 SF	0.03 AC 0.03 AC	•		
	TOTAL W/ ALL	EYS	17,912	OS 30 OS 31	1,351 SF 1,574 SF	0.03 AC 0.04 AC			
	TOTAL W/O AI	LEYS	12,515	OS 32	1,600 SF	0.04 AC			
	SETBA			OS 33 OS 34	1,351 SF 1,351 SF	0.03 AC 0.03 AC			
	FRONT LOA FRONT: 20'	DED SINGL	E FAMILY	OS 35 OS 36	1,600 SF 1,600 SF	0.04 AC 0.04 AC			A
	REAR: 15' SIDE: 5'	01		OS 37 OS 38	1,326 SF 1,351 SF	0.03 AC 0.03 AC			
	CORNER: 1			OS 39 OS 40	1,574 SF	0.04 AC 0.04 AC			CAK
	FRONT: 10'			OS 41	1,600 SF 1,351 SF	0.03 AC	165	Ē	
	SIDE: 3'	n'		OS 42 OS 43	1,351 SF 1,600 SF	0.03 AC 0.04 AC			NOK H H
	SINGLE FAN		HED:	OS 44 OS 45	1,600 SF 1,326 SF	0.04 AC 0.03 AC	No.		× Z
	FRONT: 10' BUILDING S	MAX		OS 46 OS 47	1,235 SF 2,054 SF	0.03 AC 0.05 AC			PLAN
	REAR: 20'			OS 48	1,035 SF	0.02 AC			-
					2,672,929 SF	61.36 AC			SITE
					A DATA W/ 1,300 SF/LOT)	4.00 AC			ALL S
	IMPERVIOUS	IN 40' LOTS	5 (64 LOTS Ŵ			RAL			
	IN 60' LOTS	S (36 LOTS W S (14 LOTS W	// 4,600 SF	6.20 AC 3.80 AC 1.61 AC					
	IMPERVIOUS CLUBHOUSE		AY			13.05 AC 2.00 AC	CAR		OVEI
1	AMENITY AR		NWAY, & PUI	MP STATIO	NC	3.00 AC	۲. E		_
/	TOTAL IMPEI PERCENT IM					38.06 AC 32.7%			
			LEG	END			Nov		WAKEFIELD
	/							(ν
			··	_ · _ · _	ADJACENT PROPERTY LINE PERIMETER BUFFER PROPOSED RIGHT-OF-WAY			L F	10/
				- <u>-</u> <u>-</u>	PROPOSED LOT	LINE	2	l	
ଜ				·	SANITARY SEWE	REASEMENT		l	
ERTY LINE 20' RIGHT OF W/		Y LINE			NEUSE RIPARIAN	NBUFFER		l	
5' 10' PAVEMENT	ل 5'				ACTIVE OPEN SF PASSIVE OPEN S			l	
					PHASE LINE PAVED PUBLIC (l	
					PAVED PRIVATE	TRAIL		JOB	NO.
CEREARARARA					ER'S ASSOCATION (HOA OPEN SPACE PARCELS			490	
CROSS SECTION -		ALLEY	RE	ESPONSIBLE	FOR MAINTAINING ALL THE TOWN OF ZEBULC T ORDINANCE (UDO).	LANDSCAPING		SHEET	
NOT TO SC			11.06						



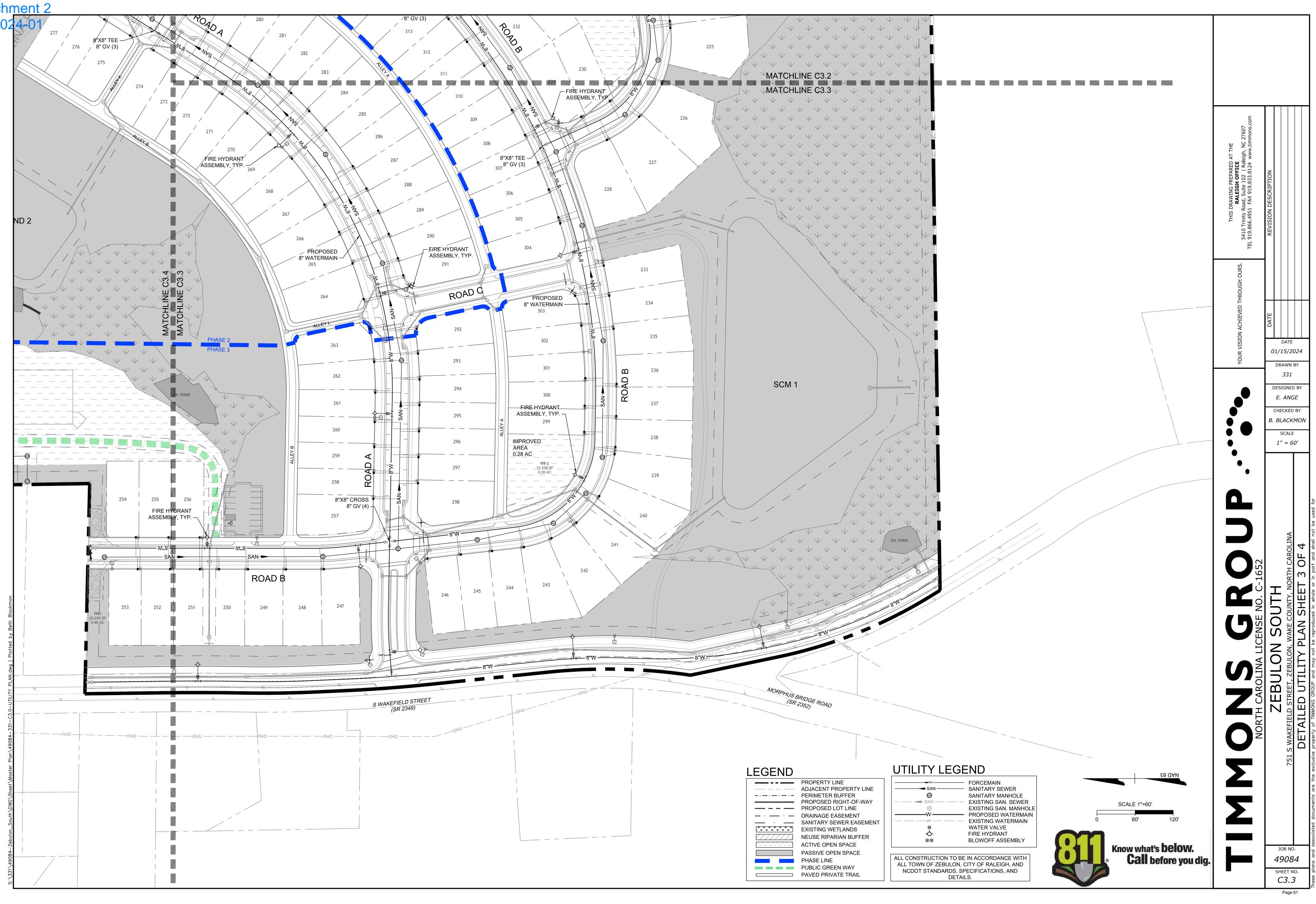
se plans and associated documents are the exclusive property of TIMMONS GROUP and may not be reproduced in whole or in part and st purpose whatsoever, inclusive, but not limited to construction, bidding, and/or construction staking without the express written consent

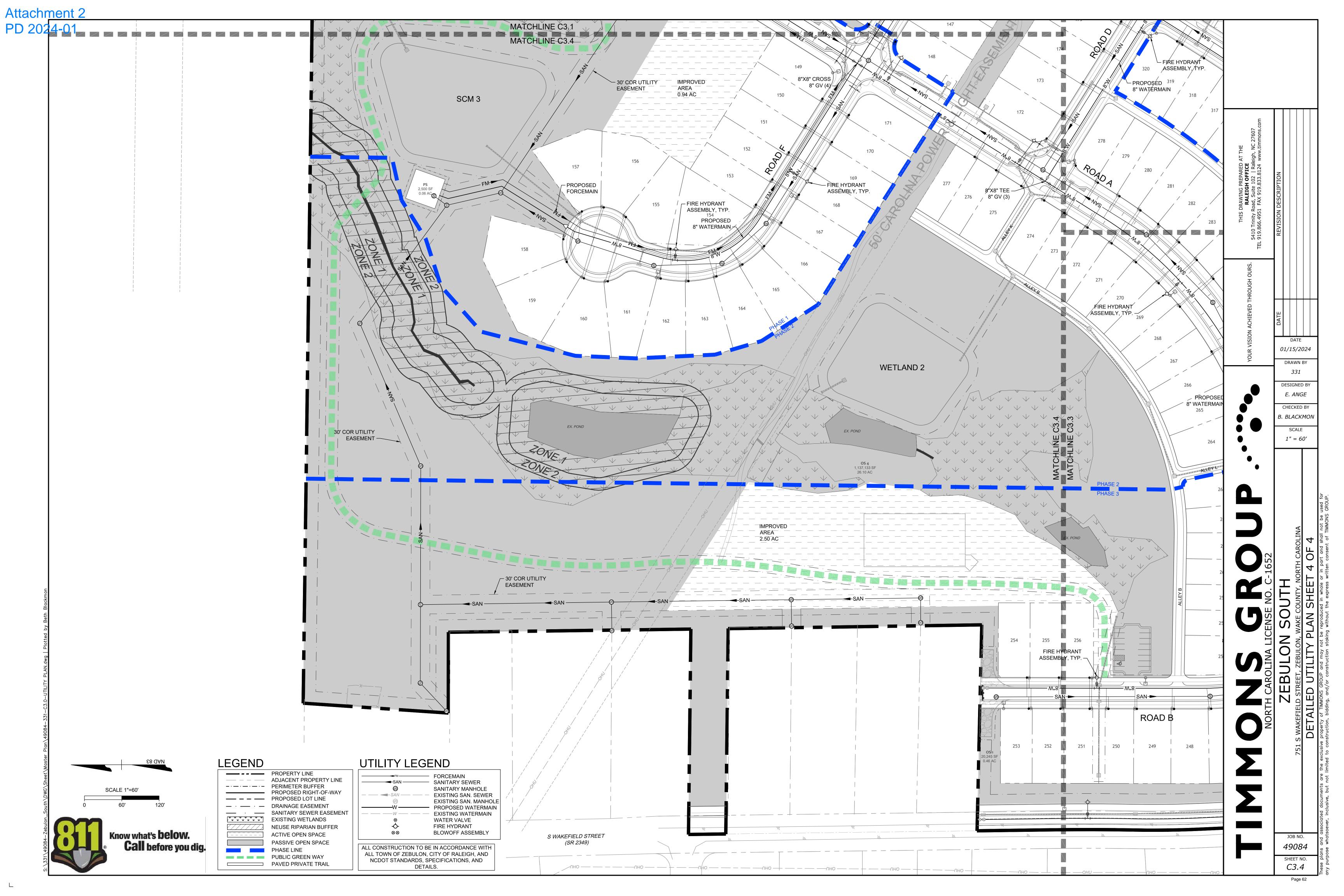

Page 55

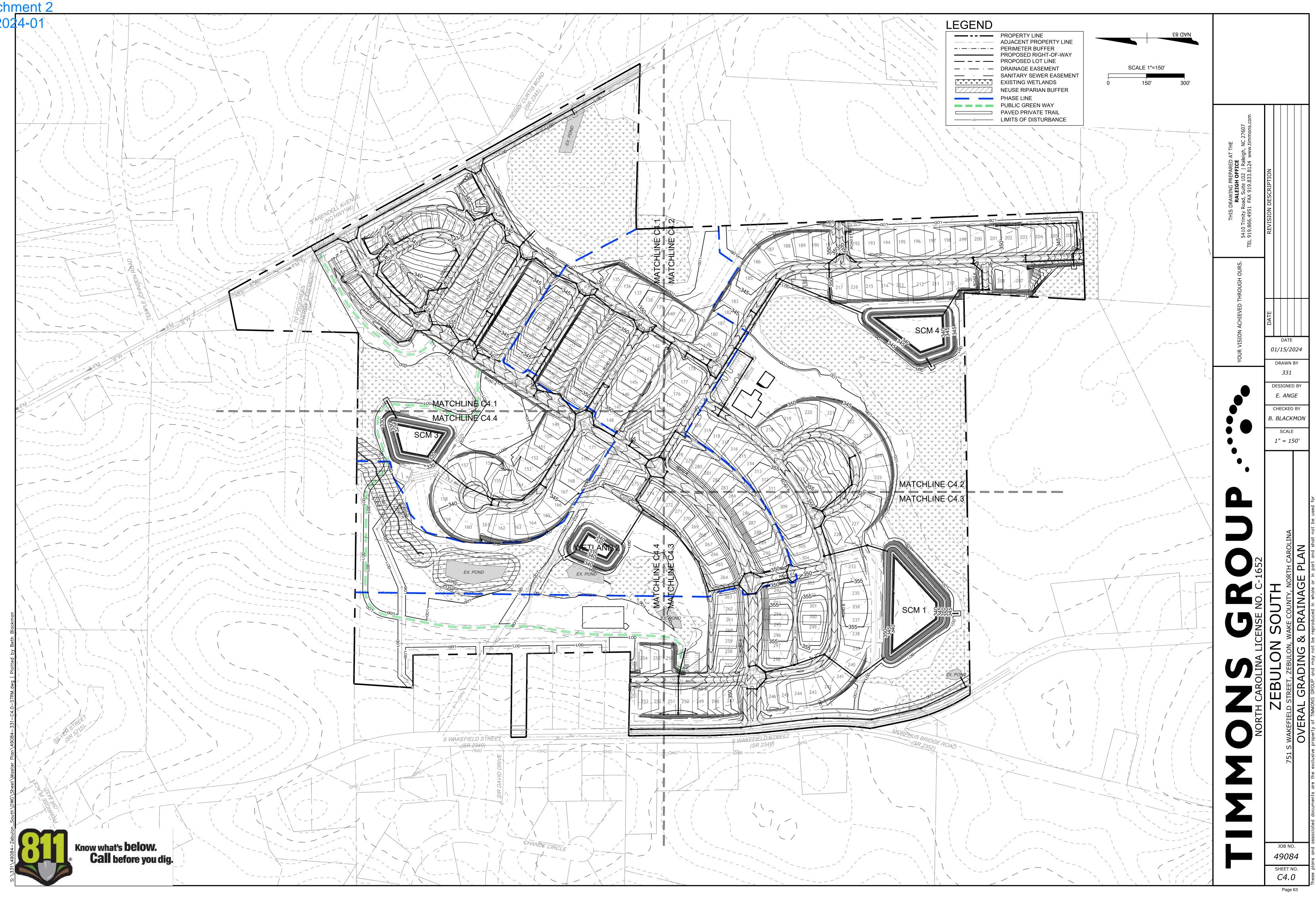

Attachment 2 PD 202



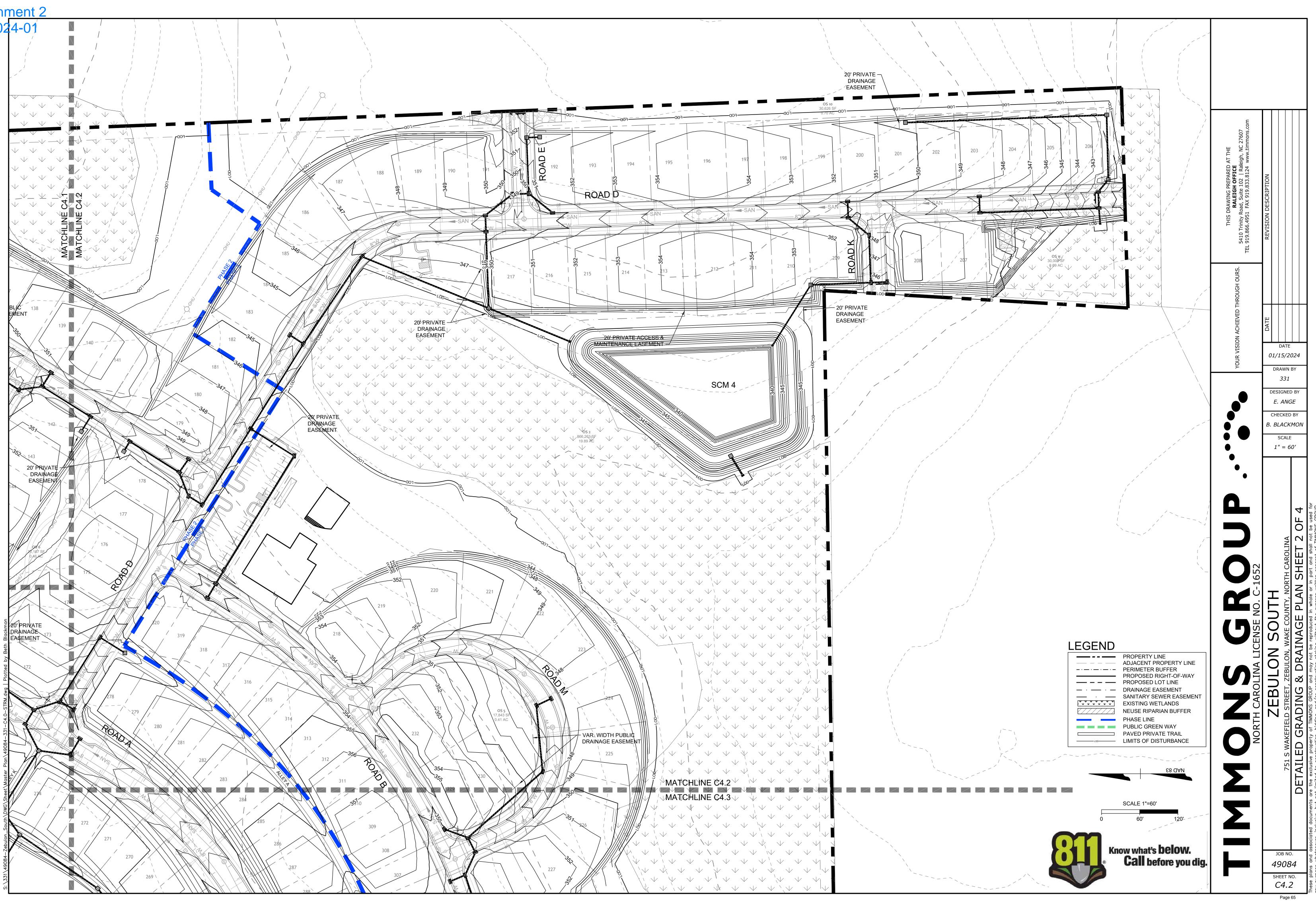
e plans and associated documents are the exclusive property of TIMMONS GROUP and may not be reproduced in whole or in part and shall purpose whatsoever, inclusive, but not limited to construction, bidding, and/or construction staking without the express written consent of T

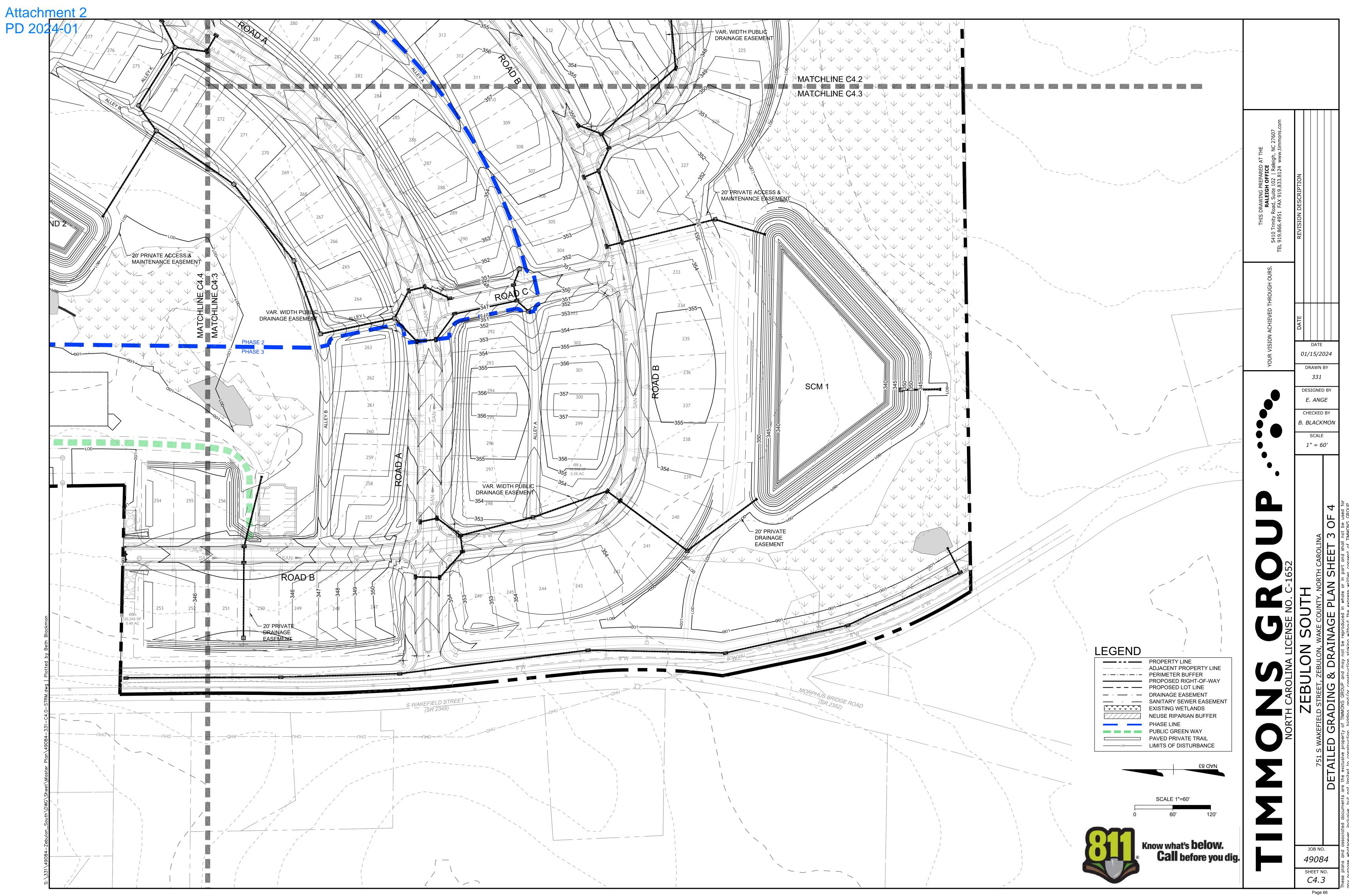


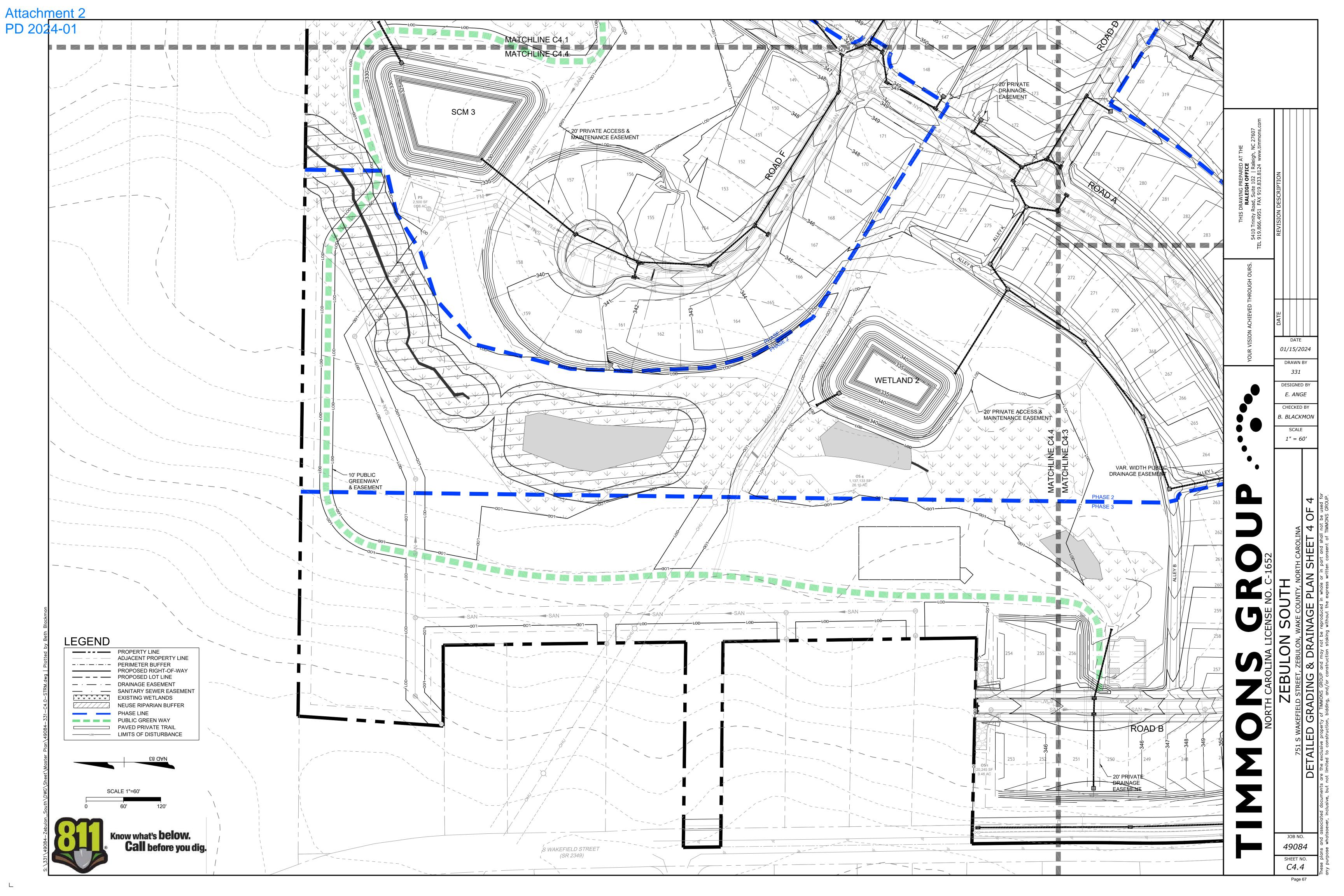


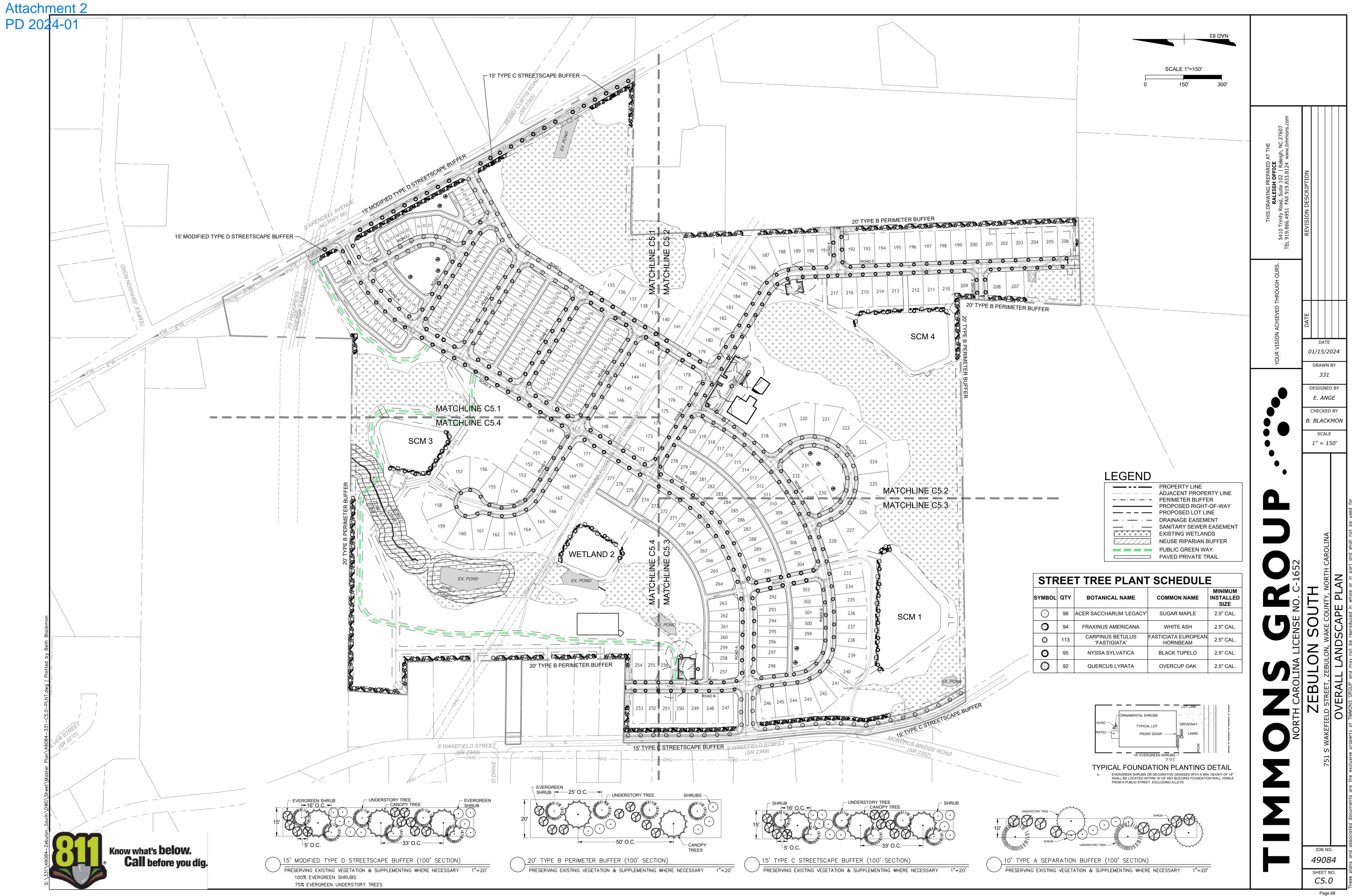

L



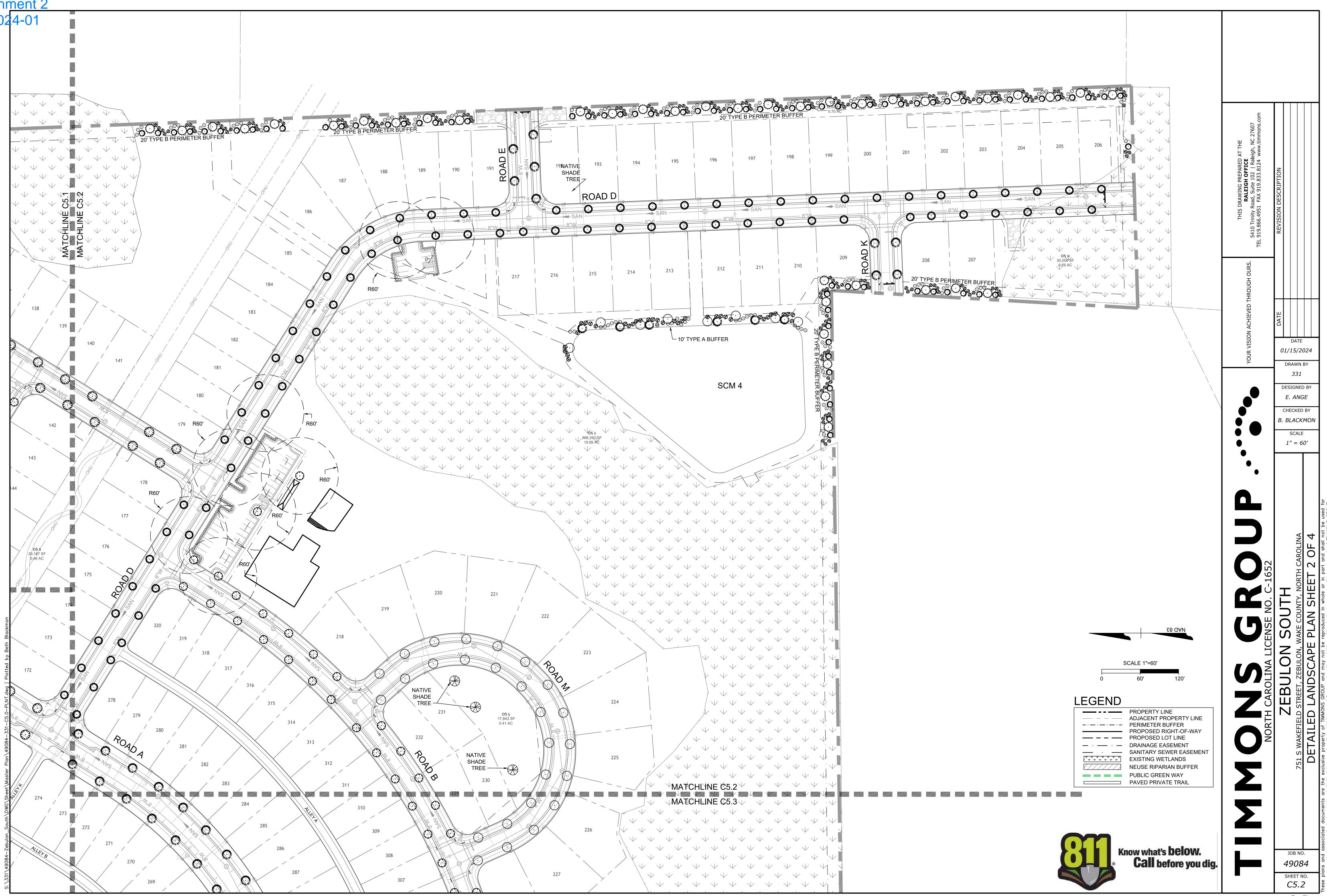




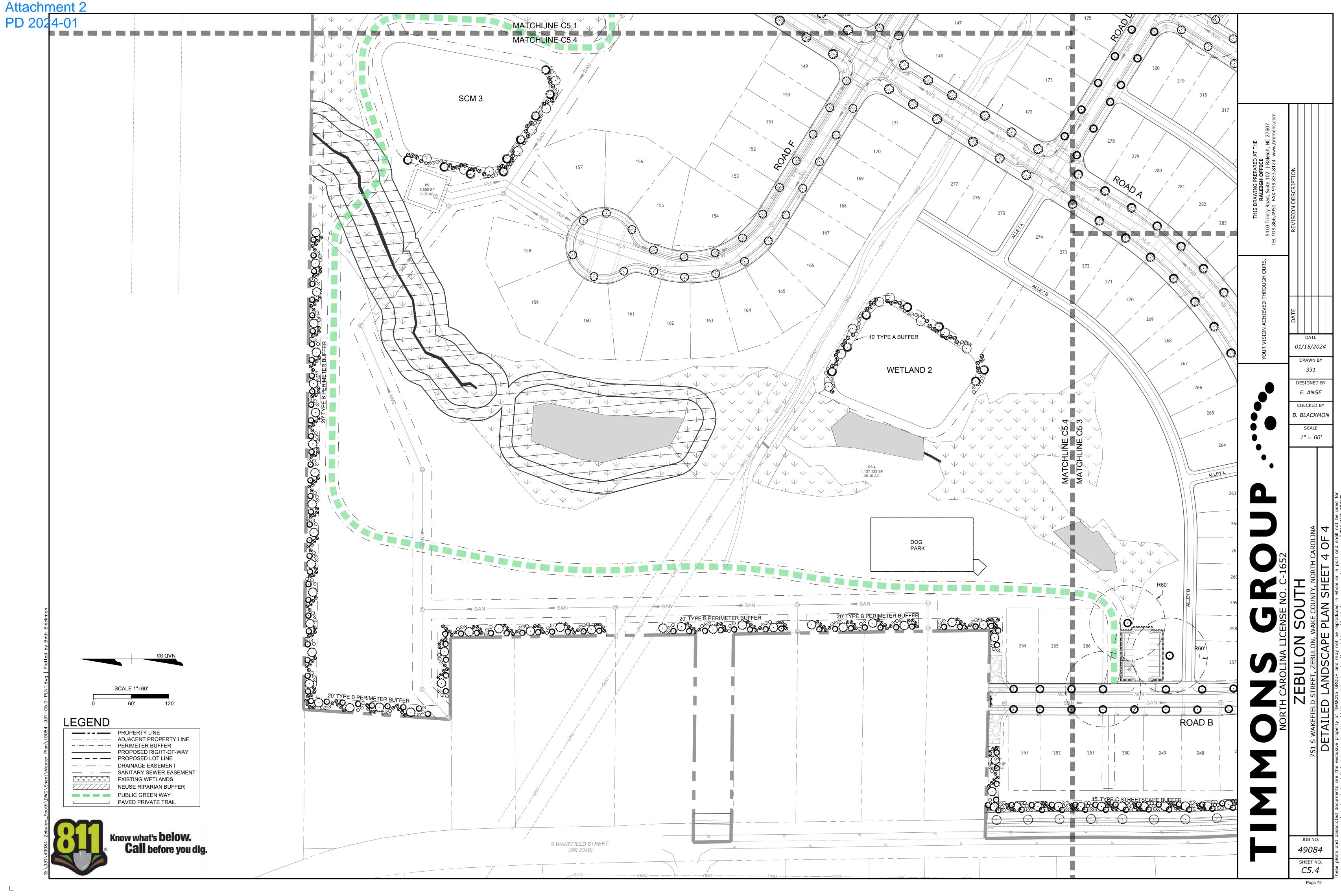


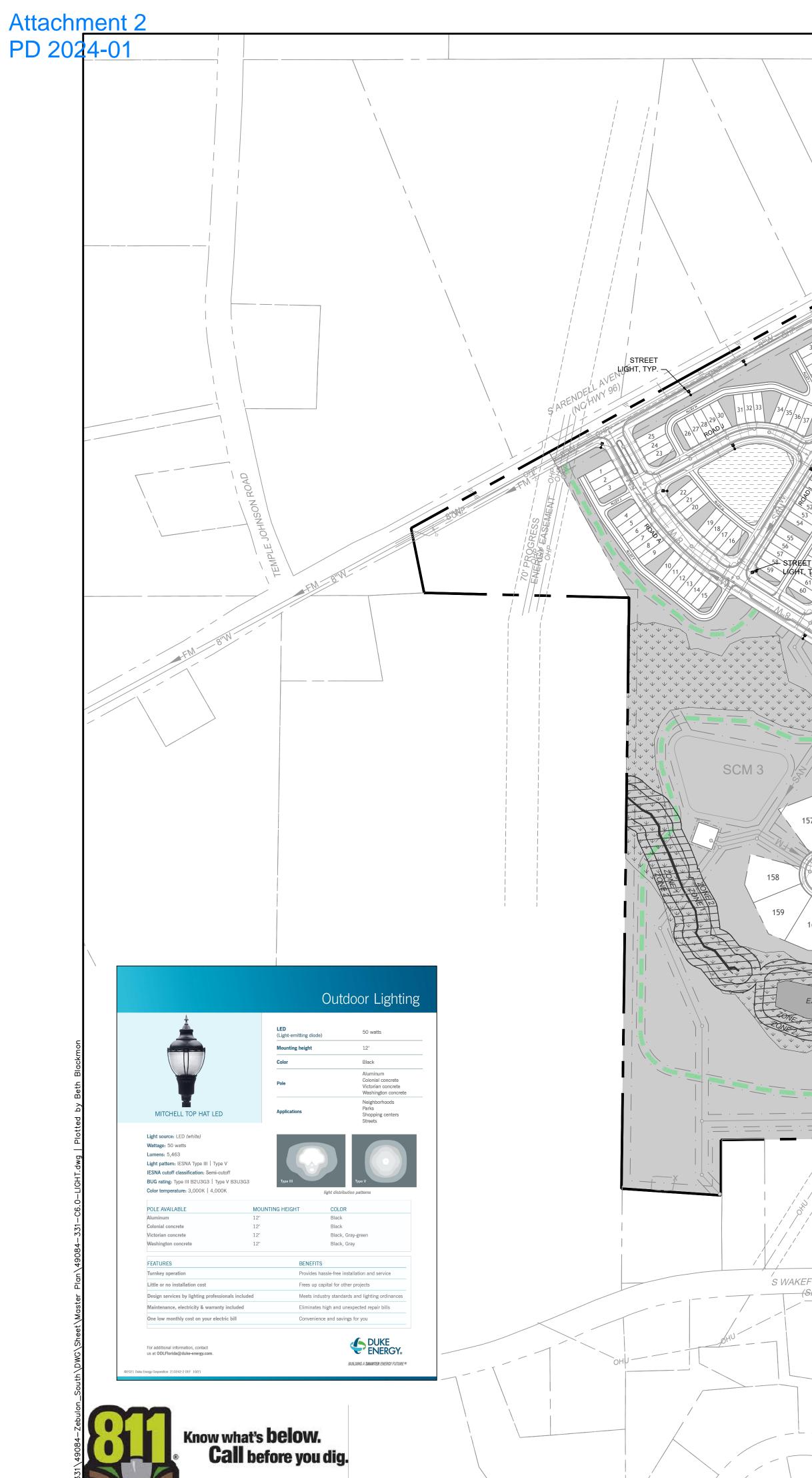


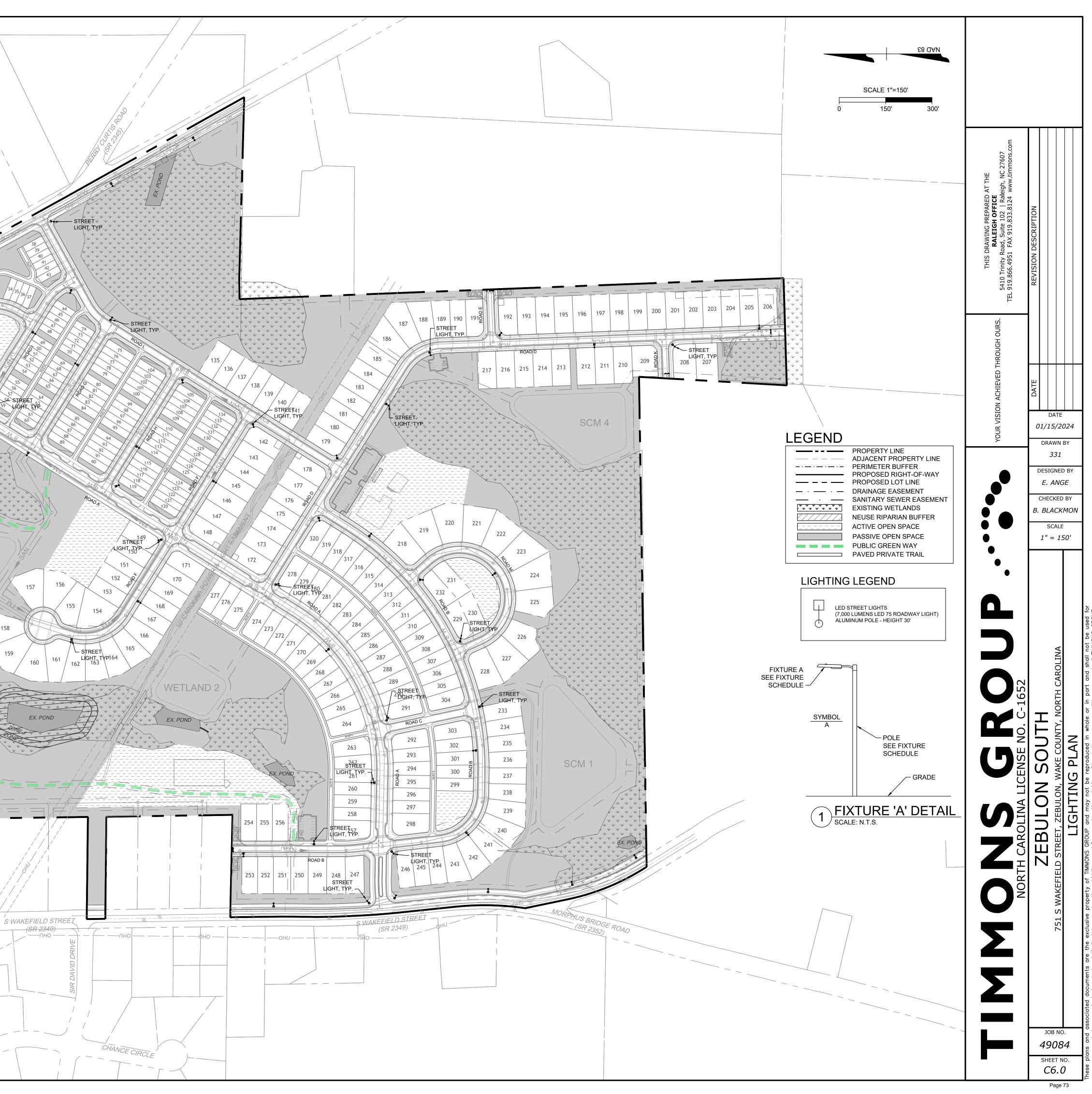
L



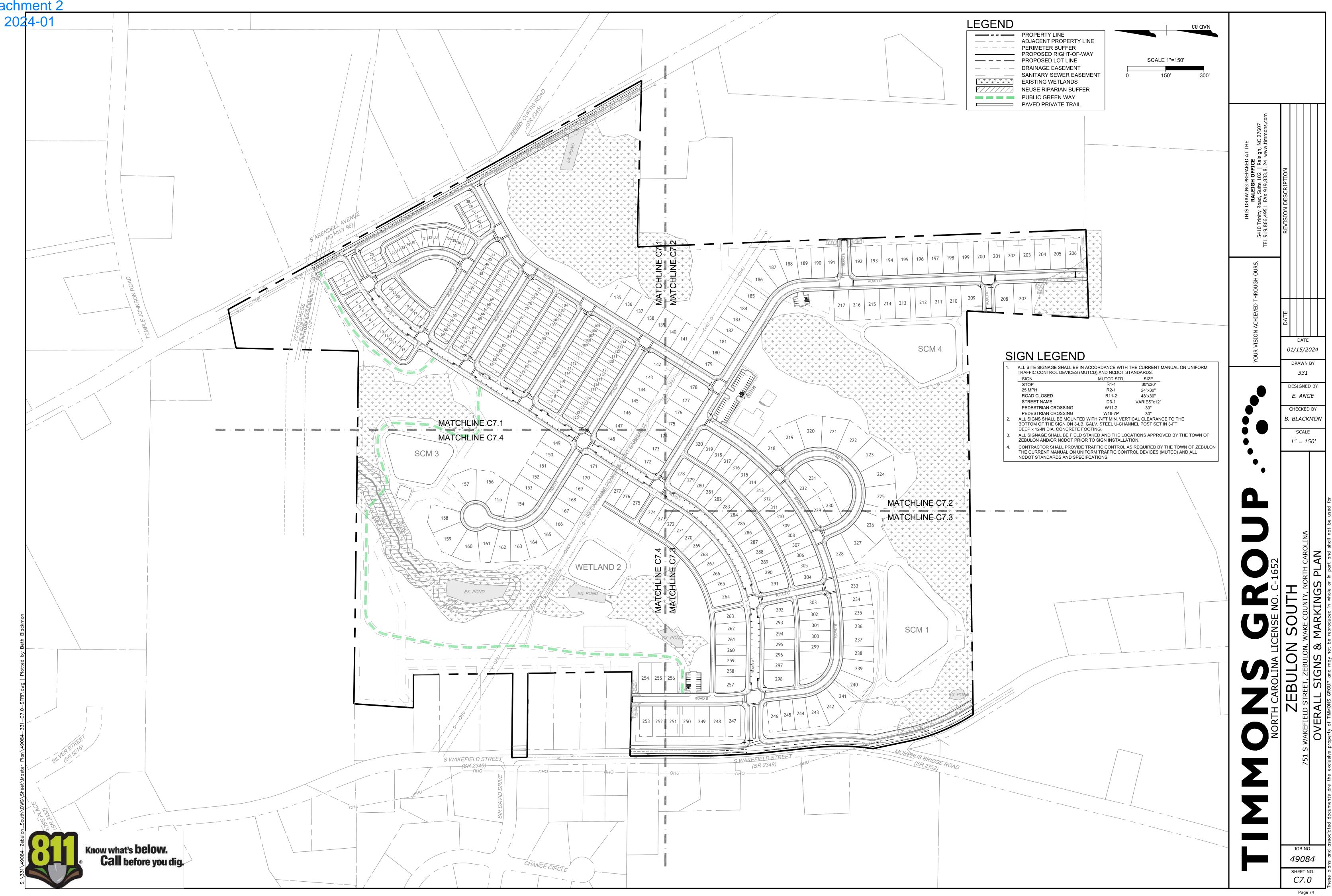


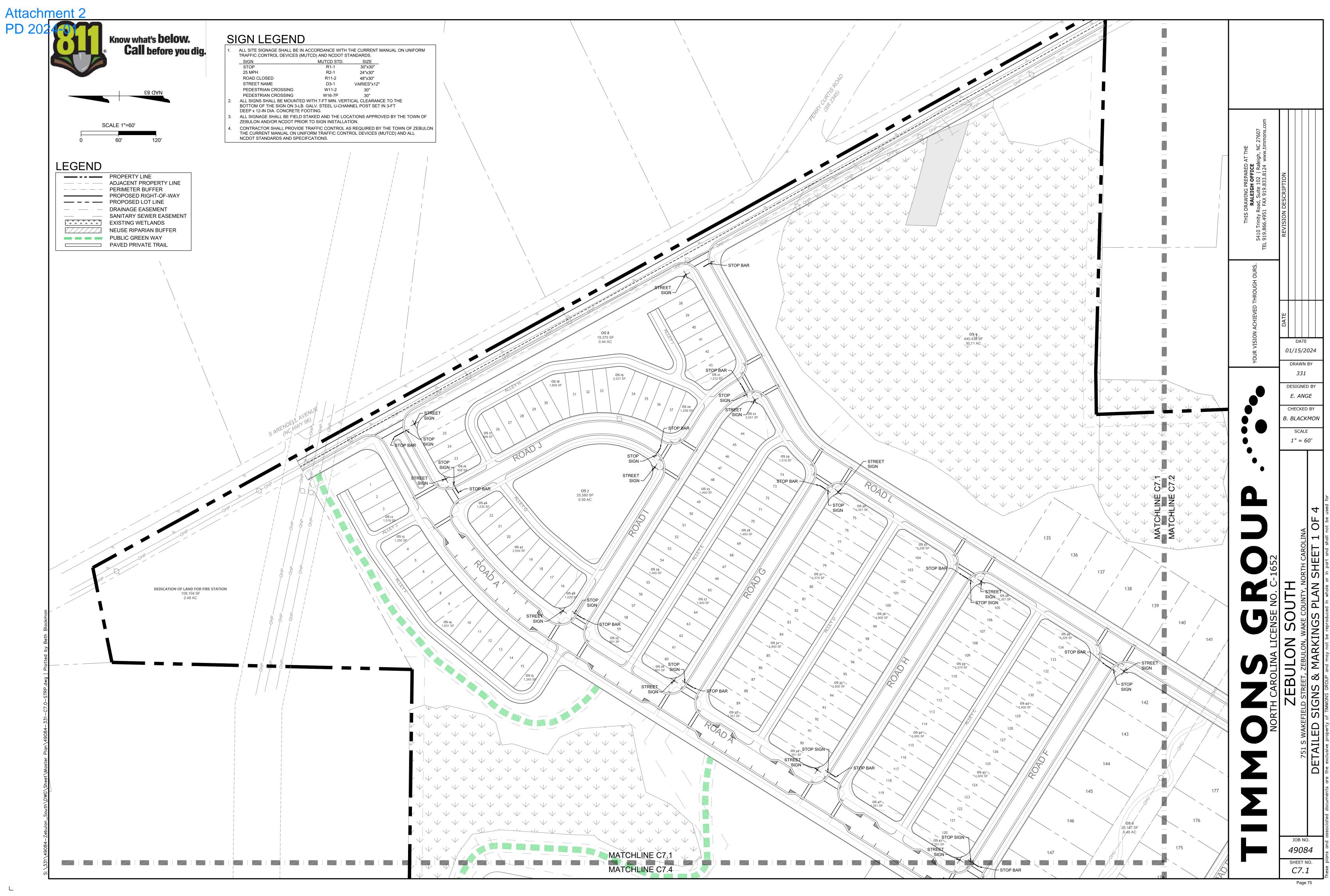

L

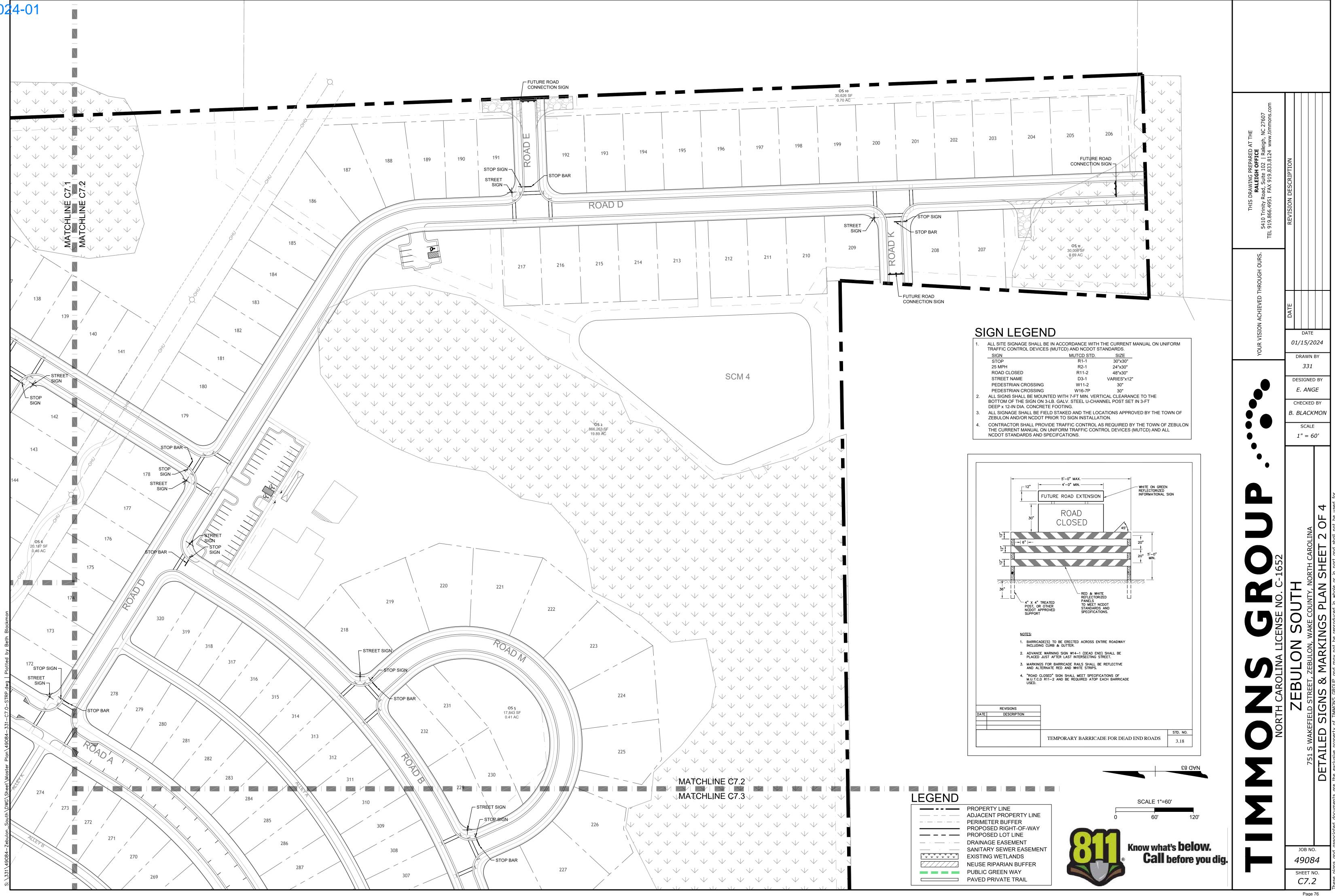


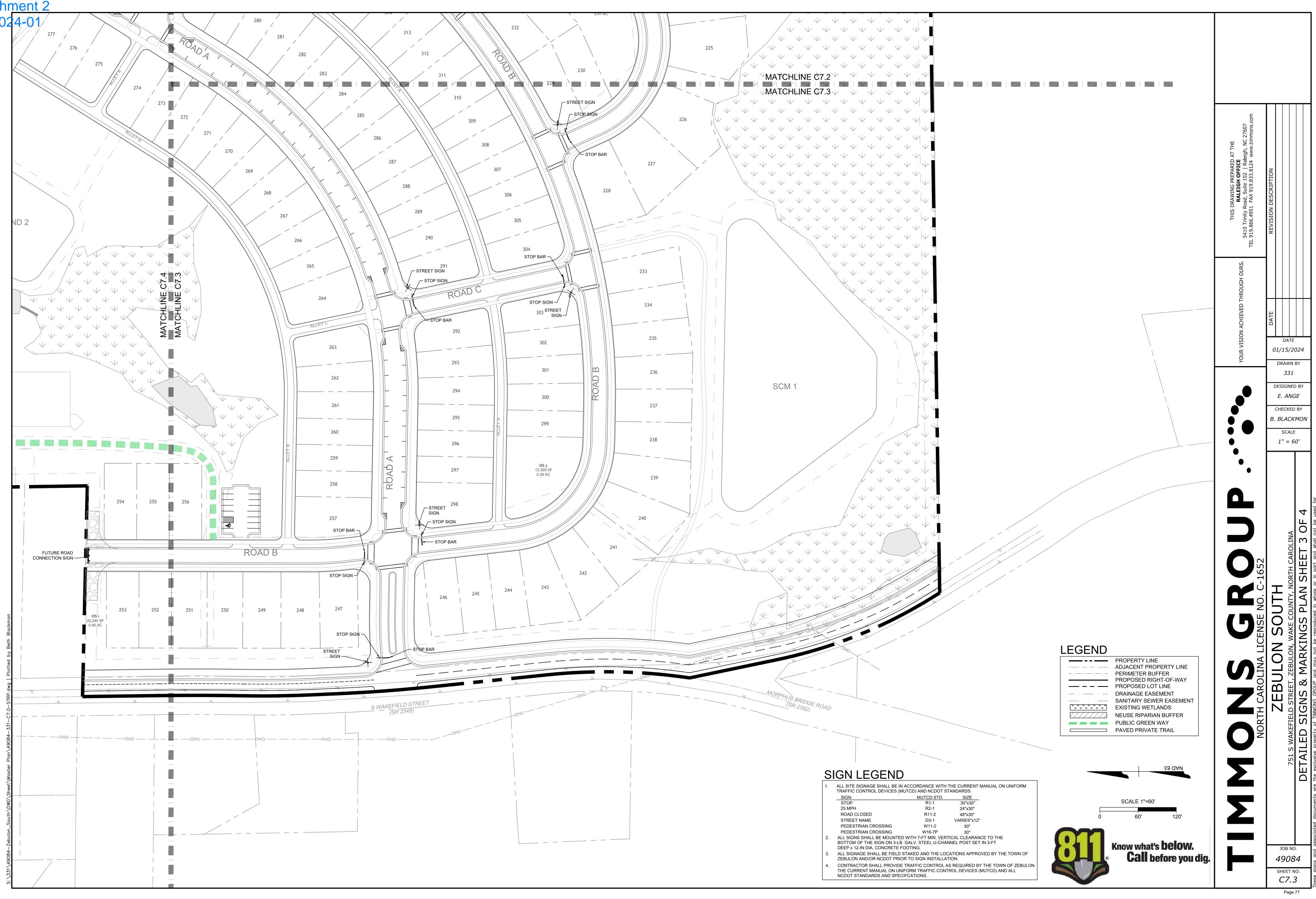

Page 70

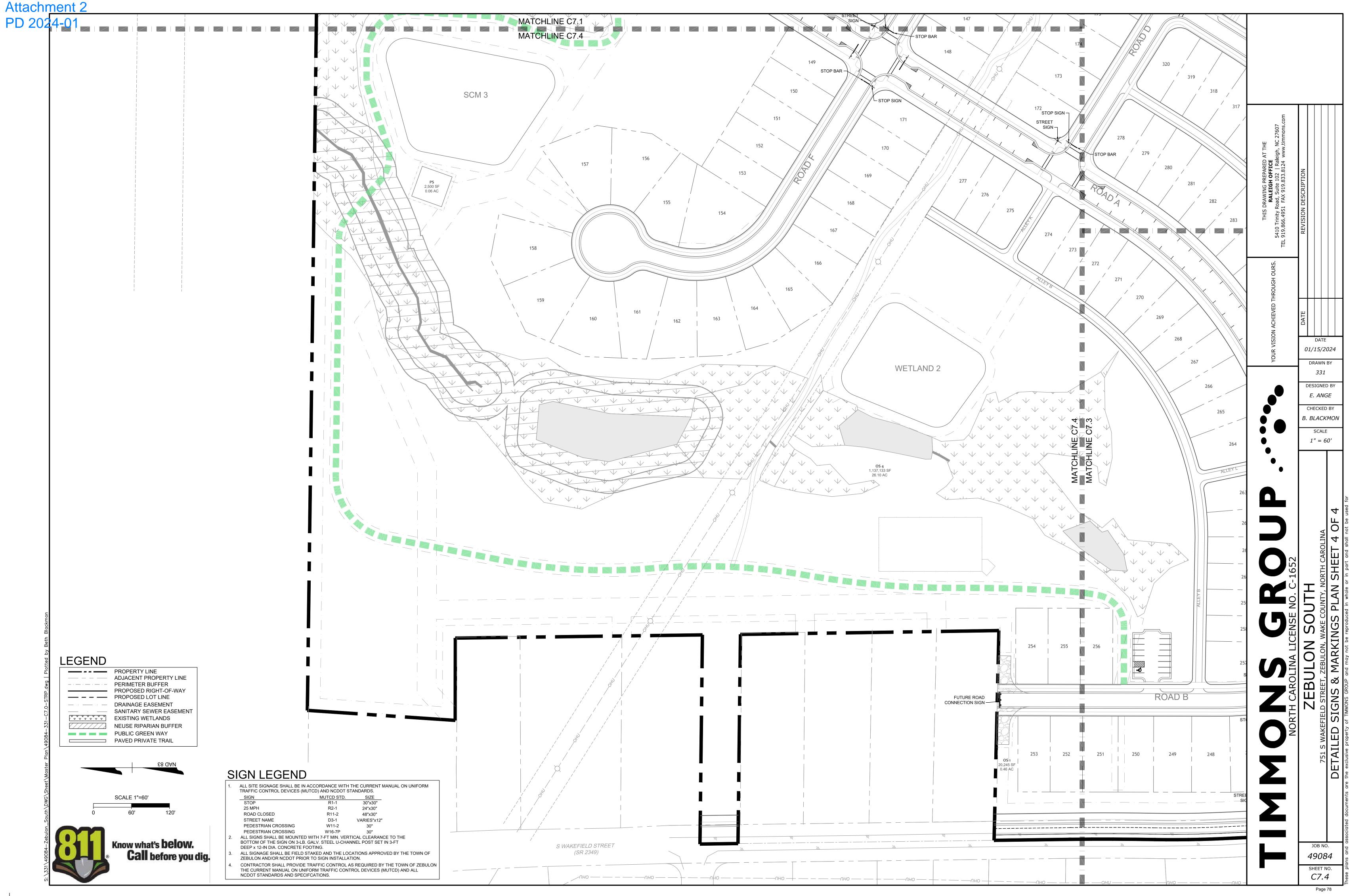
L





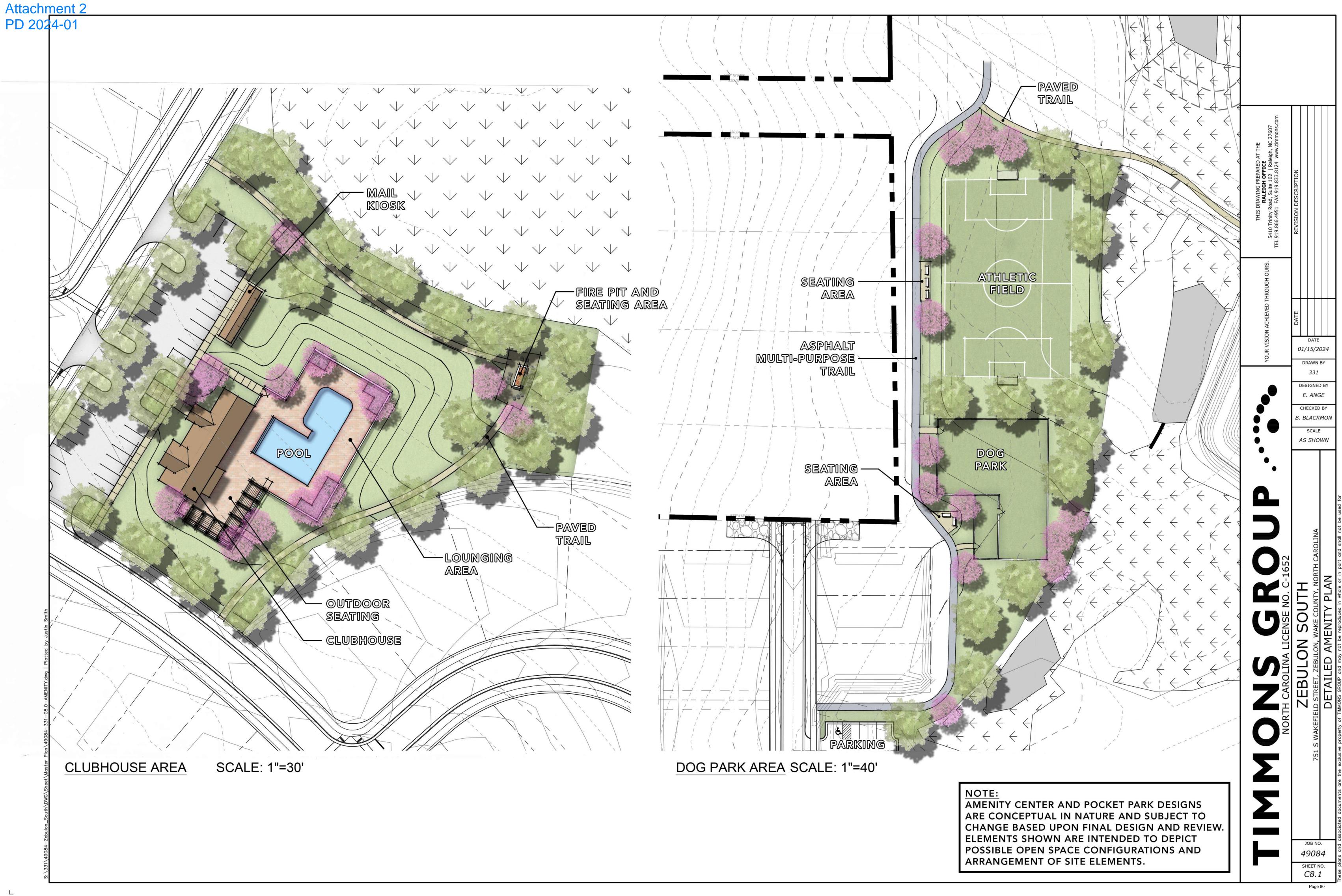





L

Page 76

L

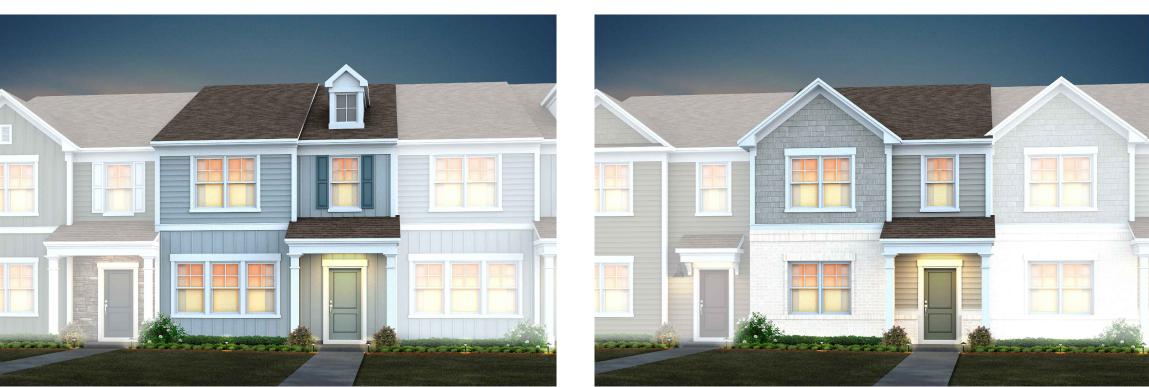


L

These plans and associated documents are the exclusive property of TIMMONS GROUP and may not be reproduced in whole or in part and shall no any purpose whatsoever, inclusive, but not limited to construction, bidding, and/or construction staking without the express written consent of TIM

L

SINGLE FAMILY CONCEDURATION JOB IN SINGLE PATILON SUBLE CURCUPAN SINGLE PATILON SUBLE CURCUPAN SUBLE CUR		I X X O X S C X O U C C 1652 NORTH CAROLINA LICENSE NO. C-1652		YOUR VISION ACHIEVED THROUGH OURS.	TEL	THIS DRAWING PREPARED AT THE RALEIGH OFFICE 5410 Trinity Road, Suite 102 Raleigh, NC 27607 919.866.4951 FAX 919.833.8124 www.timmons.com
JULIEST CALLE ANG					REVISION	N DESCRIPTION
AWN BY 331 IGNED BY ACKMON SCALE N/A SINGLE FAMILY CONCEDINAL AUTONON SINGLE FAMILY CONCEDINAL SINGLE FAMILY CONCEDINAL SINGLE FAMILY CONCEDINAL SINGLE FAMILY CONCEDINAL SINGLE FAMILY CONCEDINAL SCALE 29.1	4 9 SH		DESI E. CHE BL	1/1		
	90 EET 29.		33. IGNI АЛ СКЕ .AC	15/.		
	84 NC 1		1 ED IGI ED KN	20		
	4 D.		BY E BY			



L

FRONT DOOR EXAMPLES

THIS DRAWING PREPARED AT THE RALEIGH OFFICE 5410 Trinity Road, Suite 102 Raleigh, NC 27607 TEL 919.866.4951 FAX 919.833.8124 www.timmons.com	REVISION DESCRIPTION				
) THROUGH OURS.					
YOUR VISION ACHIEVED THROUGH OURS.	DATE		DATE 15/2		
~	[DESI	AWN 331 IGNEI ANC	D BY	
		CHE BL	cked ACK) by MON	
		2	SCALE N/A	-	
I R D D D C D C D C D C D C D C D C D C D			Z51 S WAKEFIELD STREET, ZEBULON, WAKE COUNTY, NORTH CAROLINA		hese plans and associated documents are the exclusive property of TIMMONS GROUP and may not be reproduced in whole or in part and shall not be used for
		4 9 ѕн	908 EET N	8 4 10.	plans and
			.9.2		hese

Page 82

L

hese plans and associated documents are the exclusive property of TIMMONS GROUP and may not be reproduced in whole or in part and ny purpose whatsoever, inclusive, but not limited to construction, bidding, and/or construction staking without the express written consen

ZEBULON SOUTH

Comprehensive Planned Development Document

715 S. Wakefield Street and S. Arendell Avenue Zebulon, North Carolina

5410 Trinity Road Suite 102 Raleigh, NC 27607

P 919.866.4951 F 919.859.5663 www.timmons.com

CIVIL ENGINEERING | ENVIRONMENTAL | SURVEYING | GIS | LANDSCAPE ARCHITECTURE | CONSTRUCTION SERVICES

Zebulon South

Prepared For:

TOWN OF ZEBULON November 2022 August 2023 November 2023 January 2024

Prepared By:

TIMMONS GROUP

5410 Trinity Road, Suite 102 Raleigh, NC 27607 PARKER POE 301 Fayetteville Street, Suite 1400 Raleigh, NC 27601

Developer:

DEACON DEVELOPMENT GROUP PO Box 1080 Wake Forest, NC 27588

Timmons Group Project No. 49084

Copyright © 2023 by TIMMONS GROUP All rights reserved. This document or any portion thereof may not be reproduced or used in any manner whatsoever without the express written consent of TIMMONS GROUP.

5410 Trinity Road Suite 102 Raleigh, NC 27607

P 919.866.4951 F 919.859.5663 www.timmons.com

CIVIL ENGINEERING | ENVIRONMENTAL | SURVEYING | GIS | LANDSCAPE ARCHITECTURE | CONSTRUCTION SERVICES

Table of Contents

1.0 Introduction2
2.0 Vicinity Map
3.0 Permitted Uses
4.0 Design Controls4
5.0 Architectural Standards5
6.0 Parking and Loading9
7.0 Signs9
8.0 Infrastructure9
8.1 Public Water9
8.2 Sanitary Sewer
8.3 Streets and Alleys 10
8.4 Pedestrian Connectivity
9.0 Stormwater Management 10
10.0 Natural Resources and Environmental Data 11
11.0 Pocket Parks and Open Space 11
12.0 Homeowner's Association
13.0 Residential Lot Landscaping
14.0 Consistency with Comprehensive Plan and Land Use Map 12
15.0 Compliance with the UDO
16.0 Preliminary Residential Plan Review
17.0 Additional Zoning Conditions
18.0 Fire Station Land Dedication

1.0 Introduction

Zebulon South is a proposed residential community utilizing the Town of Zebulon Planned Development Zoning as outlined in the Unified Development Ordinance (UDO). The assemblage is made up of three parcels with frontage on both S. Wakefield Street and S. Arendell Avenue. The total existing tract area is about 118.6 acres.

The development is bordered to the north by an existing solar farm. To the east across S. Arendell Avenue are existing single-family homes and a church. South and southeast of the property are existing single-family homes and agricultural fields as well as wooded properties. Existing single-family homes and agricultural fields are located west of the property.

Zebulon South PD will be a phased development of a high-quality master planned community that will provide a variety of housing types and amenities. By utilizing the PD zoning, the master plan containing site specific regulations will guide the development resulting in a well-integrated mix of housing types, lot sizes and densities with open space and preservation of environmentally sensitive areas. The flexibility offered by a PD zoning will result in a more efficient use of the land and network of utilities and streets.

The proposed community will consist of single family detached and attached residential development. The current zoning is R-2 and R-4. The Grow Zebulon Comprehensive Land Use Plan (LUP) designations are General Residential (GR) and Suburban Residential (SR) for the property. The LUP specifically identifies a PD as being a primary land use type in the SR and GR LUP classifications. The development will have an integrated mix of housing types, consistent with the LUP's recommendations for providing a diverse stock of residential choices. The diverse housing choices will promote varied price points, consistent with the LUP. The proposed zoning is Planned Development (PD) which is consistent with the LUP designations.

With over 50% open space (five times the minimum requirement) and at least 15% tree save (three times the minimum requirement), Zebulon South preserves a significant amount of environmentally sensitive areas in the design of the Master Plan, consistent with Land Use and Development Policy E, General Policies G1 and G6, Residential Policy R4, and Parks and Open Space Policy P5. The preserved areas, to a large degree, are located on the perimeter of the development, allowing for concentration of infrastructure improvements in the central area of the development. The Master Plan utilizes existing wetlands, open space and larger lots as buffer for the development, mitigating effects of the development on the surrounding community. Open space, common amenities and an integrated system of walking trails, including a publicly accessible greenway, support a high quality of life for the residents in and around the development. Open space shall exceed the Town of Zebulon minimum requirement for PD zoning.

The development includes the construction of a collector street connecting S. Wakefield Street and S. Arendell Street as shown on the Grow Zebulon Comprehensive Transportation Plan, at a location where it will clearly be a safe distance from the Perry Curtis/S. Arendell intersection, improving connectivity for the community. This is consistent with Land Use and Development Goal 3, Land Use and Development Policy G, General Policy G3, and Residential Policy R3. The internal street network includes three access points to existing public roads promoting access options for residents of the development. Finally, the proposed project will provide an additional benefit for all current and future area residents: dedication of land for a needed second fire station in the growing southern Zebulon. The location of the land dedication is shown on the master plan, is centrally located to serve growth that is already occurring in Southern Zebulon, and will be an important step for the development of Zebulon's second fire station.

2.0 Vicinity Map

Zebulon South PD is located between S. Wakefield Street and S. Arendell Ave as shown on the vicinity map in Figure 1.

FIGURE 1

Zebulon South Timmons Group #49084 PPAB 10143435v8 Page 3 of 15 January 2024

3.0 Permitted Uses

Zebulon South PD proposes to allow the development of residential uses including Single Family Detached and Single Family Attached along with accessory uses as permitted in the R6 zoning district. Figure 2 below provides a listing of the proposed permitted uses. The uses are subject to the regulations of the Town of Zebulon UDO.

Use Category	Specific Use	PD
Residential Uses	Single Family Detached and permitted accessory uses	Р
	Single Family Attached and permitted accessory uses	Р

FIGURE 2

4.0 Design Controls

Development Area - 118.6 acres

Density:

Maximum Density:	2.95 dwelling units per acre
Units:	350 dwelling units
	(maximum 210 SF detached & 140 SF attached)

Building Height:

Maximum Building Height / # of stories: 50 feet / 3 stories

Building Setbacks:

Single Family Detached Fr	<u>ont Loaded:</u>
Front:	20'
Side:	5'
Corner Side:	10'
Rear:	15'
Single Family Detached Re	
Front:	10' max
Side:	3'
Corner Side:	10'
Rear:	20'
Single Family Attached Re	ar Loaded:
Front:	10' max
Building Separation:	10'
Rear:	20'

Buffers:

Streetscape Buffers:	15' Type C Streetscape Buffer (Wakefield St) 15' Modified Type D* Streetscape Buffer (Arendell Ave) *For additional opacity, this buffer shall be comprised of 100% evergreen shrubs and 75% evergreen understory trees

Perimeter Buffers: 20' Type B Perimeter Buffer

Existing vegetation shall be utilized to the extent possible. All streetscape and perimeter buffers shall be provided in accordance with the Town of Zebulon UDO. Landscaped perimeter and street buffers shall include native and adaptive species only.

Disturbance within the buffer is only allowed as follows:

- a. Construction of driveways, public streets and walkways perpendicular to the buffer strip shall be allowed where such construction is necessary for safe ingress and egress to the site. The nature and limits of such construction must be designated on the approved master subdivision plan.
- b. Notwithstanding any other provision pertaining to buffers, City of Raleigh public utilities and easements shall be allowed, parallel and otherwise, within buffers, and the area within such easements shall still count towards buffer and undisturbed buffer calculations.

5.0 Architectural Standards

To encourage multiple architectural styles, buildings will be any variety of Craftsman, Traditional, Colonial, etc. While each of the architectural offerings proposed will have its own identity, a number of common threads will link the homes in the development, including color palettes, materials, roofing, and decorative garage doors. Elevations have been included in an effort to represent the bulk, massing, scale and architectural style of the development.

Requirements for All Homes:

Roofs:

Roof lines shall vary to reduce the scale of the structure and add visual interest. Roof shapes (flat, hip, mansard, gable, or shed for example) and material shall be architecturally compatible with façade elements and the rest of the structure. Shed roofs may be used on porches and dormers.

3-tab/235 shingles are not permitted.

Façades:

The principal structure's front façade must incorporate recesses and projections along at least 50% of the length of the façade. Windows, awnings, and porch area shall total at least 50% of the façade length abutting a public street.

Façades shall incorporate a repeating pattern of change in color, texture, and material modules.

No venting will be provided on any front facades except that when a bathroom is located on the front of the unit, a vent of a similar color to either the siding or the trim may be provided on the front of the unit.

Entryways:

Doors shall have built-in windows; alternatively, a solid door is allowed provided side lights (side windows) are installed immediately adjacent to the solid door. Double front doors are allowed as an option.

Front doors shall be illuminated.

Variations in color schemes and textures are encouraged in order to articulate entryways so as to give greater recognition to these features.

An option to include an overhang on rear exterior doors shall be provided. When this option is chosen by homeowner, the overhang shall extend at least 24 inches.

Windows:

All street-facing exterior windows shall have trim and screens. Trim shall be a minimum of 3 inches wide.

Materials and Color Palette:

Predominant exterior building materials shall be high quality materials including brick, wood, stone, fiber cement, and/or wood composite.

Vinyl siding is not permitted; however, vinyl windows, decorative elements and trim are permitted.

Trim color shall be distinct from façade color.

Front and side porches with open foundations shall have brick or stone piers and openings shall be fully screened with evergreen plantings.

A varied color palette shall be utilized on homes throughout the subdivision and shall include siding, trim, shutter, and accent colors complementing the siding colors.

Porch railings, if included on homes, shall be a complimentary color of the house and shall be made of either aluminum, or composite material.

Accessory buildings, if constructed, shall be of similar materials and colors as the primary single-family home.

All homes will have two or more of the following design features on the front façade (not including foundation):

- a. stone
- b. brick
- c. lap siding
- d. shakes
- e. board and batten
- f. window pediments
- g. recessed windows
- h. side and/or front window box bays
- i. roof gables
- j. roof dormers
- k. roofline cornices
- I. metal roofing as accent
- m. columns
- n. shutters
- o. other decorative features approved by the Planning Director

Screening:

All residential structures shall have screening by vinyl privacy fence installed on the sides or rear of the structure to prevent visibility of roll out refuse carts from the public right-of-way or adjacent properties.

Vegetative screening for HVAC units shall be provided.

Requirements for Single-family Detached Front Loaded Homes:

- 1. Each home shall have a minimum of one story and a maximum of three stories.
- 2. Each home may have a raised slab foundation. Raised slab foundation shall contain stone or brick.
- 3. Finished floor elevations shall comply with UDO Section 4.3.3.P.1.
- 4. UDO 4.3.3.P.2 Single-family detached dwellings shall be configured so that each side of the dwelling includes some form of ingress or egress capable of allowing emergency exit from or entrance into the dwelling. Windows, doors, or other wall penetrations shall be credited towards these standards. Skylights shall also be credited towards these standards in cases where there is sufficient access to the ground from the room.

- 5. Front porches shall extend beyond the front plane of the garage by a minimum of 12" on 25% of the homes constructed. Front Porches shall be allowed to extend beyond the minimum front setback a maximum of 10".
- 6. Garage doors must have windows, decorative details or carriage-style hardware.
- 7. Each garage will either have one light on each side or two lights above the garage door.
- 8. Eaves shall project at least 8 inches from the wall of the structure.
- 9. All gutter downspouts shall discharge to the side or rear of the structure.
- 10. The front elevation and all sides that abut a public street shall contain a minimum of 10% masonry (brick or stone) and shall contain a minimum of two siding materials (i.e. stone and hardiplank or brick and shake).
- 11.A minimum 18-inch masonry (brick or stone) water table on the front façade shall be provided.
- 12.On at least 30% of units, masonry (brick or stone) shall extend the full height of the ground floor.
- 13.Each front porch shall contain a covered stoop.
- 14.No single family detached home shall be constructed with a front elevation or color palette that is identical to the home on either side of it.

Requirements for Single-family Detached Rear Loaded Homes:

- 15.Each home shall have a minimum of one story and a maximum of three stories.
- 16.Each home may have a raised slab foundation or crawl space. Raised slab foundation shall contain stone or brick.
- 17. Finished floor elevations shall comply with UDO Section 4.3.3.P.1.
- 18.UDO 4.3.3.P.2 Single-family detached dwellings shall be configured so that each side of the dwelling includes some form of ingress or egress capable of allowing emergency exit from or entrance into the dwelling. Windows, doors, or other wall penetrations shall be credited towards these standards. Skylights shall also be credited towards these standards in cases where there is sufficient access to the ground from the room.
- 19. Eaves shall project at least 8 inches from the wall of the structure.
- 20.All gutter downspouts shall discharge to the side or rear of the structure.
- 21. The front elevation of each unit shall contain a minimum of 10% masonry (brick or stone) and shall contain a minimum of two siding materials (i.e. stone and hardiplank or brick and shake).
- 22.A minimum 24-inch masonry (brick or stone) water table on the front façade shall be provided.
- 23.All sides of a principal structure that face an abutting public street shall have architectural and decorative features as described above.
- 24.No single family detached home shall be constructed with a front elevation or color palette that is identical to the home on either side of it.

Requirements for Single-family Attached Rear Loaded Homes:

25.Each home shall have a minimum of two stories and a maximum of three stories. 26.Each home may have a raised slab foundation.

- 27. The front elevation and all sides that abut a public street shall contain a minimum of 10% masonry (brick or stone) and shall contain a minimum of two siding materials (i.e. stone and hardiplank or brick and shake).
- 28.No two consecutive units within a single building shall contain the exact same front elevation regarding materials or color palette.
- 29.All sides of a principal structure that face an abutting public street shall have architectural and decorative features as described above.
- 30. The building façade cannot be a single mass; it must be broken up by home articulations of at least 12 inches, at minimum, between every two homes.
- 31. The roofline of each attached building cannot be a single mass; it must be broken up either horizontally and/or vertically between, at a minimum every two homes.

Requirements for Amenities:

A mail kiosk shall be located adjacent to the clubhouse and pool. The kiosk shelter shall be designed with similar architectural style, materials and color palette as the homes in the neighborhood. Cluster mailboxes shall meet the requirements of Section 6.12.7 of the Town of Zebulon UDO.

The clubhouse shall match residential buildings with regard to style, materials and color palette.

Architectural Guidelines:

We commit to the architectural requirements in Section 5.2.4 of the UDO. We will work with Town Planning and Building staff to provide additional architectural features with the exception of Section 5.2.4.E.3.e. Garage doors will not be required to be located at least two or more feet behind the front porch or the primary entrance to the dwelling.

6.0 Parking and Loading

All parking and loading areas shall comply with applicable requirements of the Town of Zebulon UDO Section 5.8. Guest parking shall be constructed for each phase to meet the requirements of that phase, and the total number of guest parking spaces shall exceed the minimum requirement by 76 spaces, which is almost double the requirement.

7.0 Signs

All signage shall comply with applicable standards and requirements of the Town of Zebulon UDO Section 5.11.

8.0 Infrastructure

8.1 Public Water

Public water will be provided via extensions of the existing City of Raleigh water system. Existing water is located in S. Arendell Avenue closer to the Town of Zebulon near Temple Johnson Road. Water infrastructure will be extended from the current terminus and along the site frontage of S. Arendell Avenue and S. Wakefield Street. Infrastructure shall be extended throughout the site as required for development to provide public water to all lots.

8.2 Sanitary Sewer

Public sanitary sewer will be provided via extensions of the existing City of Raleigh sanitary system. A pump station will be constructed on site. Existing gravity sanitary sewer is located north of the site closer to the Town of Zebulon near Temple Johnson Road. The forcemain connection will be made to this existing gravity sewer. The gravity sanitary sewer infrastructure will be extended throughout the site as required.

8.3 Streets and Alleys

All streets shall be in conformance with the Town of Zebulon Transportation Plan and shall be constructed to Town of Zebulon standards and specifications. The project proposes an 70' right-of-way two-lane collector street with on-street parking protected by bump-outs and 10' multiuse paths on either side for additional pedestrian and cyclist safety, and has has been shown on the Master Plan connecting S. Wakefield Street and S. Arendell Avenue. This section will create the connectivity envisioned in the CTP, with a cross section that will fit in the proposed neighborhood. The collector street construction shall follow the phasing of the project. Each section shall be constructed within the phase which it is located.

The ultimate cross section of S. Arendell Avenue is an 80' right-of-way 2-lane median divided roadway. The ultimate cross section of S. Wakefield Street starts as an 80' right-of-way 2-lane median divided roadway that transitions on the south side of the proposed collector street to a 100' right-of way 4-lane median divided roadway. This project shall construct half of the cross-section along the property frontage. The Parks and Recreation Master Plan proposes a greenway along each of these roads. These greenways shall be incorporated as a 10' mixed use path along the roadway in place of a traditional 5' sidewalk.

Alleys shall be located within a 20' right-of-way with 10' of asphalt pavement width.

8.4 Pedestrian Connectivity

Zebulon South has over 6 miles of greenways, multiuse paths, trails, and sidewalks. Sidewalks shall be provided on both sides of all streets throughout Zebulon South PD. Alleys shall not have sidewalks. Multiuse paths will also be provided on Wakefield St and S Arendell Ave, and will connect the greenway to Wakefield St. Bike lanes are provided on both sides of Road A. The neighborhood sections shall also be connected for pedestrians by several 6' paved private trails.

The public greenway shown on the Town's Comprehensive Transportation Plan shall be constructed through the site along the north side of the development. A private trail shall connect the sidewalk system to the public greenway approximately as shown on the Master Plan.

9.0 Stormwater Management

The proposed development will meet all applicable requirements and standards as outlined in the Town of Zebulon Street and Storm Drainage Standard and Specifications Manual. Zebulon

South PD will meet all stormwater quantity and quality reduction requirements. Proposed stormwater control measures (SCMs) will typically consist of wet ponds and other approved measures. SCMs will be located within open space areas and be maintained by the HOA. At least one stormwater control pond shall contain a fountain. At least seventy-five percent (75%) of any required plants in the Stormwater Control Measure ponds, excluding grasses, shall be pollinator plants such as native milkweeds and other nectar-rich flowers.

10.0 Natural Resources and Environmental Data

The development site consists mostly of agricultural fields along with wooded areas surrounding the streams, wetlands and existing pond.

Existing streams and wetlands have been delineated and buffered as required by Town, State and Federal agencies. The site is located within the Neuse River Basin. Any impacts requiring permits shall be obtained and permitted through the Town of Zebulon, NC Division of Water Resources and US Army Corps of Engineers as applicable.

No special flood hazard areas are located onsite per FEMA FIRM Map 3720270500k & 3720270400L dated 7/19/2022.

11.0 Pocket Parks and Open Space

Active and passive open spaces and recreational features will provide the residents with excellent on-site amenities. An integrated system of walking trails traverses open space and environmentally sensitive areas providing a unique amenity for the development. The development provides over eleven acres of open space, including over five acres of active open space. An on-site swimming pool and clubhouse provide pedestrian accessible amenities for the residents of the development.

Pool:

• Minimum 1,000 square foot water surface area

Clubhouse:

• No meeting space, bathrooms and changing rooms only

Tot Lot:

- Minimum 600 square feet including ASTM fall zones
- IPEMA Certified Playground Equipment
- Target age: 2-12 years

Dog Park:

- Minimum 6,000 square feet of fenced area
- Fence shall be a minimum of 4' tall galvanized or vinyl-coated chain link fence
- Shall include a minimum of two benches, one trash can and one dog waste station

Pocket Park:

- Minimum of 8,000 square feet of area for multi-purpose play
- May include benches, paths, trashcans and enhanced landscaping
- Located adjacent to the greenway, along the Arendell/Wakefield St connector
- Pollinator Garden

Private Trails:

• Minimum 6' wide nature trail connecting from sidewalk system to Public Greenway as illustrated on Master Plan. At least two dog waste stations will be provided along trails.

12.0 Homeowner's Association

Prior to the issuance of the first certificate of occupancy for the development, a Homeowner's Association (HOA) shall be formed to govern the affairs of the development. The HOA shall be responsible for maintaining the common areas of the development including any shared stormwater facilities, landscaping, hardscape structures (such as signage, irrigation, lighting, and fountains) and recreation amenities. The Homeowners Association shall appoint one resident to the advisory board at 25% resident occupied, one resident at 50% occupied and one resident at 75% occupied.

13.0 Residential Lot Landscaping

Individual residential lots shall be landscaped per Town of Zebulon UDO for foundation plantings and site landscaping.

Foundation plantings consisting of evergreen shrubs or decorative grasses with a minimum heigh of 18 inches shall be located within 10 feet of any foundation wall visible from a public street excluding alleys. Shrubs shall maintain a maximum on-center placement of three feet.

Site landscaping consisting of one canopy tree for every 2,000 square feet of lot area is required. Canopy trees may be located anywhere within the residential lot except where limited by easements, sight distance triangles or buffer areas.

HVACs and ground-based mechanical equipment shall be screened utilizing evergreen shrubs on sides visible from a public street.

14.0 Consistency with Comprehensive Plan and Land Use Map

Zebulon South PD is consistent with the Town of Zebulon Comprehensive Plan and Land Use Map goals and objectives. The development is located in SR and GR land use categories where PD zoning is a recommended land use type particularly where a mix of housing types and varying densities is proposed.

Proposing both single-family detached and attached product supports the Town's desire for a variety of housing types and price points. This draws new residents and provides additional housing choices for existing residents.

The site design incorporates in a variety of lot sizes supporting the goal of increasing a diverse housing stock for the Town. The variety ensures additional housing choices as well as a variety of price points.

Providing more concentrated development while preserving environmentally sensitive areas and perimeter buffers provides a transition to the existing single-family homes and agricultural properties adjacent to the development.

The integrated system of streets, sidewalks, trails and greenways provide a cohesive pedestrian and vehicular network adhering to the Town's Comprehensive Transportation Plan and provided a thoughtfully planned neighborhood.

15.0 Compliance with the UDO

This Master Plan shall be the primary governing document for the development of Zebulon South PD. All standards and regulations in this Master Plan shall control over general standards of the UDO. Provided, however, that if a specific regulation is not addressed in this Master Plan, UDO regulations shall control. Zebulon South PD will comply with all other relevant portions of the Town of Zebulon Unified Development Ordinance.

16.0 Preliminary Residential Plan Review

Pursuant to UDO Section 3.5.5.B.4, the applicant requests an exemption from subsequent residential preliminary plan review. This PD includes a master plan that is detailed and meets the requirements for a residential preliminary plan. Therefore, upon approval of this PD, the applicant shall be exempt from subsequent residential preliminary plan review.

17.0 Additional Zoning Conditions

In addition to conditions contained throughout the visual and written document, additional written voluntary conditions have been offered to ensure a quality development.

- 1. Uses shall be limited to single family detached, single family attached, and accessory uses as permitted in the R6 zoning district.
- 2. Minimum driveway stem length shall be 20'.
- 3. Single family detached rear load lots shall have a minimum lot size of 4,800 sf.
- 4. Single family detached front load lots shall have a minimum lot size of 6,000 sf.
- 5. Single family attached lots shall have a minimum lot size of 1,260 sf.
- 6. The minimum lot width for front loaded lots shall be 50' reduced from 70'.

- 7. All single family detached rear loaded homes shall have a sidewalk connection from the front door or porch to the public sidewalk.
- 8. The clubhouse and pool shall be completed before the 150th Certificate of Occupancy for any dwelling is issued.
- 9. Zebulon South will apply a maximum 35% impervious requirement for the development as a whole (based on total acreage).
- 10. The applicant commits to provide a minimum 15% Tree Save, three times the minimum requirement.
- 11. All planned improvements to roadways and right-of-way owned and maintained by the NC Department of Transportation (NCDOT), including improvements that require off-site property acquisition and/or easements, are subject to NCDOT approval during subsequent phases of development. If any improvements are not approved by NCDOT, alternative designs may be administratively approved by Town staff.
- 12. If a bus pickup location is approved by Wake County Public Schools in the neighborhood, one bust stop area, including a shelter, a bench, a trash can, and at least 5 bicycle spaces shall be provided with the second phase of development.
- 13. To support community gatherings and active neighborhoods, the applicant commits to providing one neighborhood congregation area, to include:
 - a. a minimum of two (2) larger parking spaces designed for food trucks or delivery vehicles (mobile vendors), with an electrical outlet available;
 - b. one (1) covered seating area with at least 10 designated public seating spaces will be provided adjacent to the Mobile Vendor spaces.
 - c. at least one (1) outdoor grill will be provided adjacent to the covered seating area,

This area may be classified as active open space under UDO § 5.7.

- 14. A single family detached home shall be developed and donated as part of Built to Honor, Wounded Warrior Homes, Operation Coming Home, Operation Finally Home, or similar organization providing homes to veterans. Developer shall be entitled to a waiver of all Town of Zebulon permit fees for this home.
- 15. Final alignment of the greenway will be reviewed and approved by TRC during construction drawings.
- 16. Unless not approved by Wake County, the grave site(s) located at 0 N Arendell Ave (PIN 2705513114) shall be relocated prior to approval of construction drawings.

18.0 Fire Station Land Dedication

The owner shall designate, for the benefit of the Town, a minimum of 2 acres of land (including any existing and future right-of-way) located on Hwy 96/Arendell Ave abutting the property

lines of Wake County PINs 2705410911 (Deed book 16651/page 25) and 2705520074 (Deed book 9289/page 1838) for the future development of a Town of Zebulon Fire Station (the "Fire Station Land"). The location of the Fire Station Land is identified on the Master Plan, and the surveyed boundary line will be identified and approved by the Town prior to Final Plat approval for the phase of development adjacent to the Fire Station Land. After approval of the boundary line, but no later than the approval of the Final Plat for the phase of development adjacent to the Fire Station Land, the developer shall dedicate to the Town an easement (or superior title) by deed or other instrument, approved by the Town Attorney as to form, for the Fire Station Land. The actual design, construction, and installation of the fire station and associated amenities shall be done by the Town, or another public entity and are not commitments of this zoning case. This zoning condition may also be satisfied by the Town Manager, or his/her designee, stating, in writing, that the Fire Station Land is no longer needed by the Town because the Town has acquired an alternative site for the new fire station or otherwise does not wish to accept the land for the development of a fire station. This condition will expire and be of no effect on the date that is ten (10) years from the effective date of the rezoning if a Final Plat has not been filed on or before that date.

ZEBULON

MUNICIPAL UTILITY ALLOCATION POLICY

Statement of Purpose and Goals

Introduction

Drinking water supplies throughout the greater City of Raleigh distribution system are finite, subject to disruption by drought and/or other calamity and Zebulon's allocation is contractually limited. The Town staff, the Planning Board, and the Board of Commissioners have given a great deal of thought and study as to the best utilization of this valuable resource to benefit current and future citizens.

The Town of Zebulon's municipal water and sewer capacity is a valuable resource that must be conserved and apportioned to new development projects that promote the Town's policy of ensuring a diversified tax base and housing supply. Such an allocation policy will tend to promote diversity of housing available to a wide cross section of citizens of diverse socio-economic backgrounds and promote economic viability and sustainability by providing for retail and other commercial development within the Town of Zebulon.

In order to preserve and enhance property values, manage its limited water supply as a vital natural resource, promote economic development, and incentivize smart growth practices, the allocation of Zebulon's potable water capacity shall hereafter be in accordance with this policy.

Land Use and the Tax Base

The local government expense of providing fire and police protection, schools, parks, social services, water and sewage systems and other essential public services to residential neighborhoods is generally greater than the ad valorem tax revenue generated by such neighborhoods. On the other hand, the cost of providing services to commercial and industrial development is generally less than the tax revenue accruing to the local government. Having a predominantly residential tax base would require the Town of Zebulon over time to assess a higher tax levy to raise funds to provide essential services or to reduce the level of public services provided. This is one reason among many why local governments including Zebulon strive to achieve a balance of both residential and non-residential growth.

Zebulon's historical development is transitioning from industrial to residential, leading to a current tax base of approximately 40% residential and 60% commercial/industrial. The following table shows Zebulon's tax base over the past five years ¹

Fiscal Year	Commercial	Residential
2021-2022	60%	40%
2020-2021	65%	35%
2019-2020	72%	28%
2018-2019	73%	27%
2017-2018	71%	29%

Zebulon Tax Base (Past Five Years)

¹ "Tax Base Components | Wake County Government," Wake County North Carolina,

https://www.wakegov.com/departments-government/tax-administration/data-files-statistics-and-reports/tax-base-components

As shown in the table above, the residential tax base has steadily increased proportionally over the past five years. This trend in the tax base data, combined with the vested planned residential development in the coming years, demonstrates the need for the Town to address this shift through policy. The Zebulon Board of Commissioners believes that it is fiscally responsible and otherwise in the public interest to promote and encourage non-residential development in the jurisdiction as an alternative to rapid residential development to keep the ratio between the two development types well balanced. A goal of maintaining a tax base of 60% residential and 40% commercial/industrial is hereby established.

Development Goals for the Full Build-Out of Zebulon

Communities without a wide variety of housing types and styles also put pressure on the Wake County Public School System which remains committed to having students of a wide range of socio-economic backgrounds attend each local school. In addition to the goal of maintaining a balanced tax base, the Town of Zebulon is committed to achieving a balance of housing types within its jurisdiction.

This commitment is consistent with both the Town's Strategic Plan and Comprehensive Plan. The *Town of Zebulon: Vision 2030 Strategic Plan* lists "Growing Smart" as one of its three focus areas, calling for the planning of appropriate land uses and affordability of the community. The *Grow Zebulon Comprehensive Land Use Plan* identifies six guiding principles for the town. Two of those principles are "Zebulon will be BALANCED" and "Zebulon will be PRUDENT." A balance should be achieved for the Town's tax base, its land uses, and its housing types to allow for an affordable community with employment and business opportunities that will help the community prosper. The achievement of balance in Zebulon will contribute to the Town being prudent. As stated previously, a local government's cost of providing services to commercial properties is generally less than that of residential properties. Having a balanced tax base that is not proportionally over-saturated with residential properties will contribute to keeping the Town financially sound.

Below are three development goals that are integral to the utility allocation policy and the future of the Town. These development goals apply to the entire, future Zebulon jurisdiction including the ETJ, short-range and long-range urban service areas.

GOAL #1: Maintain 60%-40% ratio of residential to non-residential tax values.

Upon Adoption-January 2021	
60% Residential - 40% Non-Residential	

GOAL #2: Residential Housing Percentage Breakdown SFD|TH|MF - 75%|10%|15% (Note - Duplex counted as MF)

Upon Adoption-January 2021	
80.5% 0.5% 19%	

GOAL #3: Encourage Mixed Use Development to improve pedestrian connectivity to non-residential activity.

Policy and Procedures

Water Allocation

All existing parcels of real property within the corporate limits of Zebulon, regardless of proposed acreage, shape, or location as of the adoption of this ordinance are entitled to **115 gallons per day** of water allocation to build and sustain a single family or a limited business or commercial use. No additional water allocation will be awarded for proposed development except in accordance with the requirements of this policy.

Wastewater Connection

All projects considered for utility allocation must provide a wastewater system connection with adequate receiving capacity, as determined by the Wake County Health Department and/or City of Raleigh Public Utilities Department and approved by the Town of Zebulon Planning Director.

General Conditions & Requirements

- All proposed projects must be within the existing corporate limits or have filed a valid and complete petition for Voluntary Annexation.
- All proposed projects under consideration must have a complete application submitted for the appropriate Master Plan, Subdivision, Site Plan, Special Use Permit, Conditional Zoning Request, Zoning Compliance Permit, Building Permit, or any other necessary approval.
- All projects are subject to a Utility Allocation or Developer's Agreement approved by the Town's Board of Commissioners. If the Developer/Applicant fails to meet all terms of that agreement the unused allocation will be reclaimed, no new building permits will be issued, and no new connections to the water or wastewater systems will be permitted. Active building permits will have certificates of occupancy held until mitigating measures are agreed to by all parties.
- Projects with proven vested rights upon adoption of this ordinance will be permitted to finish their projects as previously approved.
- Public water may be utilized for irrigation purposes so long as the Primary Use associated with the site has previously gained water allocation through the Town.
- Any third parties who buy land to build upon are bound by the approved Utility Allocation Agreement or Development Agreement for that property. If the agreement is not fulfilled, the above terms and conditions still apply regardless of who owns the land.

Compliance Required

This policy allocates municipal water in gallons per day for new development proposals, master plans, site plans, building plans, and/or structures seeking construction approval. Each phase of a phased development must comply with the terms and development schedule of an approved Utility Allocation Agreement before the next phase can begin or the development risks loss of previously reserved allocation.

Previously dedicated but unused allocation can be reclaimed by the Town's Board of Commissioners for:

- (1) the lack of compliance with any existing Utility Allocation or Developer's Agreement;
- (2) violation of applicable town policy provision, ordinance standard, condition of approval;
- (3) violation of federal or state regulation; or
- (4) other good cause.

Utility Allocation Application Process

Upon receiving a new development proposal requesting water capacity, the Planning Staff shall direct the Developer/Applicant to demonstrate the project's qualifications. A Developer/Applicant shall state on the appropriate application, and stipulate within an approved Utility Allocation Agreement, the use or uses proposed to be built as part of the project along with the construction design and materials. Town action on the request will be deferred until the application is complete and the requested information has been provided.

Proposed projects shall complete the UTILITY ALLOCATION WORKSHEET according to its instructions to determine the total number of points achieved. The Utility Allocation Application package will be reviewed for completeness and compliance by the Technical Review Committee (TRC) in conjunction with the applicable development approval for the subject property (conditional rezoning, planned development, site plan, etc.).

Qualification for water allocation is judged by:

- The level of developer investment
- Anticipated increases in the Town's ad valorem tax base
- Construction and dedication of public infrastructure
- Provision of employment opportunities for Zebulon citizens
- Provisions of diversified housing stock
- Preservation of open space
- Protection of existing tree canopy
- Conservation of existing habitat
- The provision of recreational amenities for current or future Zebulon residents

Projects must be awarded 60 TOTAL POINTS or more to merit water allocation.

Points are awarded in two categories, BASE POINTS and BONUS POINTS. BONUS POINTS are broken down into six categories.

- 1. Nonconformity Abatement and Public Infrastructure Improvements
- 2. Green Development Standards
- 3. Gateway and Transit Improvements
- 4. Amenities
- 5. Affordable Housing
- 6. Other

Unless a project can gain all necessary BONUS POINTS from a single improvement identified in the approved list, improvements must be made from at least two of the categories of BONUS POINTS.

All features and/or improvements that earn a projects BONUS POINTS must be clearly shown on a development plan for each application type.

Expiration of Allocation Award

A developer/applicant who has secured allocation according to this policy and hasn't progressed in construction plan approval, building permit approval, or on-site construction for a period of 12 months will lose the award of allocation without benefit.

Annual Review of Policy & Appeals

This policy shall be reviewed in January of each year and, when appropriate, readjusted by the Town's Board of Commissioners. The Town's overall progress on policy goals will be considered and the multipliers and/or point thresholds readjusted accordingly.

Appeals of any provision of this ordinance shall be decided upon by the Town's Board of Commissioners upon receiving a recommendation from the Planning Board.

BASE POINTS: List of Preferred Land Uses and Required Characteristics:

The uses listed below have been determined to be the most desirable and important uses for the Town of Zebulon to promote and maintain economic and housing diversity. Only projects that completely meet the stated performance characteristics will be considered for utility allocation. Please select one of the following Base Point classifications.

60 Base Points	Single Family Homes (Expedited Subdivision or Recombination) Newly constructed Single Family Homes built upon new lots created via the minor subdivision, exempt subdivision, expedited subdivision (3 or fewer lots) or recombination process.
60 Base Points	Change of Use This category captures renovation, rehabilitation, up-fit or retrofit of existing buildings or portions of buildings that pre-date this policy and require a code summary sheet, change in building occupancy, certificate of occupancy, building permit and/or building inspections and do not increase the utility demand from the previous use of the building.
45 Base Points	Business Office/Finance/ Insurance / Professional Services Center - Large Qualifying projects must exceed 100,000 square feet of heated floor space and create at least 150 employment positions that exceed the average annual Wake County salary according to Wake County Economic Development or the Employment Security Commission. Employees perform professional, scientific, and technical services for others. Such services require a high degree of expertise and training and provide high salaried employment opportunities. Examples include software engineering, legal, medical, accounting, consulting, architectural, biomedical, chemical, research and development, and administrative services. Finance or Insurance Centers shall also pool financial risks by underwriting insurance and annuities. Some establishments support employee benefit programs. Examples include bank or credit union headquarters, brokerages, investments, insurance, financing, and data processing establishments.
45 Base Points	Manufacturing/Industrial Employment Center Manufacturing or Industrial establishments in this category exceed 200,000 square feet of floor space located in plants, factories, or mills and employ power-

	driven machines and materials-handling equipment. They may also employ workers who assemble or create new products by hand, without the characteristic machinery-intensive enterprise. Many manufacturing establishments process products of agriculture, forestry, fishing, mining, or quarrying as well as products of other manufacturing establishments. Most manufacturing establishments have some form of captive services (e.g., research and development, and administrative operations, such as accounting, payroll, or management) in conjunction on-site.
45 Base Points	Governmental Uses/Public Administration This category encompasses centers for all government functions; it includes federal, state, and local government agencies that administer, oversee, and manage public programs and budgets and have executive, legislative, or judicial authority. Establishments develop policy, create laws, adjudicate civil and criminal legal cases, and provide for public safety and national defense.
40 Base Points	Single Use Retail Newly constructed single use, stand-alone building used primarily for retail, restaurant, or similar commercial use.
40 Base Points	Hotels, Motels, or other Accommodation Service Establishments This category serves lodging and short-term accommodations for travelers. They may offer a wide range of services, from overnight sleeping space to full-service hotel suites. They may offer these services in conjunction with other activities, such as entertainment or recreation. Stays in these establishments are generally less than one month. This classification does not include boarding or rooming houses.
40 Base Points	Arts/Entertainment/Museums These establishments operate facilities or provide services for a variety of cultural, entertainment, and performing art functions. Establishments include those that produce, promote, or participate in live performances, events, or exhibits intended for public viewing; those that preserve and exhibit objects and sites of historical, cultural, or educational interest; and those that operate facilities or provide services to serve activities associated with the aforementioned.
40 Base Points	Amusement, Sports or Recreational Establishment Establishments in this category operate either indoor or outdoor facilities offering family activities (i.e. sports, recreation, or amusement) and provide services, such as facilitating amusement in places operated by others, operating recreational sports groups and leagues. Examples include golf courses, indoor sports venues, bowling alleys, miniature golf courses, athletic clubs, skating rinks and arcades. This category may be used in conjunction with a commercial or residential development as a mixed use development.
40 Base Points	Mixed Use Development (Transit Oriented)Newly constructed or substantially rehabilitated collection of vertically mixedretail, office and residential uses in multi-story buildings centered within a one-half mile radius of an existing rail or bus transit station or the intersection of

	-
	Horton Street and North Arendell Avenue in Downtown Zebulon. In order to qualify as mixed use, developments must dedicate at least one-third of the total heated square footage to residential use and the remainder to a mix of retail and office uses. All three use types must be represented and at least 10% of the heated square footage must be dedicated to street level, storefront retail uses.
40 Base Points	Mixed Use Development (Urban Infill) Newly constructed or substantially rehabilitated collection of mixed retail, office and residential uses in a multi-story building on a previously developed parcel within the corporate limits. In order to qualify as mixed use, developments must dedicate at least one-third of the total heated square footage to residential use and the remainder to a mix of retail and office uses. All three use types must be represented and at least 10% of the heated square footage must be dedicated to street level, storefront retail uses.
40 Base Points	Mixed Use Development (Greenfield) Newly constructed collection of mixed retail, office and residential uses in a multi- story building or buildings on a previously undeveloped parcel. In order to qualify as mixed use, developments must dedicate at least one-third of the total heated square footage to residential use and the remainder to a mix of retail and office uses. All three use types must be represented and at least 10% of the heated square footage must be dedicated to street level, storefront retail uses.
35 Base Points	Housing Services for the Elderly Establishments This category offers housing services for the aged, not requiring a license from the North Carolina Department of Health and Human Services, such as independent retirement housing, multi-unit assisted housing with services (MAHS), and continuing care retirement centers. All facilities must provide, but not necessarily be limited to, the following services/facilities: On-site laundry facilities, on site management, guaranteed transportation services at least four days per week, on-site exercise facilities, on-site computer access, and a clubhouse/common lounge area for all residents.
35 Base Points	Mixture of Use Development (Retail/Office-Institutional/Commercial) Newly constructed collection of horizontally arranged uses including retail, office- institutional and commercial within a master planned project on a previously undeveloped parcel or parcels totaling at least 10 acres. Mixture of use projects must include at least two (2) use types with at least 25% of the space devoted to each use type included in the development.
30 Base Points	Retail/Commercial Center Newly constructed center of at least 50,000 square feet, typically containing an anchor such as a grocery store and other smaller spaces and/or outparcels for subordinate uses. Uses are entirely consumer-driven and include all manner of retail, service and office possibilities.
30 Base Points	Business Office/Finance/ Insurance / Professional Services Center – Medium Qualifying projects must exceed 50,000 square feet of heated floor space and create at least 75 employment positions that exceed the average annual Wake County salary according to Wake County Economic Development or the

	
	Employment Security Commission. Employees perform professional, scientific, and technical services for others. Such services require a high degree of expertise and training and provide high salaried employment opportunities. Examples include software engineering, legal, medical, accounting, consulting, architectural, biomedical, chemical, research and development, and administrative services. Finance or Insurance Centers shall also pool financial risks by underwriting insurance and annuities. Some establishments support employee benefit programs. Examples include bank or credit union headquarters, brokerages, investments, insurance, financing, and data processing establishments.
30 Base Points	Business Office/Finance/ Insurance / Professional Services Center – Small Qualifying projects 50,000 square feet of heated floor space or less. Employees
	perform professional, scientific, and technical services for others. Such services require a high degree of expertise and training and provide high salaried employment opportunities. Examples include software engineering, legal, medical, accounting, consulting, architectural, biomedical, chemical, research and development, and administrative services. Finance or Insurance Centers shall also pool financial risks by underwriting insurance and annuities. Some establishments support employee benefit programs. Examples include bank or credit union headquarters, brokerages, investments, insurance, financing, and data processing establishments.
30 Base Points	Multi-Tenant Retail Center Newly constructed center 50,000 square feet or less, typically containing a more than one tenant space within a single structure. Uses are entirely consumer- driven and include all manner of retail, service and office possibilities.
30 Base Points	Single Use Office Newly constructed single use, stand-alone building used primarily for office and professional.
30 Base Points	Bungalow Court or Pocket Neighborhood Newly constructed Bungalow Court or Pocket Neighborhood per the standards of the Unified Development Ordinance.
30 Base Points	Distribution/Trucking Center Newly constructed center of at least 500,000 square feet where products and resources are transported to and delivered from via truck or rail.
25 Base Points	Warehouse Newly constructed center of at least 500,000 square feet where products and resources are stored.
25 Base Points	Religious Institutions Any facility such as a church, temple, synagogue, mosque or monastery used for worship by a non-profit organization and their customarily related uses.
20 Base Points	Intensive Industrial Uses: Uses classified as Special Land Uses within the Industrial Classification.

20 Base Points	Multi-Family Residential & Condo Units	
20 Base Points	Major Subdivision 4- 25 Lots Any subdivision of land of four (4) – 25 Lots.	
10 Base Points	Major Subdivision 26 lots or more10Any subdivision of land of 26 or more lots.10	
Board Determination	All Other Uses Not Categorized This category of use captures all other uses not categorized elsewhere. Allocations for such uses are left to the discretion of the Town's Board of Commissioners upon recommendation of the Planning Board and acted on a case- by-case basis.	

BONUS POINTS

Proposed projects can gain BONUS POINTS by agreeing to provide any of the following items over and above the UDO or Standard Specification requirements for their development proposal.

NOTE: No bonus points are given for UDO requirements.

CATEGORY 1 – Non-Conformity Abatement and Public Infrastructure Improvements

Section 1A - Abatement of Nonconformities	(Max - 3 points)
Abatement of any existing non-conforming structures	3
Abatement of any existing non-conforming use of land	2
Abatement of any existing non-conforming lots	1

Section 1B - Roadway Infrastructure Not Warranted by TIA/UDO/CTP	(Max - 10 points)
Construction of full cross section of existing off-site public street	5
Nearby intersection improvements	5
Traffic signal improvements	4
Signage or striping improvements	1

Section 1C - Off-Site Public Greenway Improvements	(Max - 10 points)
Construct more than 4000 linear feet of 10-foot-wide path	10
Construct more than 3000 linear feet of 10-foot-wide path	8
Construct more than 2000 linear feet of 10-foot-wide path	6
Construct more than 1000 linear feet of 10-foot-wide path	4
Construct 500 to 1000 linear feet of 10-foot-wide path	2

Section 1D – Off-Site Bike-Ped Improvements	(Max – 5 points)
Construction of off-site sidewalk improvements (Subject to TRC Approval)	2
Construction of off-site bike lane improvements (Subject to TRC Approval)	3

CATEGORY 2. Green Development Standards/ Building & Site Design

Section 2A - Conservation of Natural Habitat Meeting Active Open Space Requirements as Defined in the UDO		(Max - 10 points)
Requirem		
	One point per acre up to 10 acres	1 - 10

Section 2B - Parking		(Max – 15 points)
S	Structured Parking Facilities - must reduce footprint by 20%	10
E	EV Charging Stations (two-port)	5
F	Provision of on-street public parking (1 point per stall up to 10 Max)	1 - 10 10

Section 2C - Stormwater SCM's	(Max – 10 points)
Stormwater - Restored Riparian Buffer	10
Construct a fountain or other stormwater amenity within the BMP/SCM	4 4
(as approved by Staff)	
Stormwater - Landscaped Green Roof	5
Stormwater - Underground capture system for on-site irrigation	5
Stormwater - Bioretention	5
Stormwater - Wetland	5 5
Exclusive use of porous pavement in parking areas where suitable	2

Section 2D - Building/Site Design	(Max - 20 points)
Compliance with residential design guidelines per Section 5.2 of the UDO	¹⁰ 10
Non-Residential building design that incorporates an active upper story.	5
Pedestrian oriented and walkable site design which promotes alternatives to vehicular travel within the development. (Subject to TRC Approval)	5

Section 2E - Infill/Redevelopment	(Max – 16 points)
Development or Redevelopment within DTC	10
Development or Redevelopment within DTP	6
Redevelopment of previously vacant building space over 20,000 square feet	6
Redevelopment of previously vacant building space under 20,000 square feet	5

Section 2F - Historic Preservation	
Historic Structure Preservation via Deed Restriction (Determined by TRC)	10
Restoration of Historic Structure (Must be approved by TRC)	5

Section 2G – LEED Certification	(Max – 10 points)
LEED Certification for Neighborhood Development (LEED ND)	10
Platinum LEED Certification	10
Gold LEED Certification	8
Silver LEED Certification	6
Bronze LEED Certification	4
LEED Certified Certification	2

CATEGORY 3 – Outdoor Enhancement and Transit Improvements

Section 3	8A – Outdoor Enhancement	(Max – 12 points)
	Construction of a Parkway Street Section on a Collector level street	5

Construction or Preservation of Gateway Landscaping or Structure (Subject to Comprehensive Plan Consistency and TRC approval)	5		
Outdoor Display of Public Art (Subject to TRC Approval)	4		
Public Facing Outdoor Mural (Subject to TRC Approval)	4		
Maintenance of Roadside Gateway Plant Bed (requires maintenance agreement)	3		
Planting Pollinator Garden (225 Square Foot Minimum)	3	3	
Exclusive use of xeriscaping techniques and drought tolerant species	3		
Enhanced Roadside Landscaping (Subject to TRC Approval)	2		
Enhanced Buffer Landscaping (Subject to TRC Approval)	2		
Construction of a Parkway Street Section on a Local level street	2		
Installation of Native Shade Tree Species (per Tree up to 10 Trees)	1	9	

Section 3B – Transit (Pursuant to location being adjacent to a planned or active transit route)	(Max - 8 points)
Provision of more than 50 designated Park & Ride Stalls	8
Provision of 25 designated Park & Ride Stalls	5
Provision of 10 designated Park & Ride Stalls	3
Provision of mass transit easement w/ structure (bus stop with shelter & bench)	2

CATEGORY 4 - Amenities

Section 4A - Private Greenway	(Max - 3 points)
Construction of more than 3000 linear feet private greenway	3
meeting Town of Zebulon standards	
Construction of more than 2000 linear feet of private greenway	2
meeting Town of Zebulon standards	2
Construction of more than 1000 linear feet of private greenway	1
meeting Town of Zebulon standards	

Section 4B – Pool (Combinations may be approved by TRC)	(Max - 8 points)
Olympic Pool and Aquatic Center	8
Junior Olympic Pool	5
Lap Pool (four lane minimum)	3
Resort Style Pool	2 2
Any Other Pool	1

Section 4C - Outdoor Deck/Patio	(Max - 3 points)
Deck/Patio - More than 3000 square feet	3
Deck/Patio - More than 2000 square feet	2
Deck/Patio - More than 1000 square feet	1 1

Section 4D - Pool Amenities (Max - 2 points)		
	Section 4D - Pool Amenities	(Max - 2 points)

Jacuzzi/Hot Tub/Whirlpool	2
Water Playground with apparatus	2
Sauna/Steam room	2

Section 4E - Clubhouse	(Max - 10 points)
Commercial Coffee Shop with at least 10 designated public seating	10
spaces.	
With full kitchen and over 4000 square feet of meeting space	10
With full kitchen and less than 4000 square feet of meeting space	9
Meeting space without kitchen more than 3500 square feet	8
Meeting space without kitchen 2500 - 3499 square feet	7
Meeting Space without kitchen 1500 - 2499 square feet	5
Meeting Space without kitchen less than 1500 square feet	4
No meeting space, bathrooms and changing rooms only	3 <mark>3</mark>
Outdoor Kitchen or Grills	2 2

Section 4F - Additional Active Recreation	(Max - 10 points)
Gymnasium (regulation size indoor basketball court)	10
Baseball/Softball Field (regulation size)	5
Football/Soccer Field (regulation size)	5
Skate Park	5
Tennis Courts (two regulation courts, fenced)	5
Multi-Use Hardcourt (two regulation basketball courts, street hockey, fenced)	5
Pickleball Court (three regulation courts, fenced)	5
Pocket Park – 5,000 square feet	3 3
IPEMA Certified Playground Equipment	4 4
Lighted Field of Play for nighttime use	3
Electronic Scoreboard or Covered Dugouts or Bleachers	3
Community Garden – 15-foot by 15-foot, with water access and potting shed.	3

Section 4G – Additional Urban Open Space Enhancements (Within Non Residential Zoning Districts)	(Max – 10 points)
Fountain	2
Canopy Including Fixed Permanent Seating	2
Drinking Fountain with Pet Fountain	2
Permanent Game Tables	1
Permanent Tables with Shade Cover	1
All Weather Bulletin Board	1
Covered or Internal Bicycle Parking	1
Artist-Design Bicycle Racks	1
Little Free Library	1
Drinking Fountain	1
Public Work Bike Stand With Tools	1

CATEGORY 5 – Affordable Housing

developme	a percentage of the provided housing stock of a proposed nt cost no more than 30% of a household income not exceeding Area Median Income (AMI)	(Max – 10 Points
	15% Affordable Housing	10
	10% Affordable Housing	5

CATEGORY 6 – Other

(Max 5 Points)

Integrated public safety operation systems (EX. Flock Safety or others	3
as approved by the Police Department)	
Smart Waste and Recycling Stations	2

Total 68

434 Fayetteville Street, Ste 1500 Raleigh, NC 27601 Office: 919.836.4040 NC Licensure # F-0165 www.wsp.com

Date:	January 23, 2024
То:	Adam Culpepper, Senior Planner, Town of Zebulon Andrew Suriano, Managing Partner, Deacon Development Group Beth Blackmon, Senior Project Manager, Timmons Group Jeff Hochanadel, Principal, Timmons Group Ashley Honeycutt Terrazas, Associate, Parker Poe
From:	Sravya Suryadevara, PE, Traffic Engineering Director, WSP USA Inc.
Subject:	Zebulon South Supplemental Traffic Impact Analysis Review

Per your request, WSP has performed a review of the Zebulon South development traffic impact study resubmitted by Timmons Group, dated January 2024 and the supplemental memo, also dated January 2024. We have the following comments:

- Based on the updated site plan, the number of units has changed for the site since the TIA was completed. Please add a note in the body of the TIA report discussing this change and confirming that the analysis is still valid because it is more conservative than the current site plan.
- Please confirm site access locations in the Build Synchro files matches the site plan. If Site Access 2 is within 165 feet of Perry Curtis Road, this access will need to be right-in/right-out only. This is based on the 2003 NCDOT's Policy on Street and Driveway Access.
- For tables 3-1, 3-2, and 5-1 in the TIA and tables 1 and 2 in the supplemental, please provide a footnote to describe the meaning of the "#" symbol in the queue lengths.
- For tables 3-1, 3-2, 5-1, and 5-2 in the TIA and tables 1 and 2 in the supplemental, please designate which intersections are unsignalized/signalized to aid in the differentiation of queues which are in feet and queues which are number of cars.
- For tables 3-1, 3-2, 5-1, and 5-2 in the TIA and tables 1 and 2 in the supplemental, please add units for queues.
- Include NCDOT comments from July 2022 referenced in section 6 in the appendix of the TIA if available.
- Please add a complete list of recommended improvements to the supplemental memo for clarity, even though the recommendations do not change from the TIA.
- The following comment responses were provided by Timmons Group based on the initial submittal review. Please add these explanations in the body of the TIA report to provide a full picture of the analysis methodology:
 - Include discussion on why count data was not balanced between intersections and why Perry Curtis Road volumes were used for site access 1 and 2.

TG Response: Traffic volumes were not balanced to the presence of commercial site driveways and various side streets. To provide the most accurate analyses, corridor volumes were not balanced. Site Access 1 and 2 volumes were balanced with Perry Curtis due to the driveways' proximities.

• Please provide justification for the 3% growth rate used for background volume development.

TG Response: The 3% growth rate is based on published AADTs.

In the Build scenario turn lane analysis, it's mentioned that both S Wakefield Street and NC 96 will have
 2026 AADTs higher than 4,000 vpd. Please clarify if this is based on the existing AADT value and an assumption of growth or if this is based on the existing AADT including an assumed growth rate.

TG Response: NC-96's AADT currently exceeds 4,000 VPD. Per future projections, this value is not projected to decrease. S Wakefield Street AADT projections are based on recent AADT counts (grown at 3% annually to 2026) and 30% of daily site trips on S Wakefield Street north of Site Access 3.

• Site access roads are listed as needing 100-feet of IPS. Please define IPS as internal protected stem in the text and reference the standards that guide this recommendation.

TG Response: IPS was defined as "internal protected stem" in the updated TIA. IPS requirements are defined in the NCDOT's Driveway Manual.

• The alignment of the S Wakefield Street/Morphius Bridge and Pully Gordon Road intersection is not ideal for safe operations, but no improvements are required currently.

We do not anticipate any of the above comments to impact the analysis or recommendations in the TIA. If you have any questions about this review, please do not hesitate to contact me at (984) 389-2944 or sravya.suryadevara@wsp.com.

January 2nd, 2023

Michael Clark Planning Director Town of Zebulon 1003 N. Arendell Avenue Zebulon, NC 27597 919-823-1808 mclark@townofzebulon.org

RE: Zebulon South Memo

Dear Mr. Clark,

This memorandum is a supplement to the Zebulon South Traffic Impact Analysis (TIA). The TIA was initially scoped with the Town of Zebulon (Town) and NCDOT in March 2022. Originally sealed June 28th, 2022, the NCDOT provided final comments on July 26th, 2022. On November 27th, 2023, WSP provided Town comments to Timmons Group. The TIA was updated and resubmitted (sealed January 2nd, 2023). At the time of scoping, there were no approved area developments that would contribute trips during the Background or Build analyses. In the interim, the Chamblee Lake Planned Development TIA was approved. Due to traffic concerns expressed by Town Council and area citizens, the project team determined that additional analyses should be conducted including the proposed Chamblee Lake Planned Development site trip impacts to study area intersections (including the Chamblee Lake Planned Development), and 2) if improvement recommendations are changed from the original TIA.

The following intersections were analyzed:

- NC-97 (Gannon Ave) / SR-2349 (South Wakefield Street);
- NC-97 (Gannon Ave) / NC-96 (Arendell Ave);
- NC-96 (Arendell Ave) / SR-2348 (West Barbee Street);
- NC-96 (Arendell Ave) / Site Access 1*;
- NC-96 (Arendell Ave) / Site Access 2*;
- NC-96 (Arendell Ave) / SR-2347 (Perry Curtis Road); and
- SR-2349 (South Wakefield Street) / Site Access 3*.
- * Build conditions only

Upgraded 2026 Background and Build + Improvement AM and PM peak hour capacity analyses were performed including the Chamblee Lake Planned Development site trips. As discussed below, it was determined that with the Chamblee Lake Planned Development site trip addition, all study area intersection approaches are projected to perform acceptably. Therefore, no additional improvement recommendations were necessary.

5410 Trinity Rd. Suite 102 | Raleigh, NC 27607

Development | Residential | Infrastructure | Technology

Site

2026 Background

Table 1 below summarizes the intersection LOS and delay based on existing intersection geometry (see **Figure A**) and the 2026 Background traffic volumes (see **Figure D**). 2026 Background volumes were calculated by summing 2026 ambient traffic volumes (**Figure B** – Zebulon South TIA **Figure 3-1**) and Chamblee Lake Planned Development traffic volumes (**Figure C**^ and **Appendix B**). The corresponding SYNCHRO outputs are located in **Appendix A**. As shown in **Table 1**, all intersection approaches are projected to operate acceptably during both 2026 Background peak hours. Optimized timings were used for all signalized intersection analyses (adhering to NCDOT minimum cycle length requirements).

^ For purposes of analysis (and to be more conservative), it was assumed that all traffic projected along Horton Street turned right onto NC-96 south of NC-97. Traffic was then split between northbound left and through at NC-97. All traffic wishing to travel west (towards US-264) will likely utilize NC-39.

Intersection Approach / Overall AM PEAK HOUR PM PEAK HOUR Movement Turn Lane 5000000000000000000000000000000000000	HOUR *95th Percenti Queue Length 11 #744 72 237
$ \begin{array}{ c c c c c c } Intersection & Approach / Overall & Delay^1 \\ Overall & Delay^1 \\ Overall & Delay^1 \\ Overall & Delay^1 \\ (sec/veh) & los^1 \\ (sec/veh) $	*95th Percenti Queue Length 11 #744 72 237
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11 #744 72 237
(Gannon Avenue) Eastbound 22.4 C 31.1 C EB Thru/Right G 38.0 Westbound 13.9 B 11.3 B MB Left 125 63 Westbound 13.9 B 11.3 B WB Left 125 63 Northbound 31.8 C 46.4 D WB Left/Thru/Right 265 Northbound 31.8 C 46.4 D NB Left/Thru/Right 20 265 Southbound 23.4 C 31.2 C SB Approach 20 20 2: NC-96 (Arendell Avenue) & NC- 20.2 C 25.1 C Overall 20.2 C 31.2 C SB Approach 200 46 97 (Gannon Avenue) 8. NC- 33.2 C 25.1 C Overall 200 46 97 (Gannon Avenue) 8. NC- 33.2 C 28.4 C WB Left 100 69 EB sthound 23	#744 72 237
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	 72 237
$ \begin{array}{ c c c c c c c } \begin{tabular}{ c c c c } \label{eq:horizond} \end{tabular} \\ \begin{tabular}{ c c c c c } \label{eq:horizond} \end{tabular} \\ \begin{tabular}{ c c c c c c c } \label{eq:horizond} \end{tabular} \\ \begin{tabular}{ c c c c c c } \label{eq:horizond} \end{tabular} \\ \begin{tabular}{ c c c c c c c } \label{eq:horizond} \end{tabular} \\ \begin{tabular}{ c c c c c c c c } \label{eq:horizond} \end{tabular} \\ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	237
Northbound 31.8 C 46.4 D WB Approach Northbound 31.8 C 46.4 D MB Left/Thru/Right 199 Southbound 23.4 C 31.2 C SB Left/Thru/Right 35 Southbound 20.2 C 25.1 C Overall Overall 20.2 C 25.1 C Overall 20: NC-96 (Arendell Avenue) & NC- 33.2 C 25.1 C Overall 20: NC-96 (Arendell Avenue) & NC- 33.2 C 25.1 C Overall 20: NC-96 (Arendell Avenue) 8 NC- <td></td>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Northbound 31.8 C 46.4 D NB Approach Southbound 23.4 C 31.2 C SB Left/Thru/Right 35 SB Approach Overall 20.2 C 25.1 C Overall SB Left/Thru/Right 2: NC-96 (Arendell Avenue) & NC- 57 (Gannon Avenue) 33.2 C 25.1 C Overall Eastbound 33.2 C 38.0 P EB Left 200 46 P Eastbound 33.2 C 38.0 P EB Left 200 46 P Eastbound 23.6 C 28.4 C WB Left 100 69 Westbound 23.6 C 28.4 C WB Left 350 #238 Westbound 40.1 D 38.7 D NB Left 125 124 Northbound 40.1 D 38.7 D N	100
NB Approach	169
Southbound 23.4 C 31.2 C SB Approach Overall 20.2 C 25.1 C Overall 2: NC-96 (Arendell Avenue) & NC- 37 (Gannon Avenue) 23.2 C 25.1 C Overall 200 46 33.2 P 38.0 P EB Left 200 46 P Eastbound 33.2 C 38.0 P EB Left 200 46 Westbound 23.6 C 28.4 C WB Left 350 #238 Westbound 23.6 C 28.4 C WB Left 350 #238 Northbound 40.1 D 38.7 D NB Left 125 124 NB Approach SB Left 250 36	
Overall 20.2 C 25.1 C Overall 20.2 C 25.1 C Overall 20.0 46 21: NC-96 (Arendell Avenue) & NC- 37 (Gannon Avenue) 33.2 P 33.2 P B EB Left 200 46 27 (Gannon Avenue) Bashound 33.2 P B B 100 69 B P B Baptoach 360 7 Westbound 23.6 C 28.4 C WB Left 350 #238 Northbound 40.1 D 38.7 P NB Left 125 124 NB Approach NB Left 125 124 NB Approach SB Left 250 36	63
2: NC-96 (Arendell Avenue) & NC- 97 (Gannon Avenue) Eastbound 33.2 C Bashound 33.2 C Bashound Bashou	-
P7 (Gannon Avenue) Eastbound 33.2 C 38.0 P EB Thru 0 367 BR ight 100 69 EB Approach Westbound 23.6 C 28.4 C WB Left 350 #238 Northbound 40.1 D 38.7 D MB Left 125 124 NB Approach NB Left 125 124 Northbound 40.1 D 38.7 D MB Thru/Right 4352 NB Approach SB Left 250 36	-
Eastbound 33.2 C 38.0 D Eb Thru 100 69 Westbound 23.6 C 28.4 C WB Left 350 #238 Westbound 23.6 C 28.4 C WB Left 350 #238 Northbound 40.1 D 38.7 D NB Left 125 124 NB Approach NB Left 125 124 NB Approach SB Left 250 36	73
Westbound 23.6 C 28.4 C EB Right 100 69 Westbound 23.6 C 28.4 C WB Left 350 #238 Northbound 40.1 D 38.7 D NB Left 125 124 Northbound 40.1 D 38.7 D NB Left 125 124 NB Approach SB Left 250 36	#336
Westbound 23.6 C 28.4 C WB Left 350 #238 Westbound 23.6 C 28.4 C WB Thru/Right 166 166 WB Approach NB Left 125 124 Northbound 40.1 D 38.7 D NB Left 125 124 NB Approach SB Left 250 36	100
Westbound 23.6 C 28.4 C WB Thru/Right Image: Constraint of the symbolic consymbolic consymbolic constraint of the symbolic constraint of th	
Northbound 40.1 D 38.7 D MB Left 125 124 NB Approach NB Left 125 124 NB Approach SB Left 250 36	#276
Northbound 40.1 D 38.7 D NB Left 125 124 NB Approach #352 MB Approach #352 SB Left 250 36	348
Northbound 40.1 D 38.7 D NB Thru/Right #352 NB Approach SB Left 250 36	
NB Approach	96
SB Left 250 36	#462
	-
	#77
	230
SB Approach	-
Overall 31.5 C 33.2 C Overall	
3: NC-96 (Arendell Avenue) & Eastbound 14.9 B 22.1 C EB Left/Thru/Right 0.5	1.9
EB Approach	
Westbound 14.1 B 16.7 C WB Left/Thru/Right 0.1	0.2
WB Approach	
Northbound 1.0 A 1.0 A NB Left/Thru/Right 0.1	0.1
NB Approach SB Left/Thru/Right 0	0
Southbound 0.2 A 0.1 A	0
5: NC-96 (Arendell Avenue) & Perry	0.4
Curtis Road Westbound 11.1 B 11.1 B WB Lert/Kight 0.6	0.4
No Approach	0
Northbound 0.0 A 0.0 A NB Approach	
SB Left/Thru 0.1	-
Southbound 1.8 A 2.6 A SB Dery Initia 0.1	0.4

Table 1: Intersection Approach Level of Service and Delay2026 Background Traffic Volumes

¹ Overall intersection LOS and delay not reported for TWSC intersections.

* - 95th percentile queues for unsignalized intersections reported in number of vehicles.

2026 Build + Improvements

The Zebulon South trip generation and distribution are located in the Zebulon South TIA (see **Section 4** and **Figure 4-2**, respectively). 2026 Build traffic volumes (see **Figure E**) were calculated by summing the 2026 Background traffic volumes (**Figure D**) and projected Zebulon South site trips (**Figure 4-2** – Zebulon South TIA). **Table 2** below summarizes the intersection LOS and delay based on the future lane configuration (see **Figure F**) and 2026 Build traffic volumes (see **Figure E**). The corresponding SYNCHRO outputs are located in **Appendix A**. As shown in **Table 2**, all intersection approaches are projected to operate acceptably during the 2026 Build + Improvements AM and PM peak hours. Optimized timings were used for all signalized intersection analyses (adhering to NCDOT minimum cycle length requirements). Because all approaches are projected to operate acceptably, no additional study area intersection improvements are recommended.

Table 2: Intersection Approach Level of Service and Delay2026 Build + Improvements Traffic Volumes

	Balla	Tubio		/ ennemes		inanne voi	amos		
	Annuach	AM PEAK	HOUR	PM PEAK	HOUR		Turn Lane	AM PEAK HOUR	PM PEAK HOUR
Intersection	Approach / Overall	Delay ¹ (sec/veh)	LOS 1	Delay 1 (sec/veh)	LOS 1	Movement	Storage (ft)	*95th Percentile Queue	*95th Percentile Queue
								Length	Length
1: S Wakefield Street & NC-97						EB Left	125	10	11
(Gannon Avenue)	Eastbound	25.1	С	41.0	D	EB Thru/Right		405	#825
				1000		EB Approach			
						WB Left	125	68	90
	Westbound	15.9	в	12.9	В	WB Thru/Right		287	244
						WB Approach			
	Northbound	35.1	D	54.8	D	NB Left/Thru/Right		#273	#232
	Northbound	35.1	U	54.8	U	NB Approach			
	C. Marine	23.0	~	20.0	~	SB Left/Thru/Right		35	63
	Southbound	25.0	С	30.9	с	SB Approach			
	Overall	23.0	C	31.9	С	Overall			
2: NC-96 (Arendell Avenue) & NC-						EB Left	200	48	77
97 (Gannon Avenue)		20.5				EB Thru		#439	#389
	Eastbound	38.5	D	47.1	D	EB Right	100	76	121
						EB Approach			
						WB Left	350	#268	#321
	Westbound	27.9	C	33.2	С	WB Thru/Right		185	385
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					WB Approach			
						NB Left	125	134	106
	Northbound	41.6	D	40.2	D	NB Thru/Right		#407	#494
	0.0000000000000000000000000000000000000			1.122.02		NB Approach			
			-			SB Left	250	36	#83
	Southbound	27.7	C	28.0	с	SB Thru/Right		200	243
						SB Approach			
	Overall	34.8	С	37.4	D	Overall			
3: NC-96 (Arendell Avenue) &						EB Left/Thru/Right	-	0.6	2.8
Barbee Street	Eastbound	17.0	C	30.0	D	EB Approach			
						WB Left/Thru/Right		0.1	0.2
	Westbound	16.1	C	20.2	C	WB Approach			
						NB Left/Thru/Right		0.1	0.2
	Northbound	0.9	A	1.0	A	NB Approach			0.2
						SB Left/Thru/Right		0	0
	Southbound	0.2	Α	0.1	A	SB Approach			
4: NC-96 (Arendell Avenue) & Site			-		-	and the second se		0.4	0.3
Access 1	Eastbound	13.1	В	16.0	16.0 C	EB Left/Right EB Approach		0.4	0.5
						NB Left/Thru		0	0
	Northbound	0.1	Α	0.3	A	NB Approach			
						SB Thru		0	0
	Southbound	0.0	A	0.0	A	SB Right	50	0	0
	Southoonia	0.0	~	0.0	^		50		
5: NC-96 (Arendell Avenue) & Site						SB Approach EB Left/Right			
Access 2	Eastbound	12.3	в	14.9	в			0.4	0.3
						EB Approach NB Left/Thru		0	0.1
	Northbound	0.1	A	0.6	Α				0.1
	-		-			NB Approach			746.9
	Southbound	0.0	A	0.0		SB Thru	50	0	0
	Souulbound	0.0	A	0.0	A	SB Right	50	0	0
6: NC-06 (Arondoll Avenue) 9. Press			-	-		SB Approach			
 NC-96 (Arendell Avenue) & Perry Curtis Road 	Westbound	11.3	в	11.3	в	WB Left/Right		0.7	0.5
Son of PUCU	-					WB Approach			-
	Northbound	0.0	A	0.0	A	NB Thru/Right		0	0
			1000			NB Approach			
	Southbound	1.9	A	2.6	A	SB Left/Thru		0.1	0.4
						SB Approach			
7: S Wakefield Street & Site Access	Westbound	10.1	в	9.9	A	WB Left/Right		0.3	0.2
3		10000				WB Approach		-	
	Northbound	0.0	A	0.0	A	NB Thru/Right		0	0
		0.0	1	0.0	<u> </u>	NB Approach			
	to construction					SB Left	50	0	0.1
	Southbound	1.1	Α	1.8	A	SB Thru		0	0
						SB Approach			

¹ Overall intersection LOS and delay not reported for TWSC intersections.

* - 95th percentile queues for unsignalized intersections reported in number of vehicles.

Conclusions

Per the provided analyses, it was determined that inclusion of Chamblee Lake Planned Development site trips does not result in changes to original Zebulon South TIA recommendations.

Should you have any questions regarding this memorandum, please do not hesitate to contact me.

Sincerely,

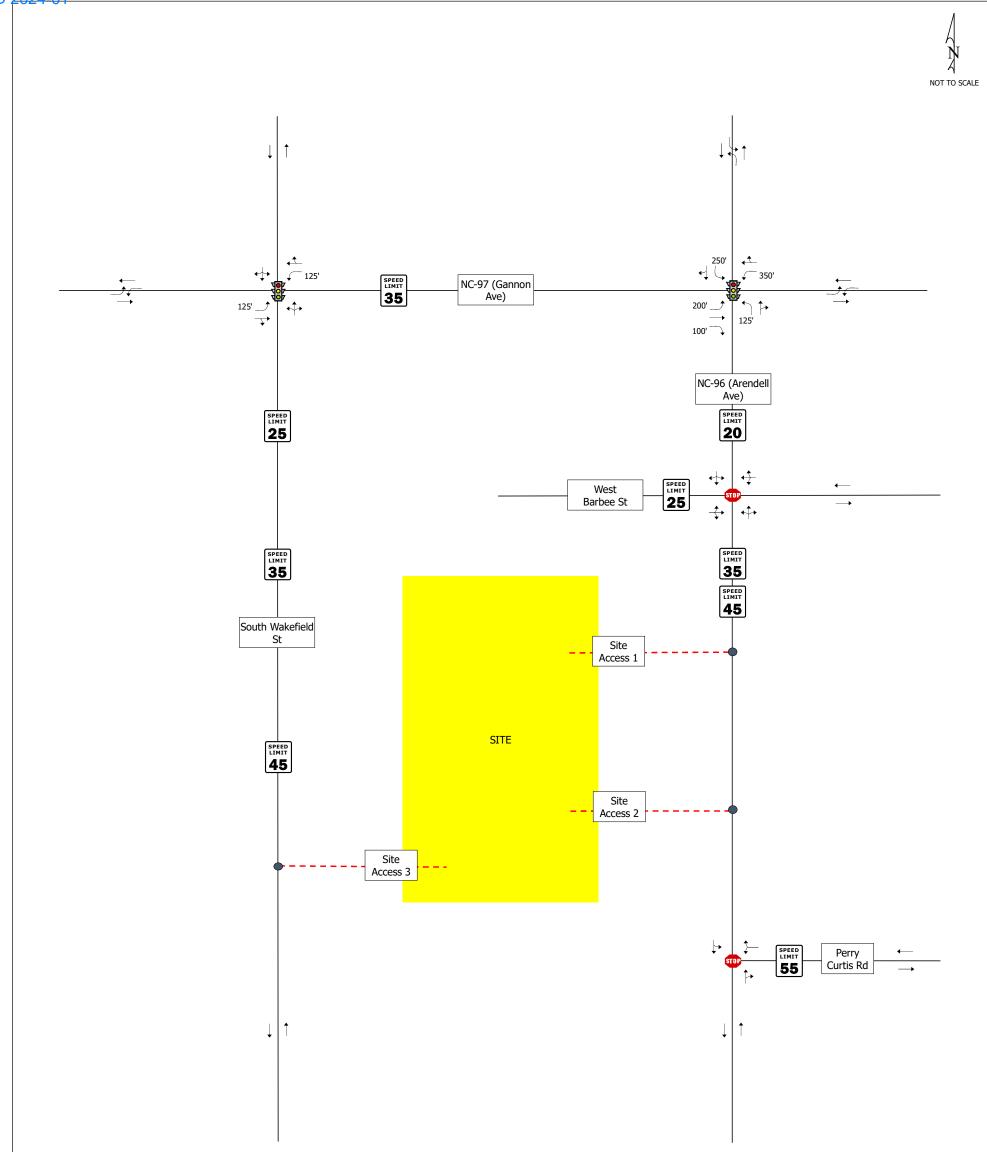
Jeffrey P. Hochanadel, PE, PTOE Principal | North Carolina Transportation Group Leader

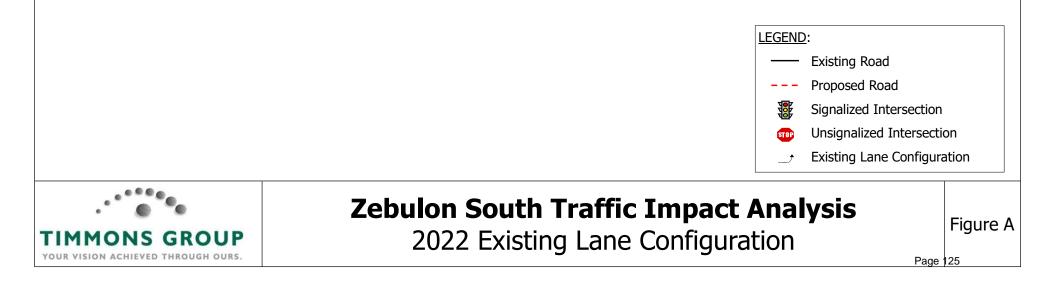
LIST OF TABLES

Table 1 – Intersection Approach Level of Service and Delay – 2026 Background Traffic Volumes

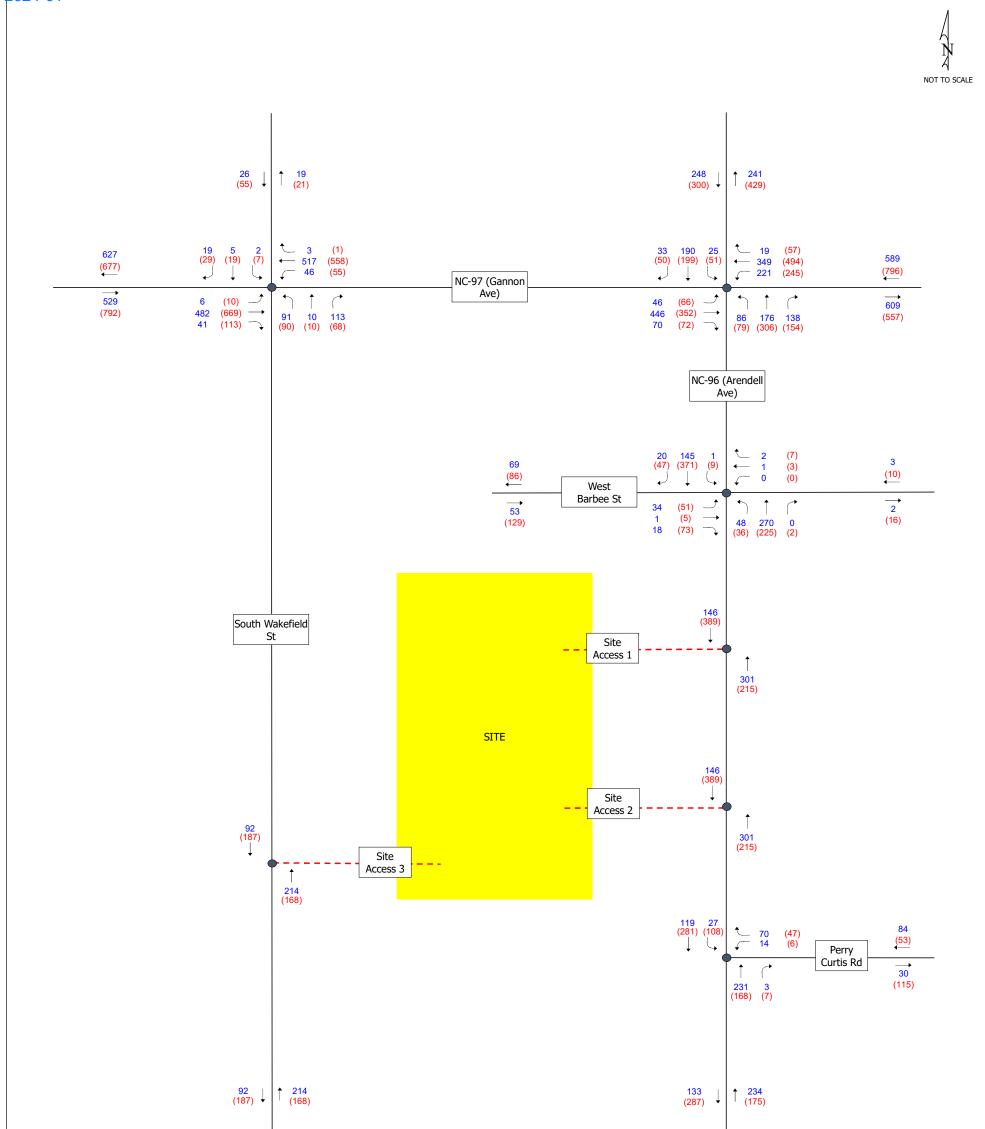
Table 2 – Intersection Approach Level of Service and Delay –

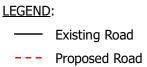
2026 Build + Improvements Traffic Volumes

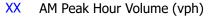

LIST OF FIGURES


- FIGURE A EXISTING LANE CONFIGURATION
- FIGURE B 2026 AMBIENT TRAFFIC VOLUMES
- FIGURE C CHAMBLEE LAKE PLANNED DEVELOPMENT TRAFFIC VOLUMES
- FIGURE D 2026 BACKGROUND TRAFFIC VOLUMES
- FIGURE E 2026 BUILD TRAFFIC VOLUMES
- FIGURE F FUTURE LANE CONFIGURATION

APPENDICES

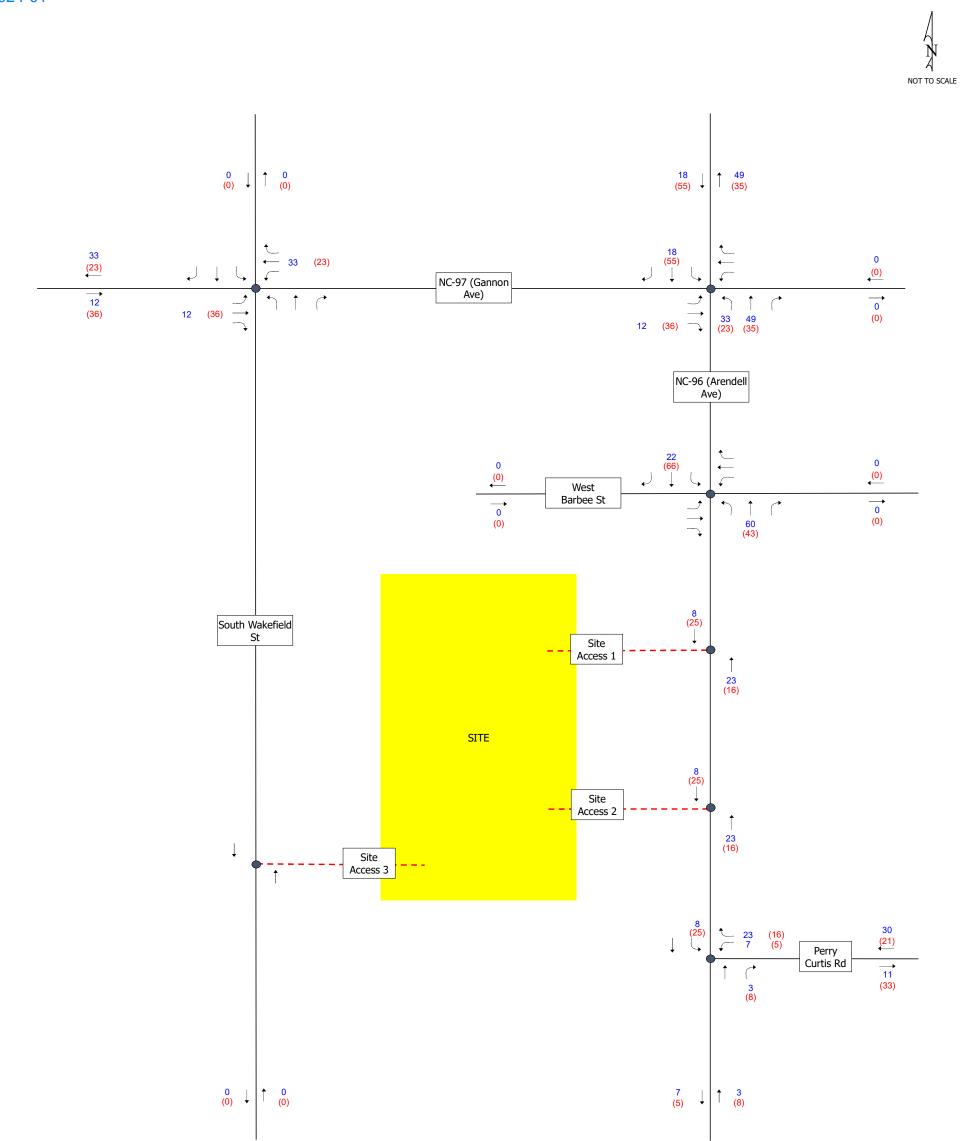

- Appendix A Synchro Output
- Appendix B Chamblee Lake Planned Development

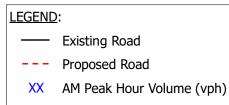




Attachment 6 PD <u>2024-01</u>

(XX) PM Peak Hour Volume (vph)




Zebulon South Traffic Impact Analysis

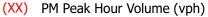
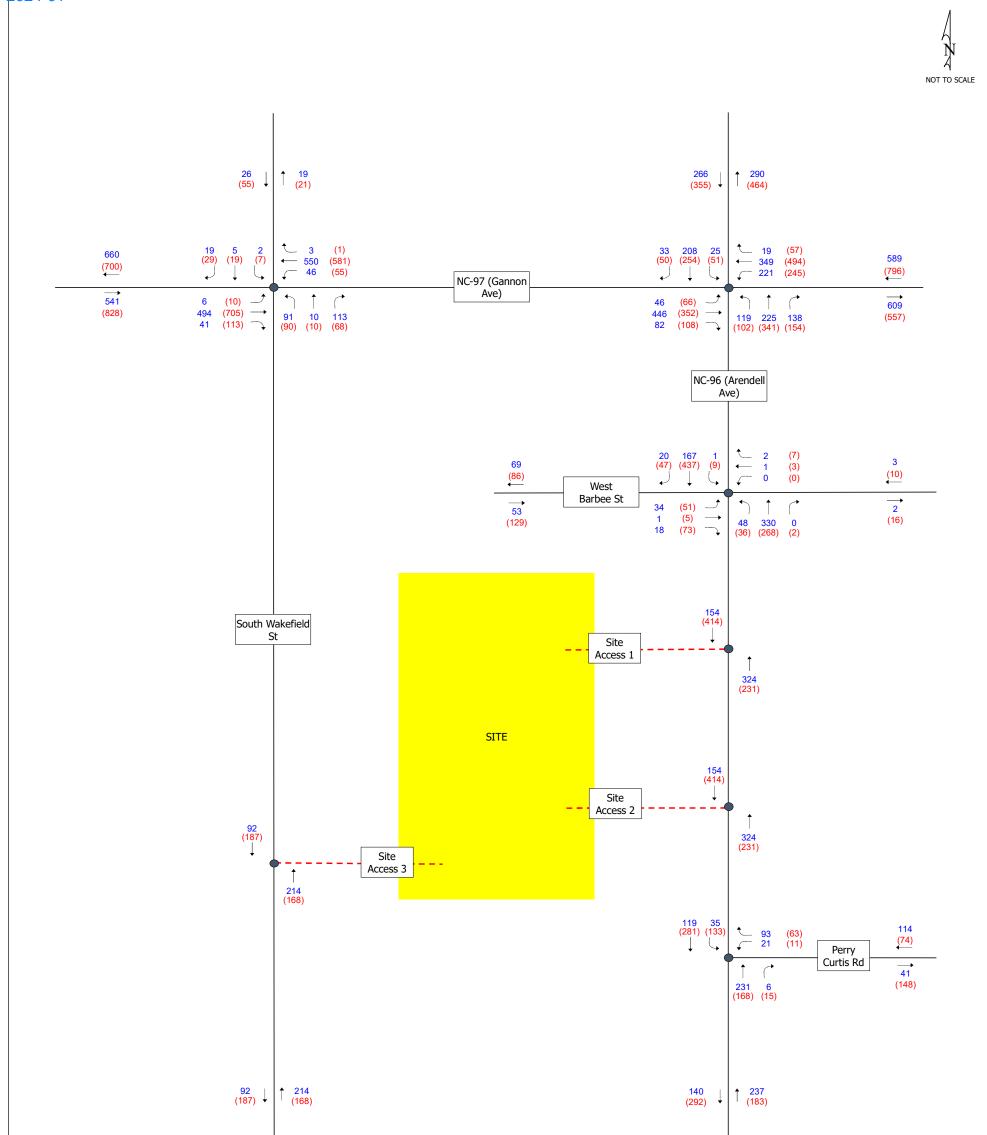
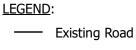

2026 Ambient Traffic Volumes

Figure B

Page 126



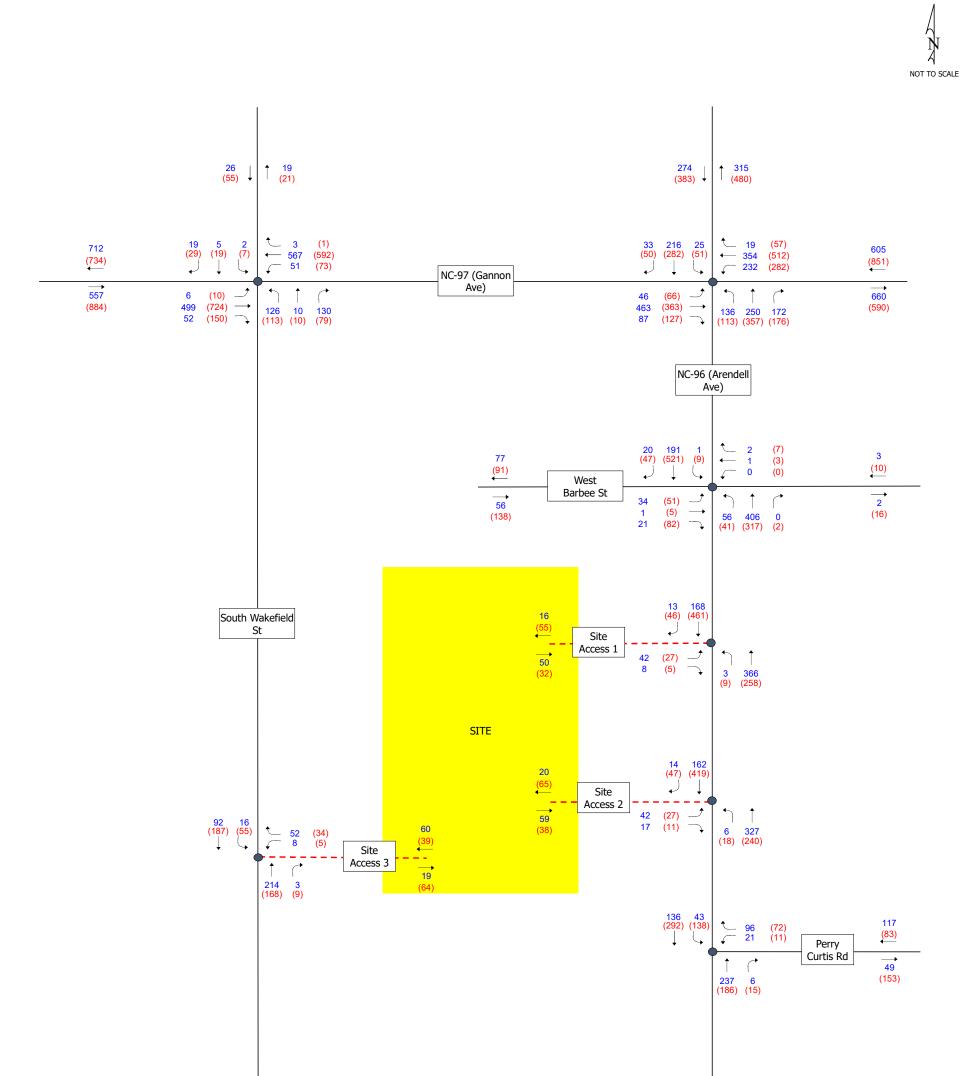

Zebulon South Traffic Impact Analysis

Chamblee Lake Planned Development Traffic Volumes

Figure C

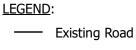
Attachment 6 PD <u>2024-01</u>

- XX AM Peak Hour Volume (vph)
- (XX) PM Peak Hour Volume (vph)

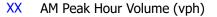

Zebulon South Traffic Impact Analysis

2026 Background Traffic Volumes

Figure D


Page 128

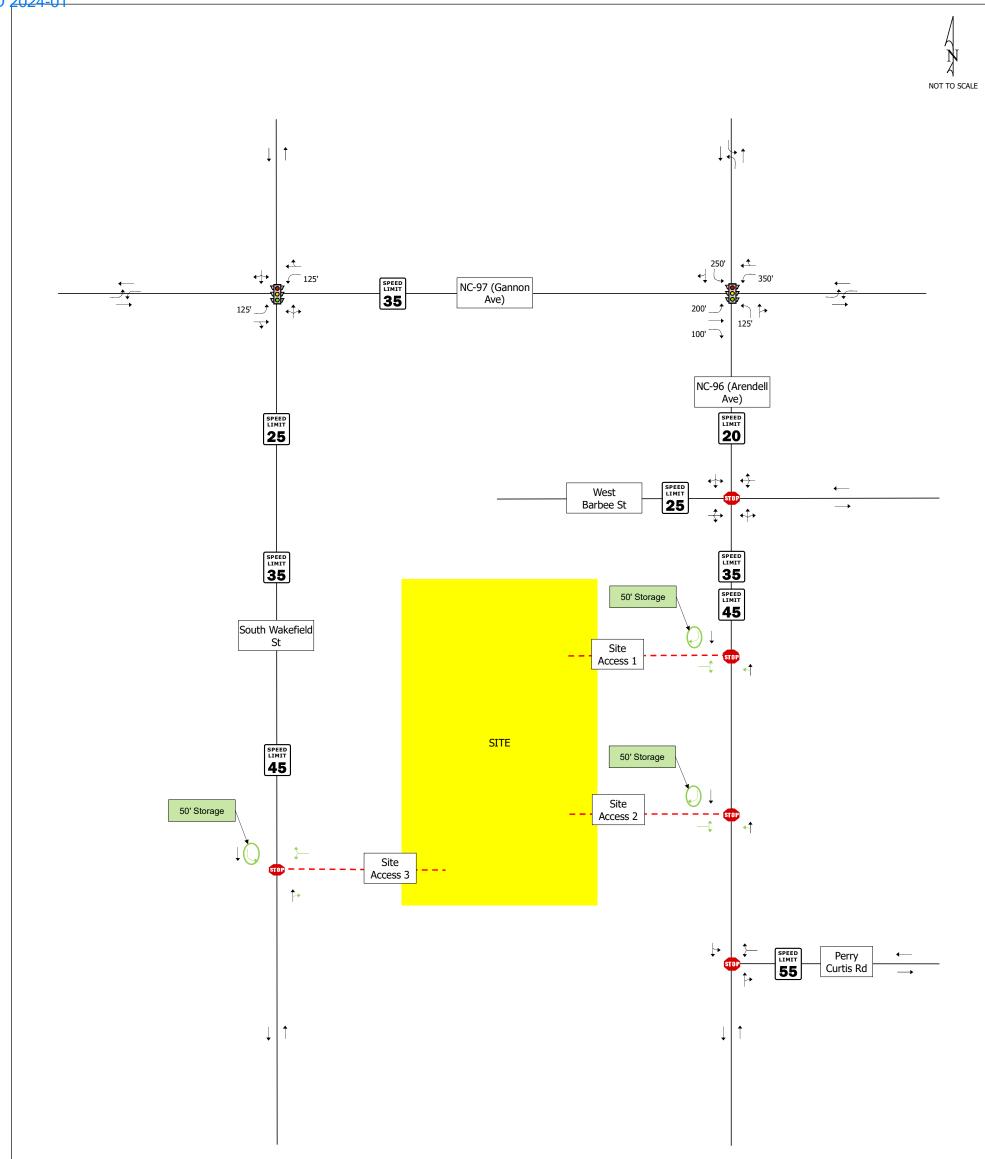
Attachment 6 PD <u>2024-01</u>



 $\begin{array}{c}100\\(192)\end{array}\downarrow\uparrow\begin{array}{c}217\\(177)\end{array}$

 $\begin{array}{c} 157\\(303) \end{array} \downarrow \left(\begin{array}{c} \uparrow & 243\\(201) \end{array} \right)$

(XX) PM Peak Hour Volume (vph)


Zebulon South Traffic Impact Analysis

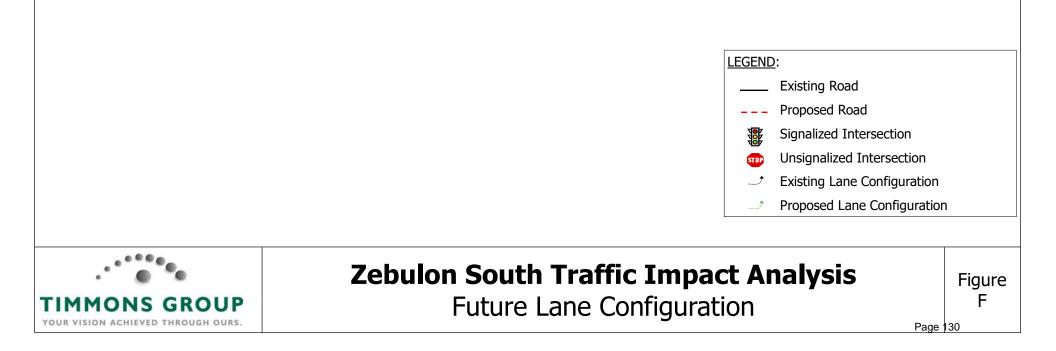

2026 Build Traffic Volumes

Figure E

Page 129

Appendix A – Synchro Output

2026 Background Traffic Volumes

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

	٦	2012	~		-	•	•	ŧ	*	6	1	1
	152	EDT					NDI					
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u></u>	1	4.4	1	4	4	04	4	440		4	40
Traffic Volume (vph)	6	494	41	46	550	4	91	10	113	4	5	19
Future Volume (vph)	6	494	41	46	550	4	91	10	113	4	5	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)	(-1%		10-	0%			3%	•	•	1%	
Storage Length (ft)	125		0	125		0	0		0	0		0
Storage Lanes	1		0	1		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.988			0.999			0.929			0.909	
Flt Protected	0.950			0.950		-		0.979			0.994	
Satd. Flow (prot)	1778	1850	0	1770	1861	0	0	1669	0	0	1675	0
Flt Permitted	0.432			0.950				0.848			0.952	
Satd. Flow (perm)	809	1850	0	1770	1861	0	0	1445	0	0	1604	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		774			1453			1831			462	
Travel Time (s)		15.1			28.3			49.9			12.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	7	549	46	51	611	4	101	11	126	4	6	21
Shared Lane Traffic (%)												
Lane Group Flow (vph)	7	595	0	51	615	0	0	238	0	0	31	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes							
Headway Factor	0.99	0.99	0.99	1.00	1.00	1.00	1.02	1.02	1.02	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2						8			4		
Detector Phase	2	2		1	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	17.0	17.0		14.0	17.0		14.0	14.0		14.0	14.0	
Total Split (s)	47.0	47.0		14.0	61.0		29.0	29.0		29.0	29.0	
Total Split (%)	52.2%	52.2%		15.6%	67.8%		32.2%	32.2%		32.2%	32.2%	
Maximum Green (s)	40.0	40.0		7.0	54.0		22.0	22.0		22.0	22.0	
Yellow Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0		-2.0	-2.0			-2.0			-2.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	
Lead/Lag	Lag	Lag		Lead	0.0			0.0			0.0	
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min		None	Min		None	None		None	None	
Act Effct Green (s)	28.8	28.8		10.3	35.5		NUNC	17.7		NONE	17.7	
Actuated g/C Ratio	0.45	0.45		0.16	0.55			0.27			0.27	
v/c Ratio	0.45	0.43		0.10	0.55			0.27			0.27	
Control Delay	13.3	22.6		35.1	12.1			31.8			23.4	
	10.0	22.0		55.1	12.1			51.0			20.4	

2026 Background AM Peak Hour Timmons Group Synchro 11 Report

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/14/2023

	٦	-	7	4	-	*	1	Ť	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	13.3	22.6		35.1	12.1			31.8			23.4	
LOS	В	С		D	В			С			С	
Approach Delay		22.4			13.9			31.8			23.4	
Approach LOS		С			В			С			С	
Queue Length 50th (ft)	2	221		21	142			94			10	
Queue Length 95th (ft)	10	380		63	265			199			35	
Internal Link Dist (ft)		694			1373			1751			382	
Turn Bay Length (ft)	125			125								
Base Capacity (vph)	575	1317		281	1518			612			680	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.01	0.45		0.18	0.41			0.39			0.05	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 64	4.6											
Natural Cycle: 60												
Control Type: Actuated-U	ncoordinated	d										
Maximum v/c Ratio: 0.72												
Intersection Signal Delay:						n LOS: C						
Intersection Capacity Utiliz	zation 65.7%	0		IC	CU Level	of Service	эC					
Analysis Period (min) 15												
Splits and Phases: 1: S	Wakefield S	Street & N	IC-97 (G	annon Av	venue)							

Splits and Phases: 1: S Wakefield Street & NC-97 (Gannon Avenue)

√ Ø1	<u>→</u> _{Ø2}	Ø4	
14 s	47 s	29 s	
← Ø6		≪¶ øs	
61s		29 s	

Zebulon South TIA

2: NC-96	(Arendell Avenue) & NC-97 ((Gannon Avenue)
----------	------------------	-------------	-----------------

12/14/2023

	٢	+	1	1	Ļ	*	•	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	3	1	1	5	1	TIBI(5	1	NB IX	5	1	OBIN
Traffic Volume (vph)	46	446	82	221	349	19	119	225	138	25	208	33
Future Volume (vph)	46	446	82	221	349	19	119	225	138	25	208	33
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		2%			-2%			-2%			2%	
Storage Length (ft)	200		100	350		0	125		0	250		0
Storage Lanes	1		1	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.992			0.943			0.979	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	1844	1567	1787	1866	0	1787	1774	0	1752	1805	0
Flt Permitted	0.522			0.950			0.463			0.259		
Satd. Flow (perm)	963	1844	1567	1787	1866	0	871	1774	0	478	1805	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			20			35	
Link Distance (ft)		1453			677			1822			478	
Travel Time (s)		28.3			13.2			62.1			9.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	51	496	91	246	388	21	132	250	153	28	231	37
Shared Lane Traffic (%)												
Lane Group Flow (vph)	51	496	91	246	409	0	132	403	0	28	268	0
Enter Blocked Intersection	No	No	No	No								
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes						Yes	
Headway Factor	1.01	1.01	1.01	0.99	0.99	0.99	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	Perm	Prot	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6		-	8			4	
Permitted Phases	2	-	2		-		8	-		4		
Detector Phase	2	2	2	1	6		8	8		4	4	
Switch Phase			(
Minimum Initial (s)	10.0	10.0	10.0	7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	24.0	24.0	24.0	14.0	17.0		24.0	24.0		14.0	14.0	
Total Split (s)	37.0	37.0	37.0	22.0	59.0		31.0	31.0		31.0	31.0	_
Total Split (%)	41.1%	41.1%	41.1%	24.4%	65.6%		34.4%	34.4%		34.4%	34.4%	
Maximum Green (s)	30.0	30.0	30.0	15.0	52.0		24.0	24.0		24.0	24.0	_
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	• •		0.0	0.0		0.0	• •	
Vehicle Extension (s)	3.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min	Min	None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0	7.0				7.0	7.0				
Flash Dont Walk (s)	10.0	10.0	10.0				10.0	10.0				
Pedestrian Calls (#/hr)	0	0	0	4 = =	47.0		0	0		00.0	00.0	
Act Effct Green (s)	27.0	27.0	27.0	15.5	47.6		22.9	22.9		22.9	22.9	

2026 Background AM Peak Hour Timmons Group Synchro 11 Report

	٠	+	7	1	+	*	1	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Actuated g/C Ratio	0.33	0.33	0.33	0.19	0.59		0.28	0.28		0.28	0.28	
v/c Ratio	0.16	0.81	0.17	0.72	0.37		0.53	0.80		0.21	0.52	
Control Delay	21.4	36.7	21.0	45.9	10.1		35.5	41.7		28.7	29.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	21.4	36.7	21.0	45.9	10.1		35.5	41.7		28.7	29.8	
LOS	С	D	С	D	В		D	D		С	С	
Approach Delay		33.2			23.6			40.1			29.7	
Approach LOS		С			С			D			С	
Queue Length 50th (ft)	20	245	35	129	109		61	203		12	123	
Queue Length 95th (ft)	46	367	69	#238	166		124	#352		36	203	
Internal Link Dist (ft)		1373			597			1742			398	
Turn Bay Length (ft)	200		100	350			125			250		
Base Capacity (vph)	391	749	637	385	1311		287	585		158	596	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.13	0.66	0.14	0.64	0.31		0.46	0.69		0.18	0.45	
Intersection Summary												
· · · / · ·	Other											
Cycle Length: 90												
Actuated Cycle Length: 80.8	8											
Natural Cycle: 65												
Control Type: Actuated-Unc	coordinated	ł										
Maximum v/c Ratio: 0.81												
Intersection Signal Delay: 3						n LOS: C						
Intersection Capacity Utiliza	ation 78.5%	, D		IC	U Level	of Service	e D					
Analysis Period (min) 15												
# 95th percentile volume			ueue ma	y be long	jer.							
Queue shown is maximu	um after tw	o cycles.										
Online and Diseases O. NO.	00 ()			07 (0	A.							
22	-96 (Arenc	iell Avenu	ie) & NC	-97 (Gan	non Aver	iue)		0				
√ Ø1	2	Ø2						Ø4				
22 s	37 s	22				-	31					-

¶ø8

Ø6

Intersection													
Int Delay, s/veh	2.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	34	4	18	4	4	4	48	330	4	4	167	20	
Future Vol, veh/h	34	4	18	4	4	4	48	330	4	4	167	20	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storag	le, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	38	4	20	4	4	4	53	367	4	4	186	22	
				1			1			1			

Major/Minor	Minor2		1	Minor1			Major1		Μ	lajor2			
Conflicting Flow All	684	682	197	692	691	369	208	0	0	371	0	0	
Stage 1	205	205	-	475	475	-	-	-	-	-	-	-	
Stage 2	479	477	-	217	216	-	-	-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	- 2	2.218	-	-	
Pot Cap-1 Maneuver	363	372	844	358	368	677	1363	-	-	1188	-	-	
Stage 1	797	732	-	570	557	-	-	-	-	-	-	-	
Stage 2	568	556	-	785	724	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuve	r 343	352	844	332	348	677	1363	-	-	1188	-	-	
Mov Cap-2 Maneuve	r 343	352	-	332	348	-	-	-	-	-	-	-	
Stage 1	758	729	-	542	530	-	-	-	-	-	-	-	
Stage 2	532	529	-	759	721	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	14.9	14.1	1	0.2	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1363	-	-	425	407	1188	-	-
HCM Lane V/C Ratio	0.039	-	-	0.146	0.033	0.004	-	-
HCM Control Delay (s)	7.7	0	-	14.9	14.1	8	0	-
HCM Lane LOS	А	А	-	В	В	А	А	-
HCM 95th %tile Q(veh)	0.1	-	-	0.5	0.1	0	-	-

Intersection							
Int Delay, s/veh	3.1						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	-
Lane Configurations	Y		Þ			4	Ľ
Traffic Vol, veh/h	21	93	231	6	35	119)
Future Vol, veh/h	21	93	231	6	35	119)
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	,
RT Channelized	-	None	-	None	-	None	,
Storage Length	0	-	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	90	90	90	90	90	90)
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	23	103	257	7	39	132)

Major/Minor	Minor1	Ν	/lajor1		Major2	
Conflicting Flow All	471	261	0	0	264	0
Stage 1	261	-	-	-	-	-
Stage 2	210	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	-	-	2.218	-
Pot Cap-1 Maneuver	r 551	778	-	-	1300	-
Stage 1	783	-	-	-	-	-
Stage 2	825	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	er 533	778	-	-	1300	-
Mov Cap-2 Maneuve	er 533	-	-	-	-	-
Stage 1	783	-	-	-	-	-
Stage 2	799	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay,	s 11.1		0		1.8	
HCM LOS	В					
Minor Lane/Major My	vmt	NBT	NBRW	BLn1	SBL	SBT
Capacity (veh/h)		-	-	717	1300	-
HCM Lane V/C Ratio)	-	- (0.177	0.03	-
HCM Control Delay ((s)	-	-	11.1	7.9	0

В

0.6

-

-

-

-

А

0.1

А

-

HCM Lane LOS

HCM 95th %tile Q(veh)

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/05/2023

٠	-	7	1	-	*	1	Ť	1	1	Ŧ	~
FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR
		LBIX			TIBI(NBL		NB IX	OBL		
		113			4	90		68	7		29
											29
											1900
1000		1000	1000		1000	1000		1000	1000		1000
125	170	0	125	070	0	0	070	0	0	170	0
											0
		Ū	· ·		U			U			Ū
	1 00	1 00		1 00	1 00		1 00	1 00		1 00	1.00
1.00		1.00	1.00		1.00						1.00
0.950	0.010		0.950	0.000							
	1833	0		1861	0	0		0	0		0
	1000	•		1001	Ū	Ū		Ŭ	Ŭ		Ū
	1833	0		1861	0	0		0	0		0
								-	•		No
		110			110						110
	35			35			25			25	
0.90		0.90	0.90		0.90	0.90		0.90	0.90		0.90
											32
	100	120	01	010		100		10	Ű		02
11	909	0	61	650	0	0	187	0	0	61	0
								-	-		No
											Right
			2011					g			
				16						16	
0.99		0.99	1.00		1.00	1.02	1.02	1.02	1.01	1.01	1.01
							-	9			9
	NA			NA			NA			NA	-
	2		1	6			8			4	
2						8			4		
2	2		1	6		8	8		4	4	
10.0	10.0		7.0	10.0		7.0	7.0		7.0	7.0	
17.0	17.0		14.0	17.0		14.0	14.0		14.0	14.0	
52.0	52.0		14.0	66.0		24.0	24.0		24.0	24.0	
57.8%	57.8%		15.6%	73.3%		26.7%	26.7%		26.7%	26.7%	
			7.0			17.0	17.0		17.0	17.0	
			5.0			5.0	5.0		5.0	5.0	
2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
-2.0	-2.0		-2.0	-2.0			-2.0			-2.0	
5.0	5.0		5.0	5.0			5.0			5.0	
Lag	Lag		Lead								
Yes	Yes		Yes								
3.0	3.0		3.0	3.0		2.0	2.0		2.0	2.0	
Min	Min		None	Min		None	None		None	None	
46.7	46.7		9.2	57.2			16.2			16.2	
0.56	0.56		0.11	0.68			0.19			0.19	
0.03	0.89		0.31	0.51			0.68			0.19	
			42.3	8.4			46.4			31.2	
	EBL 10 1900 125 1 25 1.00 0.950 1778 0.418 783 0.500 1.1 0.900 1.1 0.900 1.1 0.900 1.1 0.900 1.1 0.900 1.1 0.900 1.1 0.900 1.1 0.900 1.5 75.8% 45.00 5.00 2.00 5.00 1.200 5.00 1.200 5.00 1.200 5.00 1.200 5.00 1.200	EBL EBT 10 705 100 705 1900 1900 1900 1900 125 1 25 0.00 1.00 0.979 0.950 0.100 1.778 1833 0.418 3 783 1833 0.418 3 783 1833 0.418 3 783 1833 0.418 0.90 11 909 0.50 0.90 11 909 No No 11 909 No No 11 909 No No 11 909 No No 12 0 13 783 14 909 No No 18 12 0 12 0.99	EBL EBT EBR 10 705 113 100 705 113 1900 1900 -100 125 0 1 0 0 25 0 1.00 1.00 1.00 0.979 0.950 1.00 1.00 0.950 0 1.00 1778 1833 0 0.418 0 No 783 1833 0 0.418 0 No 1774 15.1 0 0.411 783 126 11 909 0 11 909 0 11 909 0 No No No 12 0 1 18	EBL EBT EBR WBL 10 705 113 55 100 1900 1900 1900 -1% 0 125 1900 1900 1900 -1% 125 0 125 1 125 0 125 1 125 0 125 1 125 0 125 1 0.950 0.979 0 100 0.951 1.00 1.00 1.00 0.950 0.979 0.950 0.950 1778 1833 0 1770 0.418 0.950 774 15.1 0.90 0.90 0.90 1.00 15.1 0 9 61 0.90 0.90 0.90 1.00 11 909 0.90 0.90 11 909 0.91 1.00 11 909 0.91 1.00	EBL EBT EBR WBL WBT 10 705 113 55 581 10 705 113 55 581 1900 1900 1900 1900 1900 125 0 125 0 125 1.00 1.00 1.00 1.00 1.00 0.979 0.950 0.950 0.950 1778 1833 0 1770 1861 0.418 0.950 0.950 0.950 783 1833 0 1770 1861 0.418 0.950 0.900 0.90 783 1833 0 1770 1861 0.418 0.950 0.900 0.90 0.90 11 909 0.90 0.90 0.90 1.00 11 909 0 61 650 0.0 No No No No No 1.00 11	EBL EBT EBR WBL WBT WBR 10 705 113 55 581 4 100 705 113 55 581 4 100 705 113 55 581 4 100 705 113 55 581 4 100 1900 1900 1900 1900 1900 -125 0 125 0 1 0 25 25 1.00 1.00 1.00 1.00 1.00 0.979 0.950 0.950 0.950 0.950 0.950 7783 1833 0 1770 1861 0 0.418 0.950 0.90 0.90 0.90 0.90 0.90 15.1 28.3 0 0.90 0.90 0.90 0.90 11 909 0 61 650 0 No No No No	EBL EBT EBR WBL WBT WBR NBL 10 705 113 55 581 4 90 100 705 113 55 581 4 90 1900 1900 1900 1900 1900 1900 1900 125 0 125 0 0 1 0 0 25 25 25 25 25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.999 0.999 0.999 0.990 0.90	EBL EBT EBR WBL WBT WBR NBL NBT 10 705 113 55 581 4 90 10 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 -1% 0 125 0 0 1 0 0 11 0 1 0 1 0 0 1 0 0 25 25 25 25 25 100 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01	EBL EBT EBR WBL WBT WBR NBL NBT NBR 10 705 113 55 581 4 90 10 688 1900 1900 1900 1900 1900 1900 1900 1900 -1% 0 125 0 0 0 0 0 125 0 125 0 0 0 0 0 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.979 0.990 0.990 0.945 0.945 0.945 0.950 0.950 0.950 0.974 0.815 1.00 1778 1833 0 1770 1861 0 0 1413 0 774 1453 1831 15. 1831 17. 16 11 76 11 909 0.90 0.90 0.90 0.90 <	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 10 705 113 55 581 4 90 10 68 7 100 705 113 55 581 4 90 100 68 7 1900 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.01 1.01	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT 10 705 113 55 581 4 90 10 68 7 19 100 705 113 55 581 4 90 1900 100 1.00 1.00 1.00 1.00<

2026 Background PM Peak Hour Timmons Group Synchro 11 Report

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/05/2023

	٠	→	7	4	+	*	1	t	1	4	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	10.7	31.4		42.3	8.4			46.4			31.2	
LOS	В	С		D	А			D			С	
Approach Delay		31.1			11.3			46.4			31.2	
Approach LOS		С			В			D			С	
Queue Length 50th (ft)	3	452		32	153			97			29	
Queue Length 95th (ft)	11	#744		72	237			169			63	
Internal Link Dist (ft)		694			1373			1751			382	
Turn Bay Length (ft)	125			125								
Base Capacity (vph)	448	1051		194	1385			327			381	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.02	0.86		0.31	0.47			0.57			0.16	
Intersection Summary												
	Other											
Cycle Length: 90												
Actuated Cycle Length: 83.0	6											
Natural Cycle: 80												
Control Type: Actuated-Unc	coordinate	d										
Maximum v/c Ratio: 0.89												
Intersection Signal Delay: 2					tersectio							
Intersection Capacity Utiliza	ation 70.4%	0		IC	CU Level	of Service	эC					
Analysis Period (min) 15												
# 95th percentile volume			ueue ma	iy be long	ger.							
Queue shown is maximu	ım after tw	o cycles.										
Splits and Phases: 1: S V	Vakefield S	Street & N	IC-97 (G	annon Av	/enue)							
✓ Ø1	7 2		·		·				Ø4			

Ø1		₩ @4
14 s	52 s	24 s
← Ø6		¶ø8
66 s		24 s

Zebulon South TIA

2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)

12/05/2023

	٠	+	1	4	Ļ	*	•	1	1	1	Ļ	∢
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	3	1	1	5	1	WBR	5	1	NB IX	5	1	OBIN
Traffic Volume (vph)	66	352	108	245	494	57	102	341	154	51	254	50
Future Volume (vph)	66	352	108	245	494	57	102	341	154	51	254	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		2%			-2%			-2%			2%	
Storage Length (ft)	200	_,.	100	350		0	125		0	250		0
Storage Lanes	1		1	1		0	1		0	1		0
Taper Length (ft)	25			25		-	25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.985			0.953			0.975	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	1844	1567	1787	1853	0	1787	1793	0	1752	1798	0
FIt Permitted	0.433			0.950			0.418			0.170		
Satd. Flow (perm)	799	1844	1567	1787	1853	0	786	1793	0	313	1798	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			20			35	
Link Distance (ft)		1453			677			1822			478	
Travel Time (s)		28.3			13.2			62.1			9.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	73	391	120	272	549	63	113	379	171	57	282	56
Shared Lane Traffic (%)												
Lane Group Flow (vph)	73	391	120	272	612	0	113	550	0	57	338	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	4.04	Yes	4.04	0.00	Yes	0.00	0.00	0.00	0.00	4.04	Yes	4.04
Headway Factor	1.01 15	1.01	1.01	0.99	0.99	0.99	0.99 15	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)		NA	9 Dorm	15 Prot	NA	9		NIA	9	15 Dorm	NIA	9
Turn Type Protected Phases	Perm	2	Perm	P101	NA 6		Perm	NA 8		Perm	NA 4	
Permitted Phases	2	2	2	1	0		8	0		4	4	
Detector Phase	2	2	2	1	6		8	8		4	4	
Switch Phase	2	2	2	1	0		0	0		4	4	
Minimum Initial (s)	10.0	10.0	10.0	7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	24.0	24.0	24.0	14.0	17.0		24.0	24.0		14.0	14.0	
Total Split (s)	30.0	30.0	30.0	22.0	52.0		38.0	38.0		38.0	38.0	
Total Split (%)	33.3%	33.3%	33.3%	24.4%	57.8%		42.2%	42.2%		42.2%	42.2%	
Maximum Green (s)	23.0	23.0	23.0	15.0	45.0		31.0	31.0		31.0	31.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min	Min	None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0	7.0				7.0	7.0				
Flash Dont Walk (s)	10.0	10.0	10.0				10.0	10.0				
Pedestrian Calls (#/hr)	0	0	0				0	0				
Act Effct Green (s)	22.2	22.2	22.2	16.2	43.5		29.5	29.5		29.5	29.5	

2026 Background PM Peak Hour Timmons Group Synchro 11 Report

Zebulon South TIA

	٠	-	7	1	-	*	1	t	1	1	Ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Actuated g/C Ratio	0.27	0.27	0.27	0.19	0.52		0.35	0.35		0.35	0.35	
v/c Ratio	0.34	0.79	0.29	0.78	0.63		0.41	0.86		0.52	0.53	
Control Delay	31.3	42.4	27.5	51.2	18.3		26.5	41.3		41.7	25.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	31.3	42.4	27.5	51.2	18.3		26.5	41.3		41.7	25.4	
LOS	С	D	С	D	В		С	D		D	С	
Approach Delay		38.0			28.4			38.7			27.8	
Approach LOS		D			С			D			С	
Queue Length 50th (ft)	33	203	53	149	235		47	281		25	147	
Queue Length 95th (ft)	73	#336	100	#276	348		96	#462		#77	230	
Internal Link Dist (ft)		1373			597			1742			398	
Turn Bay Length (ft)	200		100	350			125			250		
Base Capacity (vph)	244	564	479	371	1065		317	724		126	726	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.30	0.69	0.25	0.73	0.57		0.36	0.76		0.45	0.47	
Intersection Summary												
51	Other											
Cycle Length: 90												
Actuated Cycle Length: 83.2	2											
Natural Cycle: 75												
Control Type: Actuated-Unc	coordinate	d										
Maximum v/c Ratio: 0.86												
Intersection Signal Delay: 3						n LOS: C						
Intersection Capacity Utiliza	ation 87.6%	6		IC	U Level	of Service	εE					
Analysis Period (min) 15												
# 95th percentile volume e				y be long	jer.							
Queue shown is maximu	ım after tw	o cycles.										
Splits and Phases: 2: NC	-96 (Areno	dell Aveni	ue) & NC	-97 (Gan	non Aver	nue)						
· -												
Ø1		Ø2				*	Ø4					
22 s	30 s					38 s						

¶ø8

Ø6

Intersection													
Int Delay, s/veh	3.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	51	5	73	4	4	7	36	268	4	9	437	47	
Future Vol, veh/h	51	5	73	4	4	7	36	268	4	9	437	47	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	57	6	81	4	4	8	40	298	4	10	486	52	

Major/Minor	Minor2		1	Minor1			Major1 Major2						
Conflicting Flow All	918	914	512	956	938	300	538	0	0	302	0	0	
Stage 1	532	532	-	380	380	-	-	-	-	-	-	-	
Stage 2	386	382	-	576	558	-	-	-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-	
Pot Cap-1 Maneuver	252	273	562	238	264	740	1030	-	-	1259	-	-	
Stage 1	531	526	-	642	614	-	-	-	-	-	-	-	
Stage 2	637	613	-	503	512	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuve	r 235	257	562	192	249	740	1030	-	-	1259	-	-	
Mov Cap-2 Maneuve	r 235	257	-	192	249	-	-	-	-	-	-	-	
Stage 1	506	520	-	612	585	-	-	-	-	-	-	-	
Stage 2	596	584	-	421	506	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	22.1	16.7	1	0.1	
HCM LOS	С	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1030	-	-	352	324	1259	-	-	
HCM Lane V/C Ratio	0.039	-	-	0.407	0.051	0.008	-	-	
HCM Control Delay (s)	8.6	0	-	22.1	16.7	7.9	0	-	
HCM Lane LOS	А	А	-	С	С	А	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	1.9	0.2	0	-	-	

Intersection						
Int Delay, s/veh	2.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		Þ			र्स
Traffic Vol, veh/h	11	63	168	15	133	281
Future Vol, veh/h	11	63	168	15	133	281
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	70	187	17	148	312

Major/Minor	Minor1	Ν	/lajor1	1	Major2						
Conflicting Flow All	804	196	0	0	204	0					
Stage 1	196	-	-	-	-	-					
Stage 2	608	-	-	-	-	-					
Critical Hdwy	6.42	6.22	-	-	4.12	-					
Critical Hdwy Stg 1	5.42	-	-	-	-	-					
Critical Hdwy Stg 2	5.42	-	-	-	-	-					
Follow-up Hdwy	3.518		-	-	2.218	-					
Pot Cap-1 Maneuver		845	-	-	1368	-					
Stage 1	837	-	-	-	-	-					
Stage 2	543	-	-	-	-	-					
Platoon blocked, %			-	-		-					
Mov Cap-1 Maneuve		845	-	-	1368	-					
Mov Cap-2 Maneuve		-	-	-	-	-					
Stage 1	837	-	-	-	-	-					
Stage 2	472	-	-	-	-	-					
Approach	WB		NB		SB						
HCM Control Delay,			0		2.6						
HCM LOS	В										
	unat	NDT		(DL	CDI	ODT					
Minor Lane/Major My	/mt	NBT	NBRW		SBL	SBT					
Capacity (veh/h)		-	-	670	1368	-					
HCM Lane V/C Ratio		-	-		0.108	-					
HCM Control Delay (s)	-	-	11.1	8	0					
HCM Lane LOS		-	-	В	А	А					

HCM 95th %tile Q(veh)

Timmons Group

-

0.4

-

_

0.4

2026 Build + Improvement Traffic Volumes

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/05/2023

	٠	+	1	4	Ļ	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	1	LDIX	5	1	WBI(NBE	4	NB IX	ODE	4	
Traffic Volume (vph)	6	499	52	51	567	4	126	10	130	4	5	19
Future Volume (vph)	6	499	52	51	567	4	126	10	130	4	5	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		-1%			0%			3%			1%	
Storage Length (ft)	125	.,.	0	125	• / •	0	0	• / •	0	0	170	0
Storage Lanes	1		0	1		0	0		0	0		0
Taper Length (ft)	25		-	25		-	25		-	25		-
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.986			0.999			0.934			0.909	
Flt Protected	0.950			0.950				0.977			0.994	
Satd. Flow (prot)	1778	1846	0	1770	1861	0	0	1674	0	0	1675	0
Flt Permitted	0.405			0.950				0.833			0.951	
Satd. Flow (perm)	758	1846	0	1770	1861	0	0	1428	0	0	1602	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		774			1453			1831			462	
Travel Time (s)		15.1			28.3			49.9			12.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	7	554	58	57	630	4	140	11	144	4	6	21
Shared Lane Traffic (%)												
Lane Group Flow (vph)	7	612	0	57	634	0	0	295	0	0	31	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	0.00	Yes	0.00	1 00	Yes	4 00	1 00	4 00	4 00	1.04	4.04	1.04
Headway Factor	0.99 15	0.99	0.99	1.00	1.00	1.00	1.02 15	1.02	1.02	1.01	1.01	1.01
Turning Speed (mph)		NA	9	15 Prot	NA	9		NIA	9	15 Dorm	NA	9
Turn Type Protected Phases	Perm	NA 2		1	NA 6		Perm	NA 8		Perm	NA 4	
Permitted Phases	2	2		1	0		8	0		4	4	
Detector Phase	2	2		1	6		8	8		4	4	
Switch Phase	2	2		1	0		0	0			-	
Minimum Initial (s)	10.0	10.0		7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	17.0	17.0		14.0	17.0		14.0	14.0		14.0	14.0	
Total Split (s)	46.0	46.0		14.0	60.0		30.0	30.0		30.0	30.0	
Total Split (%)	51.1%	51.1%		15.6%	66.7%		33.3%	33.3%		33.3%	33.3%	
Maximum Green (s)	39.0	39.0		7.0	53.0		23.0	23.0		23.0	23.0	
Yellow Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0		-2.0	-2.0			-2.0			-2.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min		None	Min		None	None		None	None	
Act Effct Green (s)	30.6	30.6		10.1	37.4			21.0			21.0	
Actuated g/C Ratio	0.44	0.44		0.14	0.54			0.30			0.30	
v/c Ratio	0.02	0.76		0.22	0.64			0.68			0.06	
Control Delay	14.0	25.3		37.3	14.0			35.1			23.0	

2026 Build + IMP AM Peak Hour Timmons Group

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/05/2023

	٠	-	Y	1	+	*	1	Ť	1	4	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	14.0	25.3		37.3	14.0			35.1			23.0	
LOS	В	С		D	В			D			С	
Approach Delay		25.1			15.9			35.1			23.0	
Approach LOS		С			В			D			С	
Queue Length 50th (ft)	2	262		26	182			131			11	
Queue Length 95th (ft)	10	405		68	287			#273			35	
Internal Link Dist (ft)		694			1373			1751			382	
Turn Bay Length (ft)	125			125								
Base Capacity (vph)	483	1177		257	1463			575			646	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.01	0.52		0.22	0.43			0.51			0.05	
Intersection Summary												
71	Other											
Cycle Length: 90												
Actuated Cycle Length: 69.	7											
Natural Cycle: 65												
Control Type: Actuated-Und	coordinated	t										
Maximum v/c Ratio: 0.76												
Intersection Signal Delay: 2	3.0			In	tersection	n LOS: C						
Intersection Capacity Utiliza	ation 72.9%	, 0		IC	U Level	of Service	ЭC					
Analysis Period (min) 15												
# 95th percentile volume	exceeds ca	apacity, q	ueue ma	y be long	jer.							
Queue shown is maximu	um after tw	o cycles.										
Splits and Phases: 1: S V	Vakefield S	Street & N	IC-97 (G	annon Av	venue)							
							1	6				

Ø1	A ₀₂	₩Ø4	
14 s	46 s	30 s	
♦		≪ ¶ Ø8	
60 s		30 s	

Zebulon South TIA

2: NC-96	(Arendell Avenue) & NC-97 ((Gannon Avenue)
----------	------------------	-------------	-----------------

12/05/2023

	٠		~	-	+	•	•	ŧ	*	1	1	1
		EBT	EBR	▼ WBL	WBT	WBR	NBL	NBT	NBR	SBL	▼ SBT	-
Lane Group	EBL					WDK			NDK			SBR
Lane Configurations		462			1	10		1	170		216	22
Traffic Volume (vph)	46	463	87 87	232 232	354 354	19	136	250	172 172	25 25	216 216	33 33
Future Volume (vph)	46 1900	463 1900	1900	1900	1900	19 1900	136 1900	250 1900	1900	25 1900	1900	
Ideal Flow (vphpl)	1900	2%	1900	1900	-2%	1900	1900	-2%	1900	1900	2%	1900
Grade (%)	000	Ζ%	100	250	-2%	0	405	-2%	0	050	Ζ%	0
Storage Length (ft)	200		100	350		0	125		0	250		0
Storage Lanes	1		1	1		0	1		0	1		0
Taper Length (ft)	25	4.00	1.00	25	1.00	4 00	25	4 00	4 00	25	1.00	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.050		0.850	0.050	0.992		0.050	0.939		0.050	0.980	
Flt Protected	0.950	4044	4507	0.950	4000	0	0.950	4707	0	0.950	4007	0
Satd. Flow (prot)	1752	1844	1567	1787	1866	0	1787	1767	0	1752	1807	0
Flt Permitted	0.520	1011	4507	0.950	4000	•	0.466	4707	•	0.205	4007	0
Satd. Flow (perm)	959	1844	1567	1787	1866	0	877	1767	0	378	1807	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			20			35	_
Link Distance (ft)		1453			677			1822			478	
Travel Time (s)		28.3			13.2			62.1			9.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	51	514	97	258	393	21	151	278	191	28	240	37
Shared Lane Traffic (%)												
Lane Group Flow (vph)	51	514	97	258	414	0	151	469	0	28	277	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes						Yes	
Headway Factor	1.01	1.01	1.01	0.99	0.99	0.99	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	Perm	Prot	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2		2				8			4		
Detector Phase	2	2	2	1	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	24.0	24.0	24.0	14.0	17.0		24.0	24.0		14.0	14.0	
Total Split (s)	35.0	35.0	35.0	21.0	56.0		34.0	34.0		34.0	34.0	
Total Split (%)	38.9%	38.9%	38.9%	23.3%	62.2%		37.8%	37.8%		37.8%	37.8%	
Maximum Green (s)	28.0	28.0	28.0	14.0	49.0		27.0	27.0		27.0	27.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min	Min	None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0	7.0				7.0	7.0				
Flash Dont Walk (s)	10.0	10.0	10.0				10.0	10.0				
Pedestrian Calls (#/hr)	0	0	0				0	0				
Act Effct Green (s)	27.4	27.4	27.4	15.3	47.8		26.3	26.3		26.3	26.3	
				.0.0			_0.0	_0.0		_0.0	_0.0	

2026 Build + IMP AM Peak Hour Timmons Group

Zebulon South TIA

	٠	-	7	1	+	*	1	t	1	\$	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Actuated g/C Ratio	0.33	0.33	0.33	0.18	0.57		0.31	0.31		0.31	0.31	
v/c Ratio	0.16	0.86	0.19	0.79	0.39		0.55	0.85		0.24	0.49	
Control Delay	22.9	43.1	22.5	53.8	11.8		33.9	44.1		28.7	27.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	22.9	43.1	22.5	53.8	11.8		33.9	44.1		28.7	27.6	
LOS	С	D	С	D	В		С	D		С	С	
Approach Delay		38.5			27.9			41.6			27.7	
Approach LOS		D			С			D			С	
Queue Length 50th (ft)	20	267	39	142	122		70	244		12	125	
Queue Length 95th (ft)	48	#439	76	#268	185		134	#407		36	200	
Internal Link Dist (ft)		1373			597			1742			398	
Turn Bay Length (ft)	200		100	350			125			250		
Base Capacity (vph)	346	666	566	344	1146		306	617		132	631	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.15	0.77	0.17	0.75	0.36		0.49	0.76		0.21	0.44	
Intersection Summary												
21	Other											
Cycle Length: 90												
Actuated Cycle Length: 84.2	2											
Natural Cycle: 70												
Control Type: Actuated-Unc	coordinate	d										
Maximum v/c Ratio: 0.86												
Intersection Signal Delay: 3						n LOS: C						
Intersection Capacity Utiliza	ition 83.4%	6		IC	U Level	of Service	εE					
Analysis Period (min) 15												
# 95th percentile volume e			ueue ma	y be long	jer.							
Queue shown is maximu	im after tw	o cycles.										
Splits and Phases: 2: NC	-96 (Areno	lell Aveni	ie) & NC	-97 (Gan	non Aver	nue)						
76							1					
1 Ø1	+	Ø2					+ 0	4				
21 s	35 s						34 s					

A ØS

4 Ø6

Intersection												
Int Delay, s/veh	2.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	EDL		EDK	VVDL		VDR	INDL		NDR	SDL		SDR
Lane Configurations	34	4	21	4	↔ 4	4	56	4 06	4	4	401	20
Traffic Vol, veh/h Future Vol, veh/h	34	4	21	4	4	4	56	406	4	4	191 191	20
Conflicting Peds, #/hr	0 0	4	21	4	4	4	00 0	406	4	4	0	20
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	- Siop	Stop -		- SiOP	- Stop	None	-	-	None	-	-	
Storage Length	_	-	NULLE	_	-	NULLE	-	-	NULLE	_	-	NONE
Veh in Median Storage		0	_	_	0	_	-	0	_	_	0	_
Grade, %	σ, π -	0	-	_	0	_	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	38	4	23	4	4	4	62	451	4	4	212	22
	00		20		T		02	101	T	T	212	~~~
									_			
	/linor2			Minor1			Major1			Aajor2		
Conflicting Flow All	812	810	223	822	819	453	234	0	0	455	0	0
Stage 1	231	231	-	577	577	-	-	-	-	-	-	-
Stage 2	581	579	-	245	242	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
	3.518		3.318		4.018	3.318		-	-	2.218	-	-
Pot Cap-1 Maneuver	298	314	817	293	310	607	1333	-	-	1106	-	-
Stage 1	772	713	-	502	502	-	-	-	-	-	-	-
Stage 2	499	501	-	759	705	-	-	-	-	-	-	-
Platoon blocked, %	070	000	047	007	000	007	4000	-	-	4400	-	-
Mov Cap-1 Maneuver	278	293	817	267	290	607	1333	-	-	1106	-	-
Mov Cap-2 Maneuver	278	293	-	267	290	-	-	-	-	-	-	-
Stage 1	724	710	-	471	471	-	-	-	-	-	-	-
Stage 2	460	470	-	730	702	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
Approach												
HCM Control Delay, s	17			16.1			0.9			0.2		
HCM LOS	С			С								
Minor Lane/Major Mvn	ot	NBL	NBT	NRDI	EBLn1V	VRI n1	SBL	SBT	SBR			
· · · · ·	int int	1333			365	339	1106	001	ODIX			
Capacity (veh/h) HCM Lane V/C Ratio		0.047	-	-		0.039		-	-			
	\		-	-				-	-			
HCM Control Delay (s))	7.8	0	-	17	16.1	8.3	U	-			

А

0.1

А

-

С

0.6

-

-

С

0.1

А

0

А

-

-

-

HCM Lane LOS

HCM 95th %tile Q(veh)

Intersection						
Int Delay, s/veh	1.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	†	1
Traffic Vol, veh/h	42	8	4	366	168	13
Future Vol, veh/h	42	8	4	366	168	13
Conflicting Peds, #/hr	42	0	4	0	0	0
Sign Control	Stop			Free	Free	Free
		Stop	Free			
RT Channelized	-	None		None	-	None
Storage Length	0	-	-	-	-	50
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	47	9	4	407	187	14
Major/Minor M	Minor2	1	Major1	Ν	/lajor2	
Conflicting Flow All	602	187	201	0	-	0
Stage 1	187	-				-
-	415	-	-	-	-	-
Stage 2			-			-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy				-	-	-
Pot Cap-1 Maneuver	463	855	1371	-	-	-
Stage 1	845	-	-	-	-	-
Stage 2	666	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	461	855	1371	-	-	-
Mov Cap-2 Maneuver	461	-	-	-	-	-
Stage 1	842	-	-	-	-	-
Stage 2	666	-	-	-	-	-
Oldgo Z	000					
Annrach	FD				00	
Approach	EB		NB		SB	
HCM Control Delay, s			0.1		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1371	-	498	-	_
HCM Lane V/C Ratio		0.003	_	0.112	-	-
HCM Control Delay (s)	7.6	0	13.1	_	_
HCM Lane LOS	/	7.0 A	A	B	-	-
		A	А		-	-

HCM 95th %tile Q(veh)

0

-

0.4

_

_

Intersection						
Int Delay, s/veh	1.3					
N 4				NDT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	- †	7
Traffic Vol, veh/h	42	17	6	327	162	14
Future Vol, veh/h	42	17	6	327	162	14
Conflicting Peds, #/h	nr O	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length	0	None		None	-	50
	-	-	-	-		
Veh in Median Stora	• ·	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	47	19	7	363	180	16
Major/Minor	Minor2	Ν	/lajor1	Ν	/lajor2	
Conflicting Flow All	557	180	196	0	-	0
Stage 1	180	-	-	-	-	-
Stage 2	377	-	-	-	-	-

Stage 1	180	-	-	-	-	
Stage 2	377	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	491	863	1377	-	-	-
Stage 1	851	-	-	-	-	-
Stage 2	694	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	488	863	1377	-	-	-
Mov Cap-2 Maneuver	488	-	-	-	-	-
Stage 1	846	-	-	-	-	-
Stage 2	694	-	-	-	-	-
Approach	ED		ND		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	12.3		0.1		0	
HCM LOS	В					

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1377	- 558	-	-	
HCM Lane V/C Ratio	0.005	- 0.117	-	-	
HCM Control Delay (s)	7.6	0 12.3	-	-	
HCM Lane LOS	А	A B	-	-	
HCM 95th %tile Q(veh)	0	- 0.4	-	-	

Intersection							
Int Delay, s/veh	3.1						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	-
Lane Configurations	Y		Þ			4	1
Traffic Vol, veh/h	21	96	237	6	43	136	5
Future Vol, veh/h	21	96	237	6	43	136	;
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free)
RT Channelized	-	None	-	None	-	None)
Storage Length	0	-	-	-	-	-	-
Veh in Median Storage	e,#0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	90	90	90	90	90	90)
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	23	107	263	7	48	151	

Major/Minor	Minor1	Ν	/lajor1		Major2	
Conflicting Flow All	514	267	0	0	270	0
Stage 1	267	-	-	-	-	-
Stage 2	247	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	-	-	2.218	-
Pot Cap-1 Maneuve		772	-	-	1293	-
Stage 1	778	-	-	-	-	-
Stage 2	794	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve		772	-	-	1293	-
Mov Cap-2 Maneuve	er 500	-	-	-	-	-
Stage 1	778	-	-	-	-	-
Stage 2	761	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay,	s 11.3		0		1.9	
HCM LOS	В					
Minor Lane/Major M	vmt	NBT	NBRW	BLn1	SBL	SBT
Capacity (veh/h)		-	-	703	1293	-
HCM Lane V/C Ratio		-	- (0.037	-
HCM Control Delay	(s)	-	-	11.3	7.9	0

Interportion						
Intersection						
Int Delay, s/veh	1.9					
Movement					CDI	SBT
Movement	WBL	WBR	NBT	NBR	SBL	SBI
Lane Configurations	Y		T.		٦	+
Traffic Vol, veh/h	8	52	214	4	16	92
Future Vol, veh/h	8	52	214	4	16	92
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage	e,#0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	9	58	238	4	18	102

Major/Minor M	Minor1	Ν	/lajor1	Ν	/lajor2	
Conflicting Flow All	378	240	0	0	242	0
Stage 1	240	-	-	-	-	-
Stage 2	138	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518		-	-	2.218	-
Pot Cap-1 Maneuver	624	799	-	-	1324	-
Stage 1	800	-	-	-	-	-
Stage 2	889	-	-	-	-	-
Platoon blocked, %	0 4-	700	-	-	1001	-
Mov Cap-1 Maneuver		799	-	-	1324	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	800	-	-	-	-	-
Stage 2	877	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		1.1	
HCM LOS	В		•			
	_					
N (:		NDT		N 4		ODT
Minor Lane/Major Mvr	nt	NBT	NBRWE		SBL	SBT
Capacity (veh/h)		-	-	768	1324	-

	1101	11010	1 DEILL	UDL	001	
Capacity (veh/h)	-	-	768	1324	-	
HCM Lane V/C Ratio	-	-	0.087	0.013	-	
HCM Control Delay (s)	-	-	10.1	7.8	-	
HCM Lane LOS	-	-	В	Α	-	
HCM 95th %tile Q(veh)	-	-	0.3	0	-	

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/05/2023

Lane Configurations 1		٠	-	7	1	+	×	1	t	1	1	ţ	4
Lane Configurations 1	Lane Group	FRI	FRT	FBR	WRI	WRT	WRR	NRI	NRT	NRR	SBI	SBT	SBR
Traffic Volume (vph) 10 724 150 73 592 4 113 10 79 7 19 Future Volume (vph) 100 724 150 73 592 4 113 10 79 7 19 Grade (%) .1% 000 1900 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				LDIX			WBI	NDL		NDIX	ODL		
Future Volume (vph) 10 724 150 73 592 4 113 10 79 7 19 Ideal Flow (vphp) 1900 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 110 10 10 10 10 10 10 10 10 10 10 10 10				150			4	113		79	7		29
Ideal Flow (vphp) 1900 <td></td> <td>-</td> <td></td> <td>29</td>											-		29
Grade (%) -1% 0% 3% 1% Storage Length (ft) 125 0 0 0 0 0 Storage Lanes 1 0 1 0 0 0 0 0 0 Storage Lanes 1 0 1 0 0 0 0 0 0 1 Taper Length (ft) 25 25 25 25 25 100 1.01 1.00 1.00 <td>,</td> <td></td> <td>1900</td>	,												1900
Storage Length (ft) 125 0 125 0 0 0 0 Taper Length (ft) 25 25 25 25 25 25 25 25 25 100 1.01 1.01	· · · · /	1000		1000	1000		1000	1000		1000	1000		1000
Storage Lanes 1 0 1 0 0 0 0 Taper Length (ft) 25 <td>()</td> <td>125</td> <td>170</td> <td>0</td> <td>125</td> <td>070</td> <td>0</td> <td>0</td> <td>070</td> <td>0</td> <td>0</td> <td>170</td> <td>0</td>	()	125	170	0	125	070	0	0	070	0	0	170	0
Taper Length (ft) 25 25 25 25 25 Lane Util. Factor 1.00 <td></td> <td>0</td>													0
Lane Util. Factor 1.00 1.01 1.01 1.01 <td></td> <td>-</td> <td></td> <td>Ū</td> <td>•</td> <td></td> <td>Ū</td> <td></td> <td></td> <td>Ū</td> <td></td> <td></td> <td>Ű</td>		-		Ū	•		Ū			Ū			Ű
Frt 0.974 0.999 0.947 0.929 Fit Protected 0.950 0.950 0.973 0.933 Satd. Flow (prot) 1778 1823 0 1770 1861 0 0 1691 0 0 1710 Fit Permitted 0.413 0.950 0.812 0.953 0.953 Satd. Flow (perm) 773 1823 0 1770 1861 0 0 1641 Right Turn on Red No No No No No No No Statd. Flow (RTOR) 1 774 1453 1831 462 17 Link Distance (ft) 774 1453 1831 462 17 Peak Hour Factor 0.90 <td>1 0 ()</td> <td></td> <td>1 00</td> <td>1 00</td> <td></td> <td>1 00</td> <td>1 00</td> <td></td> <td>1 00</td> <td>1 00</td> <td></td> <td>1 00</td> <td>1.00</td>	1 0 ()		1 00	1 00		1 00	1 00		1 00	1 00		1 00	1.00
Fit Protected 0.950 0.973 0.993 Satd. Flow (prot) 1778 1823 0 1770 1861 0 0 1691 0 0 1710 Flt Permitted 0.413 0.950 0.812 0.953 0.953 Satd. Flow (perm) 773 1823 0 1770 1861 0 0 1411 0 0 1641 Right Turn on Red No No<		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Satd. Flow (prot) 1778 1823 0 1770 1861 0 0 1691 0 0 1710 Fit Permitted 0.413 0.950 0.812 0.953 0.95		0.950	0.011		0.950	0.000							
Fit Permitted 0.413 0.950 0.812 0.953 Satd. Flow (perm) 773 1823 0 1770 1861 0 0 1411 0 0 1641 Right Turn on Red No No No No No No No No Satd. Flow (RTOR) 11 774 1453 1831 462 462 Link Speed (mph) 35 35 25 25 25 164 Peak Hour Factor 0.90 0 0 <t< td=""><td></td><td></td><td>1823</td><td>0</td><td></td><td>1861</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td></td><td>0</td></t<>			1823	0		1861	0	0		0	0		0
Satd. Flow (perm) 773 1823 0 1770 1861 0 0 1411 0 0 1641 Right Turn on Red No No <t< td=""><td>,</td><td></td><td></td><td>•</td><td></td><td></td><td>•</td><td>•</td><td></td><td>•</td><td>· ·</td><td></td><td>J</td></t<>	,			•			•	•		•	· ·		J
Right Turn on Red No No No No No Satd. Flow (RTOR) 35 35 25 25 25 Link Speed (mph) 35 35 25 25 25 Link Distance (ft) 774 1453 1831 462 Travel Time (s) 15.1 28.3 49.9 12.6 Peak Hour Factor 0.90 0 0 0 0 0 <td></td> <td></td> <td>1823</td> <td>0</td> <td></td> <td>1861</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td>			1823	0		1861	0	0		0	0		0
Satd. Flow (RTOR) 35 35 25 25 Link Speed (mph) 35 35 25 25 Link Distance (ft) 774 1453 1831 462 Travel Time (s) 15.1 28.3 49.9 12.6 Peak Hour Factor 0.90 1.91 1.91 1.91 1.91								•		-	· ·		No
Link Speed (mph) 35 35 25 25 Link Distance (ft) 774 1453 1831 462 Travel Time (s) 15.1 28.3 49.9 12.6 Peak Hour Factor 0.90 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01													
Link Distance (ft) 774 1453 1831 462 Travel Time (s) 15.1 28.3 49.9 12.6 Peak Hour Factor 0.90 0 0 <t< td=""><td></td><td></td><td>35</td><td></td><td></td><td>35</td><td></td><td></td><td>25</td><td></td><td></td><td>25</td><td></td></t<>			35			35			25			25	
Travel Time (s) 15.1 28.3 49.9 12.6 Peak Hour Factor 0.90	,												
Peak Hour Factor 0.90	()												
Adj. Flow (vph) 11 804 167 81 658 4 126 11 88 8 21 Shared Lane Traffic (%) Lane Group Flow (vph) 11 971 0 81 662 0 0 225 0 0 61 Enter Blocked Intersection No		0.90		0.90	0.90		0.90	0.90		0.90	0.90		0.90
Shared Lane Traffic (%) Lane Group Flow (vph) 11 971 0 81 662 0 0 225 0 0 61 Enter Blocked Intersection No So So So													32
Lane Group Flow (vph) 11 971 0 81 662 0 0 225 0 0 61 Enter Blocked Intersection No					•								•=
Enter Blocked IntersectionNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoILane AlignmentLeftLeftRightDetectorDetectorDetectorDetectorDetectorDetectorDetectorDetectorNoDetectorDetectorDetectorNo		11	971	0	81	662	0	0	225	0	0	61	0
Lane AlignmentLeftLeftRightRight<				-						-	-		No
Median Width(ft) 12 12 0 0 Link Offset(ft) 0 10 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01													Right
Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 16 Two way Left Turn Lane Yes Yes Yes 102 1.02 1.01 1.01 1. Headway Factor 0.99 0.99 0.99 1.00 1.00 1.02 1.02 1.01 1.01 1. Turning Speed (mph) 15 9 15 9 15 9 15 9 15 16 16 16 10 1.01 1. 1.01 1. 1.01 1. 1. 1.01 1.01 1. 1.01 1. 1.01 1. 1. 1.01 1.01 1. 1. 1.01 1.01 1. 1.01 1.01 1. 1.01 1.01 1.01 1. 1.01 1	-												, ngru
Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Yes Yes <td< td=""><td>()</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	()												
Two way Left Turn Lane Yes Yes Headway Factor 0.99 0.99 0.99 1.00 1.00 1.02 1.02 1.01 1.01 1.01 1.01 Turning Speed (mph) 15 9 15 9 15 9 15 9 15 Turn Type Perm NA Prot NA Perm NA Perm NA Protected Phases 2 1 6 8 4 4 Detector Phase 2 2 1 6 8 4 4													
Headway Factor 0.99 0.99 0.99 1.00 1.00 1.02 1.02 1.02 1.01	()		Yes			Yes							
Turning Speed (mph) 15 9 15 9 15 9 15 Turn Type Perm NA Prot NA Perm NA Perm NA Protected Phases 2 1 6 8 4 Permitted Phases 2 1 6 8 4 Detector Phase 2 2 1 6 8 4		0.99	0.99	0.99	1.00	1.00	1.00	1.02	1.02	1.02	1.01	1.01	1.01
Turn TypePermNAProtNAPermNAPermNAProtected Phases21684Permitted Phases2844Detector Phase221688				9	15		9	15		9	15		9
Protected Phases 2 1 6 8 4 Permitted Phases 2 8 4 4 Detector Phase 2 2 1 6 8 8 4 4		Perm	NA		Prot	NA		Perm	NA		Perm	NA	
Detector Phase 2 2 1 6 8 8 4 4	Protected Phases		2		1	6			8			4	
	Permitted Phases	2						8			4		
	Detector Phase	2	2		1	6		8	8		4	4	
Switch Phase	Switch Phase												
Minimum Initial (s) 10.0 10.0 7.0 10.0 7.0 7.0 7.0 7.0 7.0	Minimum Initial (s)	10.0	10.0		7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s) 17.0 17.0 14.0 17.0 14.0 14.0 14.0 14.0 14.0	Minimum Split (s)	17.0	17.0		14.0	17.0		14.0	14.0		14.0	14.0	
Total Split (s) 52.0 52.0 14.0 66.0 24.0 24.0 24.0 24.0	Total Split (s)	52.0	52.0		14.0	66.0		24.0	24.0		24.0	24.0	
Total Split (%) 57.8% 57.8% 15.6% 73.3% 26.7% 26.7% 26.7% 26.7%	Total Split (%)	57.8%	57.8%		15.6%	73.3%		26.7%	26.7%		26.7%	26.7%	
Maximum Green (s) 45.0 45.0 7.0 59.0 17.0 17.0 17.0 17.0	Maximum Green (s)	45.0	45.0		7.0	59.0		17.0	17.0		17.0	17.0	
Yellow Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Yellow Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s) -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0	Lost Time Adjust (s)	-2.0	-2.0		-2.0	-2.0			-2.0			-2.0	
Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	
Lead/Lag Lag Lead		Lag	Lag		Lead								
Lead-Lag Optimize? Yes Yes Yes	Lead-Lag Optimize?		Yes		Yes								
Vehicle Extension (s) 3.0 3.0 3.0 3.0 2.0	Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode Min Min None Min None None None None	Recall Mode	Min			None			None	None		None	None	
Act Effct Green (s) 48.3 48.3 9.1 59.1 17.5 17.5	Act Effct Green (s)	48.3	48.3		9.1	59.1			17.5			17.5	
Actuated g/C Ratio 0.56 0.56 0.11 0.68 0.20 0.20	Actuated g/C Ratio	0.56	0.56		0.11	0.68			0.20			0.20	
v/c Ratio 0.03 0.96 0.44 0.52 0.79 0.18		0.03	0.96		0.44	0.52			0.79			0.18	
Control Delay 10.8 41.4 46.3 8.8 54.8 30.9	Control Delay	10.8	41.4		46.3	8.8			54.8			30.9	

2026 Build + IMP PM Peak Hour Timmons Group

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/05/2023

	٠	→	7	4	-	*	1	t	1	4	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	10.8	41.4		46.3	8.8			54.8			30.9	
LOS	В	D		D	А			D			С	
Approach Delay		41.0			12.9			54.8			30.9	
Approach LOS		D			В			D			С	
Queue Length 50th (ft)	3	~557		44	164			121			29	
Queue Length 95th (ft)	11	#825		90	244			#232			63	
Internal Link Dist (ft)		694			1373			1751			382	
Turn Bay Length (ft)	125			125								
Base Capacity (vph)	430	1016		185	1318			311			362	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn 0 0 0 0 0 0 0												
Reduced v/c Ratio 0.03 0.96 0.44 0.50 0.72 0.17												
Intersection Summary												
	Other											
Cycle Length: 90												
Actuated Cycle Length: 86.	6											
Natural Cycle: 90												
Control Type: Actuated-Uno	coordinate	d										
Maximum v/c Ratio: 0.96												
Intersection Signal Delay: 3					tersection							
Intersection Capacity Utiliza	ation 83.8%	6		IC	U Level	of Service	εE					
Analysis Period (min) 15												
 Volume exceeds capac 			ically infi	nite.								
Queue shown is maximum after two cycles.												
# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maximum after two cycles.												
Splits and Phases: 1: S Wakefield Street & NC-97 (Gannon Avenue)												

√ Ø1	<u></u> ø₂		Ø4	
14 s	52 s	24	l s	
← Ø6		1	Ø8	
66 s		24	ls	

Zebulon South TIA

2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)

12/05/2023

`	٢	-	>	1	+	1	•	Ť	1	1	Ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5		1	<u> </u>	1	VVDIX	THE T	1	NDIX	<u> </u>	1	
Traffic Volume (vph)	66	363	127	282	512	57	113	357	176	51	282	50
Future Volume (vph)	66	363	127	282	512	57	113	357	176	51	282	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)	1300	2%	1300	1300	-2%	1300	1300	-2%	1300	1300	2%	1300
Storage Length (ft)	200	∠ /0	100	350	-2 /0	0	125	-2 /0	0	250	2 /0	0
Storage Lanes	200		100	300		0	125		0	250		0
Taper Length (ft)	25		I	25		0	25		0	25		0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.850	1.00	0.985	1.00	1.00	0.950	1.00	1.00	0.977	1.00
Fit Protected	0.050		0.000	0.950	0.900		0.050	0.950		0.950	0.977	
	0.950	1011	1567		1050	0	0.950	1707	0		1000	0
Satd. Flow (prot)	1752	1844	1567	1787	1853	0	1787	1787	0	1752	1802	0
Flt Permitted	0.425	4044	4507	0.950	4050	•	0.392	4707	0	0.146	4000	0
Satd. Flow (perm)	784	1844	1567	1787	1853	0	737	1787	0	269	1802	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			20			35	_
Link Distance (ft)		1453			677			1822			478	
Travel Time (s)		28.3			13.2			62.1			9.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	73	403	141	313	569	63	126	397	196	57	313	56
Shared Lane Traffic (%)												
Lane Group Flow (vph)	73	403	141	313	632	0	126	593	0	57	369	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes						Yes	
Headway Factor	1.01	1.01	1.01	0.99	0.99	0.99	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	Perm	Prot	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2		2				8			4		
Detector Phase	2	2	2	1	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	24.0	24.0	24.0	14.0	17.0		24.0	24.0		14.0	14.0	
Total Split (s)	27.0	27.0	27.0	23.0	50.0		40.0	40.0		40.0	40.0	
Total Split (%)	30.0%	30.0%	30.0%	25.6%	55.6%		44.4%	44.4%		44.4%	44.4%	
Maximum Green (s)	20.0	20.0	20.0	16.0	43.0		33.0	33.0		33.0	33.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	4 5.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
	-2.0 5.0				-2.0							
Total Lost Time (s)		5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	0.0		0.0	0.0		0.0	0.0	
Vehicle Extension (s)	3.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min	Min	None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0	7.0				7.0	7.0				
Flash Dont Walk (s)	10.0	10.0	10.0				10.0	10.0				
Pedestrian Calls (#/hr)	0	0	0				0	0				
Act Effct Green (s)	21.3	21.3	21.3	17.5	43.9		32.1	32.1		32.1	32.1	

2026 Build + IMP PM Peak Hour Timmons Group

Zebulon South TIA

	٠	-	*	4	+	*	1	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Actuated g/C Ratio	0.25	0.25	0.25	0.20	0.51		0.37	0.37		0.37	0.37	
v/c Ratio	0.38	0.88	0.36	0.86	0.67		0.46	0.89		0.57	0.55	
Control Delay	35.0	54.9	31.1	58.3	20.7		27.1	43.0		47.6	25.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	35.0	54.9	31.1	58.3	20.7		27.1	43.0		47.6	25.0	
LOS	D	D	С	Е	С		С	D		D	С	
Approach Delay		47.1			33.2			40.2			28.0	
Approach LOS		D			С			D			С	
Queue Length 50th (ft)	35	222	67	174	260		52	303		25	158	
Queue Length 95th (ft)	77	#389	121	#321	385		106	#494		#83	243	
Internal Link Dist (ft)		1373			597			1742			398	
Turn Bay Length (ft)	200		100	350			125			250		
Base Capacity (vph)	201	474	403	376	975		301	731		109	737	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.36	0.85	0.35	0.83	0.65		0.42	0.81		0.52	0.50	
Intersection Summary												
21	Other											
Cycle Length: 90												
Actuated Cycle Length: 86.1	1											
Natural Cycle: 80												
Control Type: Actuated-Unc	oordinated	d										
Maximum v/c Ratio: 0.89												
Intersection Signal Delay: 3						n LOS: D						
Intersection Capacity Utiliza	tion 90.8%	0		IC	U Level	of Service	ε					
Analysis Period (min) 15												
# 95th percentile volume e			ueue ma	y be long	jer.							
Queue shown is maximu	im after tw	o cycles.										
	00 ()			07 (0								
Splits and Phases: 2: NC	-96 (Arenc	tell Avenu	ie) & NC	-97 (Gan	non Aver	iue)						
1 Ø1	-	102				+ 0	1					
22.0	27					40 s						

¶ø8

Ø6

Intersection													
Int Delay, s/veh	4.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	51	5	82	4	4	7	41	317	4	9	521	47	
Future Vol, veh/h	51	5	82	4	4	7	41	317	4	9	521	47	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storag	e,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	57	6	91	4	4	8	46	352	4	10	579	52	

Major/Minor	Minor2			Minor1			Major1		ľ	/lajor2			
Conflicting Flow All	1077	1073	605	1120	1097	354	631	0	0	356	0	0	
Stage 1	625	625	-	446	446	-	-	-	-	-	-	-	
Stage 2	452	448	-	674	651	-	-	-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-	
Pot Cap-1 Maneuver	197	220	498	184	213	690	951	-	-	1203	-	-	
Stage 1	473	477	-	591	574	-	-	-	-	-	-	-	
Stage 2	587	573	-	444	465	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuve	r 181	204	498	139	198	690	951	-	-	1203	-	-	
Mov Cap-2 Maneuve	r 181	204	-	139	198	-	-	-	-	-	-	-	
Stage 1	445	471	-	556	540	-	-	-	-	-	-	-	
Stage 2	541	539	-	354	459	-	-	-	-	-	-	-	
Ammanah										OD			

Approach	EB	WB	NB	SB	
HCM Control Delay, s	30	20.2	1	0.1	
HCM LOS	D	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	951	-	-	293	254	1203	-	-
HCM Lane V/C Ratio	0.048	-	-	0.523	0.066	0.008	-	-
HCM Control Delay (s)	9	0	-	30	20.2	8	0	-
HCM Lane LOS	А	Α	-	D	С	Α	А	-
HCM 95th %tile Q(veh)	0.2	-	-	2.8	0.2	0	-	-

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		EBR	INBL			
Lane Configurations	M	-	0	4	†	10
Traffic Vol, veh/h	27	5	9	258	461	46
Future Vol, veh/h	27	5	9	258	461	46
Conflicting Peds, #/hr		0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	50
Veh in Median Storag		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	30	6	10	287	512	51
Maion/Minon	MinerO	R	Anian1	N	Anin mO	
	Minor2		Major1		/lajor2	
Conflicting Flow All	819	512	563	0	-	0
Stage 1	512	-	-	-	-	-
Stage 2	307	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	345	562	1008	-	-	-
Stage 1	602	-	-	-	-	-
Stage 2	746	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	341	562	1008	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	595	-	-	-	-	-
Stage 2	746	-	-	-	-	-
0.0.90 2	. 10					
Approach	EB		NB		SB	
HCM Control Delay, s	16		0.3		0	
HCM LOS	С					
Minor Long /Maior Ma			NDT		ODT	
Minor Lane/Major Mv	mt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)	mt	1008	-	363	-	-
Capacity (veh/h) HCM Lane V/C Ratio		1008 0.01	-	363 0.098		SBR - -
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s		1008 0.01 8.6	- - 0	363 0.098 16	-	-
Capacity (veh/h) HCM Lane V/C Ratio	;)	1008 0.01	-	363 0.098	-	-

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ŧ	1	1
Traffic Vol, veh/h	27	11	18	240	419	47
Future Vol, veh/h	27	11	18	240	419	47
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	50
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	30	12	20	267	466	52

Major/Minor	Minor2		Major1	Мај	or2	
Conflicting Flow All	773	466	518	0	-	0
Stage 1	466	-	-	-	-	-
Stage 2	307	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	367	597	1048	-	-	-
Stage 1	632	-	-	-	-	-
Stage 2	746	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver		597	1048	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	618	-	-	-	-	-
Stage 2	746	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0.6		0	
HCM LOS	В					

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1048	- 406	-	-	
HCM Lane V/C Ratio	0.019	- 0.104	-	-	
HCM Control Delay (s)	8.5	0 14.9	-	-	
HCM Lane LOS	А	A B	-	-	
HCM 95th %tile Q(veh)	0.1	- 0.3	-	-	

Intersection						
Int Delay, s/veh	2.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		Þ			र्स
Traffic Vol, veh/h	11	72	186	15	138	292
Future Vol, veh/h	11	72	186	15	138	292
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,#0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	80	207	17	153	324

Major/Minor	Minor1	Ν	/lajor1	1	Major2	
Conflicting Flow All	846	216	0	0	224	0
Stage 1	216	-	-	-	-	-
Stage 2	630	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	333	824	-	-	1345	-
Stage 1	820	-	-	-	-	-
Stage 2	531	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	r 287	824	-	-	1345	-
Mov Cap-2 Maneuve		-	-	-	-	-
Stage 1	820	-	-	-	-	-
Stage 2	457	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay,			0		2.6	
HCM LOS	B		Ū		2.0	
	_					
		NET			0.51	0.D.T.
Minor Lane/Major Mv	rmt	NBT	NBRW		SBL	SBT
Capacity (veh/h)		-	-	660	1345	-
HCM Lane V/C Ratio		-	-		0.114	-
HCM Control Delay (s)	-	-	11.3	8	0

А

-

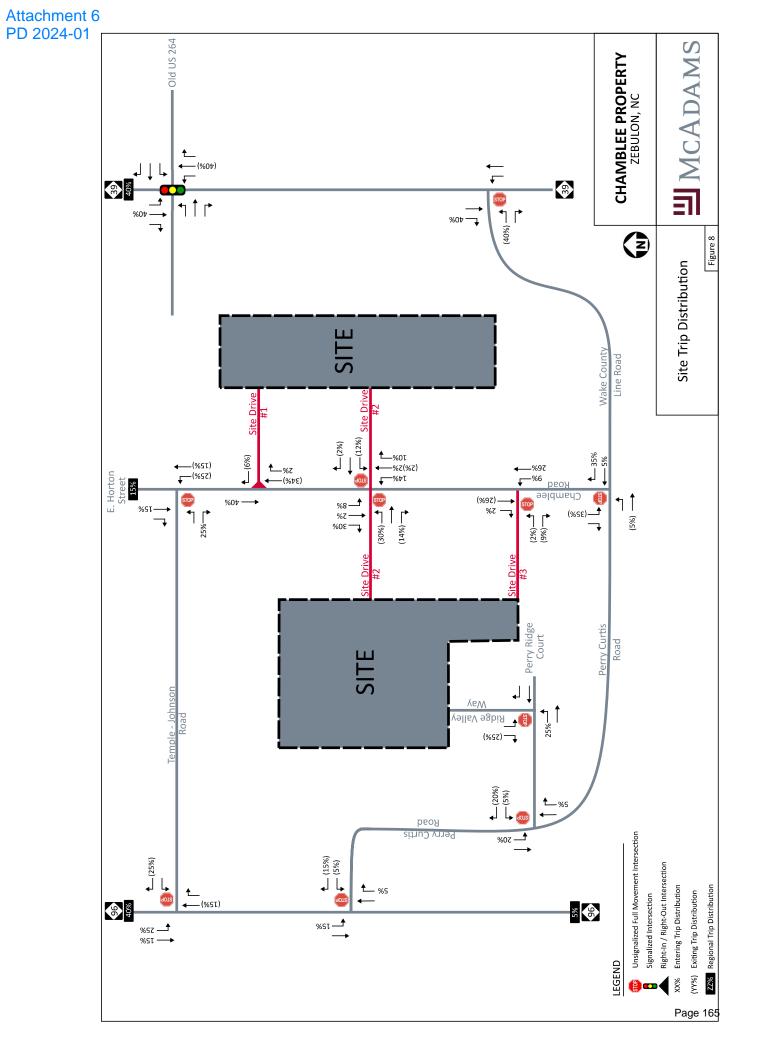
0.4

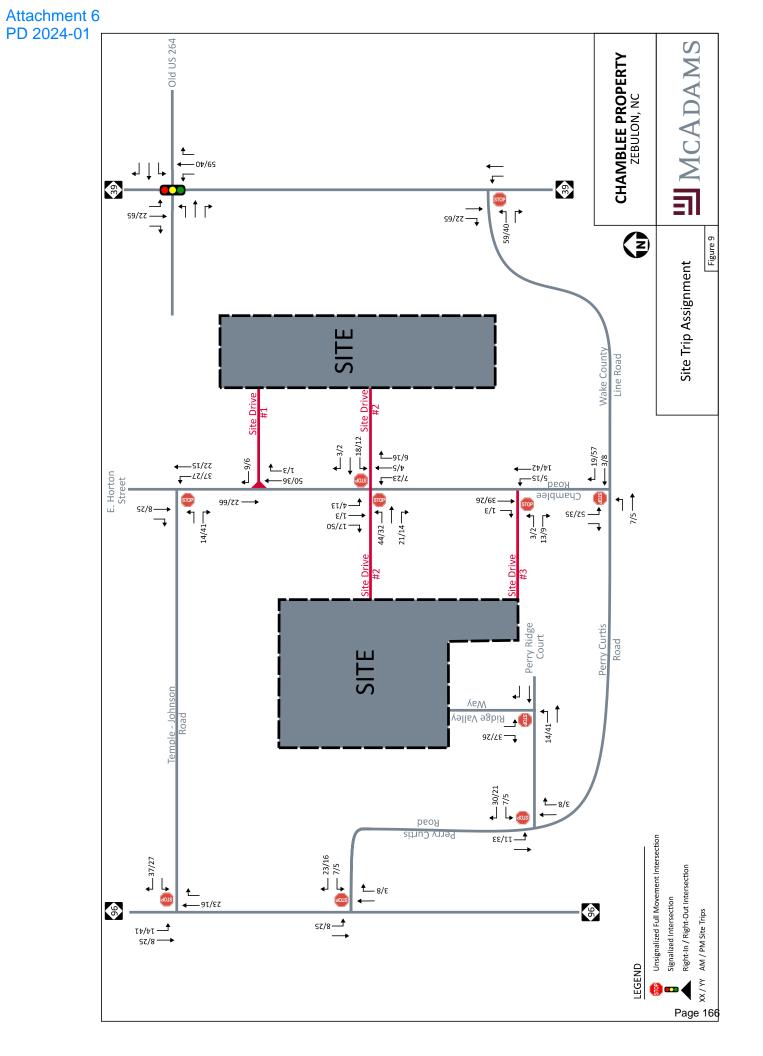
-

-

-

HCM Lane LOS


HCM 95th %tile Q(veh)


Intersection						
Int Delay, s/veh	1.8					
•						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ħ		٦	1
Traffic Vol, veh/h	5	34	168	9	55	187
Future Vol, veh/h	5	34	168	9	55	187
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage	e,#0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	6	38	187	10	61	208

Major/Minor	Minor1	Ν	/lajor1	Ν	/lajor2		
Conflicting Flow All	522	192	0	0	197	0	
Stage 1	192	-	-	-	-	-	
Stage 2	330	-	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy		3.318	-	-	2.218	-	
Pot Cap-1 Maneuve		850	-	-	1376	-	
Stage 1	841	-	-	-	-	-	
Stage 2	728	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuv		850	-	-	1376	-	
Mov Cap-2 Maneuv		-	-	-	-	-	
Stage 1	841	-	-	-	-	-	
Stage 2	696	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay,	, s 9.9		0		1.8		
HCM LOS	A						
Minor Lane/Major M	lvmt	NBT	NBRW	/BLn1	SBL	SBT	
Capacity (veh/h)		-	-	777	1376	-	

Capacity (veh/h)	-	-	777	1376	-
HCM Lane V/C Ratio	-	-	0.056	0.044	-
HCM Control Delay (s)	-	-	9.9	7.7	-
HCM Lane LOS	-	-	A	А	-
HCM 95th %tile Q(veh)	-	-	0.2	0.1	-

Appendix B – Chamblee Lake Planned Development

To: Adam Culpepper, Town of Zebulon
From: Jeff Hochanadel, PE, PTOE (Timmons Group)
RE: Zebulon South TIA Response to Comments
Date: January 26, 2024

Timmons Group prepared the Zebulon South Traffic Impact Analysis (TIA) – sealed / submitted June 22nd, 2022, and submitted an updated TIA sealed / submitted on January 3rd, 2024. On January 24th, 2024, WSP issued comments (on the Town's behalf). Timmons Group (TG) reviewed WSP's comments (**in bold below**) and prepared the responses below.

Site Plan and Site Access:

1. Based on the updated site plan, the number of units has changed for the site since the TIA was completed. Please add a note in the body of the TIA report discussing this change and confirming that the analysis is still valid because it is more conservative than the current site plan.

TG Response: This was noted on pages 1-1 and 4-1

2. Please confirm site access locations in the Build Synchro files matches the site plan. If Site Access 2 is within 165 feet of Perry Curtis Road, this access will need to be rightin/right-out only. This is based on the 2003 NCDOT's Policy on Street and Driveway Access.

<u>TG Response</u>: Noted. The proposed centerline to centerline measurement between Site Access 2 and Perry Curtis Road is approximately 200-feet. Potential turning movement restrictions will be determined with the Town / NCDOT at the next stage of development when the Driveway permit is requested.

3. For tables 3-1, 3-2, and 5-1 in the TIA and tables 1 and 2 in the supplemental, please provide a footnote to describe the meaning of the "#" symbol in the queue lengths.

TG Response: The subject tables were updated accordingly.

4. For tables 3-1, 3-2, 5-1, and 5-2 in the TIA and tables 1 and 2 in the supplemental, please designate which intersections are unsignalized/signalized to aid in the differentiation of queues which are in feet and queues which are number of cars.

<u>TG Response</u>: The subject tables were updated accordingly.

5. For tables 3-1, 3-2, 5-1, and 5-2 in the TIA and tables 1 and 2 in the supplemental, please add units for queues.

<u>TG Response</u>: Units were clarified in the table headers and footnotes. To match Synchro reporting, 95th percentile queues were reported in feet (for signalized intersections) and 95th percentile queues were reported in car lengths (for unsignalized intersections)

6. Include NCDOT comments from July 2022 referenced in section 6 in the appendix of the TIA if available.

TG Response: This was added as Appendix F.

7. Please add a complete list of recommended improvements to the supplemental memo for clarity, even though the recommendations do not change from the TIA.

<u>TG Response:</u> The memo was updated accordingly.

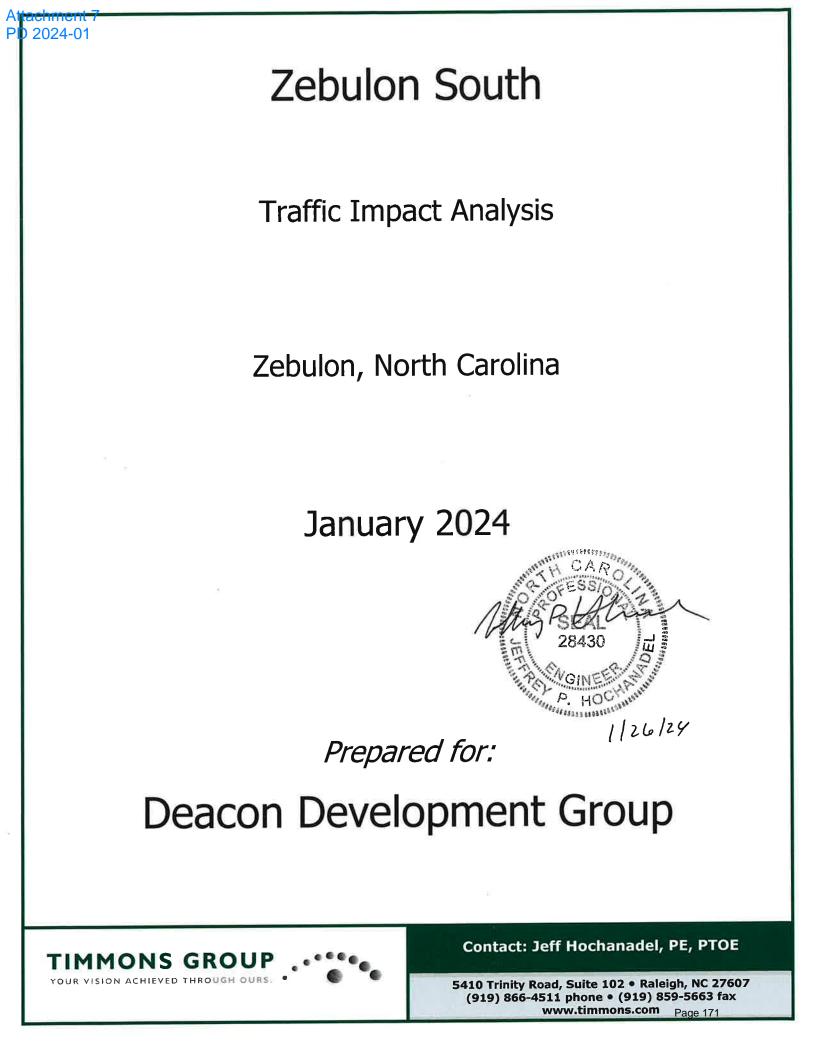
- 8. The following comment responses were provided by Timmons Group based on the initial submittal review. Please add these explanations in the body of the TIA report to provide a full picture of the analysis methodology:
 - Include discussion on why count data was not balanced between intersections and why Perry Curtis Road volumes were used for site access 1 and 2. TG Response: Traffic volumes were not balanced to the presence of commercial site driveways and various side streets. To provide the most accurate analyses, corridor volumes were not balanced. Site Access 1 and 2 volumes were balanced with Perry Curtis due to the driveways' proximities.

TG Response: Additional explanation provided on page 2-2.

• Please provide justification for the 3% growth rate used for background volume development. TG Response: The 3% growth rate is based on published AADTs.

<u>TG Response</u>: Justification was provided on page 3-2.

• In the Build scenario turn lane analysis, it's mentioned that both S Wakefield Street and NC 96 will have 2026 AADTs higher than 4,000 vpd. Please clarify if this is based on the existing AADT value and an assumption of growth or if this is based on the existing AADT including an assumed growth rate. TG Response: NC-96's AADT currently exceeds 4,000 VPD. Per future projections, this value is not projected to decrease. S Wakefield Street AADT projections are based on recent AADT counts (grown at 3% annually to 2026) and 30% of daily site trips on S Wakefield Street north of Site Access 3.


<u>TG Response</u>: Additional description was provided in Section 5.1 for the three site access intersections (pages 5-1 and 5-2)

 Site access roads are listed as needing 100-feet of IPS. Please define IPS as internal protected stem in the text and reference the standards that guide this recommendation. TG Response: IPS was defined as "internal protected stem" in the updated TIA. IPS requirements are defined in the NCDOT's Driveway Manual.

TG Response: Additional description provided on page 6-1

9. The alignment of the S Wakefield Street/Morphius Bridge and Pully Gordon Road intersection is not ideal for safe operations, but no improvements are required currently.

<u>TG Response</u>: Noted. This intersection was not included in the previously negotiated TIA scope.

January 2024

TABLE OF CONTENTS

T/	ABLE OF CO	NTENTSI
L]	ST OF TAB	ESII
LJ	ST OF FIGU	IRESII
A	PPENDICES	
1	INTRODU	CTION1-1
2	EXISTING	INFORMATION2-1
	2.1	STUDY LIMITS
	2.2	EXISTING ROADWAYS2-1
	2.3	EXISTING INTERSECTIONS2-2
	2.4	TRAFFIC VOLUMES2-2
	2.5	CAPACITY ANALYSIS
3	EXISTING	AND BACKGROUND CONDITIONS AND ANALYSIS
3	EXISTING 3.1	AND BACKGROUND CONDITIONS AND ANALYSIS
3		
3	3.1	2022 EXISTING ANALYSES
_	3.1 3.2 3.3	2022 EXISTING ANALYSES
_	3.1 3.2 3.3	2022 EXISTING ANALYSES
_	3.1 3.2 3.3 SITE TRIP	2022 EXISTING ANALYSES
4	3.1 3.2 3.3 SITE TRIP 4.1 4.2	2022 EXISTING ANALYSES
4	3.1 3.2 3.3 SITE TRIP 4.1 4.2	2022 EXISTING ANALYSES

LIST OF TABLES

TABLE 2-1: LEVEL OF SERVICE DEFINITIONS 2-	-3
TABLE 2-2: SIGNALIZED AND UNSIGNALIZED INTERSECTION LEVEL OF SERVICE CRITERIA	-4
TABLE 3-1: INTERSECTION LEVEL OF SERVICE AND DELAY SUMMARY	
2022 EXISTING TRAFFIC VOLUMES	-2
TABLE 3-2: INTERSECTION LEVEL OF SERVICE AND DELAY SUMMARY	
2026 BACKGROUND TRAFFIC VOLUMES	-4
TABLE 4-1: TRIP GENERATION SUMMARY	-1
TABLE 5-1: INTERSECTION LEVEL OF SERVICE, AND DELAY SUMMARY	
2026 Build Traffic Volumes5-	-3
TABLE 5-2: INTERSECTION LEVEL OF SERVICE, AND DELAY SUMMARY	
2026 BUILD + IMPROVEMENTS TRAFFIC VOLUMES	-4

LIST OF FIGURES

FIGURE 1-1: SITE LOCATION MAP

- FIGURE 2-1: PRELIMINARY SITE LAYOUT
- FIGURE 2-2: 2022 EXISTING LANE CONFIGURATION
- FIGURE 2-3: 2022 EXISTING TRAFFIC VOLUMES
- FIGURE 3-1: 2026 BACKGROUND TRAFFIC VOLUMES
- FIGURE 4-1: TRIP DISTRIBUTION PERCENTAGES
- FIGURE 4-2: TRIP DISTRIBUTION VOLUMES
- FIGURE 5-1: 2026 BUILD TRAFFIC VOLUMES
- FIGURE 6-1: 2026 PROPOSED LANE CONFIGURATION

APPENDICES

ii

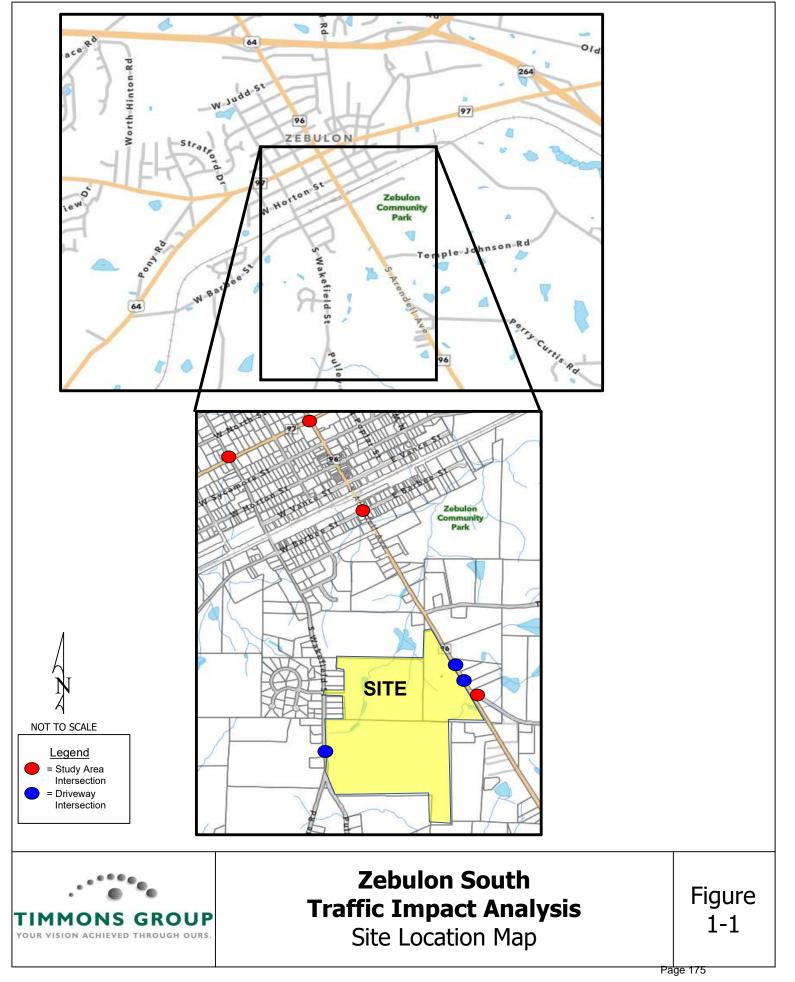
- Appendix A Scoping Information
- Appendix B Traffic Counts
- Appendix C Traffic Signal Plans
- Appendix D Synchro Output
- Appendix E NCDOT Nomographs
- Appendix F NCDOT Requirements

January 2024

1 INTRODUCTION

This report presents the Zebulon South traffic impact analysis (TIA) findings. The proposed development will be located between NC-96 and South Wakefield Street south of Barbee Street (see **Figure 1-1**). The proposed development was analyzed to consist of 225 single-family residential units and 125 multi-family residential units and will be constructed by 2026. The current site plan shows 186 single-family residential units and 134 multi-family residential units. This change results in a more conservative analysis.

Analyses were completed for the following scenarios:


- 2022 Existing traffic volumes;
- 2026 Background traffic volumes; and
- 2026 Build traffic volumes (Background + site trips).

The purpose of this TIA is to verify that the existing geometry provided within the study area is sufficient to accommodate the projected traffic volumes, and to determine what, if any, proposed site access connection improvements are necessary.

The following steps were taken to determine the potential traffic impacts associated with this project:

- 1. <u>Data Collection</u> AM (7:00 9:00) and PM (4:00 6:00) peak hour turning movement counts were collected in April 2022 at the following intersections:
 - NC-97 (Gannon Ave) / SR-2349 (South Wakefield Street);
 - NC-97 (Gannon Ave) / NC-96 (Arendell Ave);
 - NC-96 (Arendell Ave) / SR-2348 (West Barbee Street); and
 - NC-96 (Arendell Ave) / SR-2347 (Perry Curtis Road).
- <u>Trip Generation/Future Traffic</u> Traffic generated by the proposed development was estimated using the 10th Edition of the Institute of Transportation Engineers' <u>Trip Generation Manual</u>. Trip generation was calculated following the NCDOT standards and practices for trip generation. Projected traffic volumes were calculated using a 3% ambient growth rate. Per the scoping document, there are currently no approved developments within the project study area (see **Appendix A**).
- <u>Trip Distribution and Projections</u> The site-generated trip distribution was based on existing area traffic and Engineering judgement. It was assumed, for purposes of analysis, that projected trips for the Zebulon South development would follow similar patterns as existing traffic.
- 4. <u>Traffic Capacity Analysis</u> Level of service analyses were performed using Synchro Version 11.1 for the following intersections:
 - NC-97 (Gannon Ave) / SR-2349 (South Wakefield Street) signalized;
 - NC-97 (Gannon Ave) / NC-96 (Arendell Ave) signalized;
 - NC-96 (Arendell Ave) / SR-2348 (West Barbee Street) unsignalized;
 - NC-96 (Arendell Ave) / Site Access 1 unsignalized;
 - NC-96 (Arendell Ave) / Site Access 2 unsignalized;
 - NC-96 (Arendell Ave) / SR-2347 (Perry Curtis Road) unsignalized; and
 - SR-2349 (South Wakefield Street) / Site Access 3 unsignalized.
- 5. <u>Review of Proposed Improvements</u> Roadway improvements proposed to accommodate projected site-generated traffic were evaluated.

Attachment 7 PD 2024-01

2 EXISTING INFORMATION

The proposed development will be located NC-96 and South Wakefield Street south of West Barbee Street (see **Figure 1-1**).

2.1 STUDY LIMITS

Access to the proposed site will be provided via three (3) full movement connections: Two (2) to NC-96, and one (1) to South Wakefield Street. The preliminary site layout includes these proposed development site entrances (see **Figure 2-1**). All figures are located at the end of their respective chapter.

The study limits include the following seven (7) intersections:

- NC-97 (Gannon Ave) / SR-2349 (South Wakefield Street) signalized;
- NC-97 (Gannon Ave) / NC-96 (Arendell Ave) signalized;
- NC-96 (Arendell Ave) / SR-2348 (West Barbee Street) unsignalized;
- NC-96 (Arendell Ave) / Site Access 1 unsignalized;
- NC-96 (Arendell Ave) / Site Access 2 unsignalized;
- NC-96 (Arendell Ave) / SR-2347 (Perry Curtis Road) unsignalized; and
- SR-2349 (South Wakefield Street) / Site Access 3 unsignalized.

2.2 EXISTING ROADWAYS

NC-97 (W Gannon Ave) is an undivided facility with a varying two to three-lane cross section, running approximately east-west in the study area. The facility is classified by NCDOT as a minor arterial. Within the study area, NC-97 has a posted 35-mph speed limit and provides connection to downtown Zebulon. This facility primarily serves residential and commercial land uses within the study area. Per 2021 NCDOT Average Annual Daily Traffic (AADT) maps, NC-97 carries 14,500 vehicles per day (VPD) west of NC-96.

NC-96 (Arendell Ave) is a two-lane undivided facility, that runs approximately north-south in the study area. The facility is classified by NCDOT as a minor arterial. Within the study area, NC-96 has a posted 20-mph speed limit north of West Barbee St, 35-mph speed limit south of West Barbee St, and 45-mph speed limit south of the town limits. This facility primarily serves residential and commercial land uses within the study area. Per 2021 NCDOT AADT maps, NC-96 carries 6,700 VPD south of NC-97.

SR-2349 (South Wakefield Street) is a two-lane undivided facility, that runs approximately northsouth in the study area. The facility is classified by NCDOT as a local road. Within the study area, NC-96 has a posted 25-mph speed limit north of West Horton St, a posted 35-mph speed limit south of West Horton Street and north of Primrose Place, and a 45 mph speed limit south of Primrose Place. This facility provides a connection to Zebulon. Per 2015 NCDOT AADT maps, South Wakefield Street carries 3,800 VPD south of NC-97.

SR-2348 (West Barbee Street) is a two-lane undivided facility, that runs approximately east-west in the study area. The facility is classified by NCDOT as a local road. Within the study area, West Barbee Street has a posted 25-mph speed limit and serves primarily residential and commercial land uses. Per 2015 NCDOT AADT maps, the facility carries 1,800 VPD east of South Wakefield Street.

SR-2347 (Perry Curtis Road) is a two-lane undivided facility that runs approximately east-west in the project study area, providing access to NC-96. The facility is classified by NCDOT as a local road. Within the study area, Perry Curtis Road primarily serves residential land uses and has a posted 55-mph speed limit. Per 2015 NCDOT AADT maps, the facility carries 1300 VPD east of NC-96.

2.3 EXISTING INTERSECTIONS

January 2024

Using available aerial imagery, Timmons Group compiled the existing geometry for each study area intersection. The existing intersection geometry is shown in **Figure 2-2**.

NC-97 / South Wakefield Street is a two-phase signalized intersection. The north and southbound intersection approaches include a single shared left / through / right-turn lane. The east and westbound intersection approaches include of an exclusive left-turn lane and a shared through / right-turn lane.

NC-97 / NC-96 is an eight-phase signalized intersection. The north, south, and westbound intersection approaches include an exclusive left-turn lane and a shared through / right-turn lane. The eastbound approach includes exclusive right-turn, through, and left-turn lanes.

NC-96 / West Barbee Street is an unsignalized intersection with the east and westbound approaches encountering the stopped condition. All approaches include a single shared lane that serves all movements.

NC-96 / Perry Curtis Road is an unsignalized intersection with the westbound approach encountering the stopped condition. The northbound approach includes a shared through / right-turn lane. The southbound approach includes a shared through / left-turn lane. The westbound approach includes a shared left / right-turn lane.

2.4 TRAFFIC VOLUMES

Timmons Group calculated peak hour volumes at the study area intersections using the collected AM (7:00 – 9:00) and PM (4:00 – 6:00) peak period turning movement counts undertaken in April 2022. Collected traffic count data is summarized in **Figure 2-3**. The complete traffic count data is found in **Appendix B**.

Traffic volumes were not balanced to the presence of commercial site driveways and various side streets. To provide the most accurate analyses, corridor volumes were not balanced. Site Access 1 and 2 volumes were balanced with Perry Curtis due to the driveways' proximities.

2.5 CAPACITY ANALYSIS

Using field observations, aerial photography, and traffic count data, traffic operations were analyzed during 2022 (existing) and 2026 (without and with the proposed development site trips).

Capacity analysis allows traffic engineers to determine the impacts of traffic on the surrounding roadway network. The Transportation Research Board's (TRB) *Highway Capacity Manual* (HCM) methodologies govern how the capacity analyses are conducted and how the results are interpreted. There are six letter grades of Levels of Service (LOS) from A to F, with LOS A representing the best operating conditions and LOS F the worst operating conditions. At signalized intersections, an overall intersection LOS E is generally considered unacceptable. At unsignalized intersections, a LOS E is generally considered acceptable only if the side street encounters delay. Nevertheless, side streets typically function at a LOS F during peak traffic periods, because the traffic volumes often do not warrant a traffic signal to assist side street traffic. **Table 2-1** shows in detail how each of these levels of service are interpreted.

January 2024

Table 2-1: Level of Service Definitions					
Level of Service	Roadway Segments or Controlled Access Highways	Intersections	× ×		
A	Free flow, low traffic density.	No vehicle waits longer than one signal indication.	\$@, (
В	Delay is not unreasonable, stable traffic flow.	On a rare occasion motorists wait through more than one signal indication.			
С	Stable condition, movements somewhat restricted due to higher volumes, but not objectionable for motorists.	Intermittently drivers wait through more than one signal indication, and occasionally backups may develop behind left turning vehicles, traffic flow still stable and acceptable.			
D	Movements more restricted, queues and delays may occur during short peaks, but lower demands occur often enough to permit clearing, thus preventing excessive backups.	Delays at intersections may become extensive with some, especially left-turning vehicles waiting two or more signal indications, but enough cycles with lower demand occur to permit periodic clearance, thus preventing excessive backups.			
E	Actual capacity of the roadway invloves delay to all motorists due to congestion.	Very long queues may create lengthly delays, especially for left-turning vehicles.	and the second s		
F	Forced flow with demand volumes greater than capacity resulting in complete congestion. Volumes drop to zero in extreme cases.	Backups from locations downstream restrict or prevent movement of vehicles out of approach creating a storage ares during part or all of an hour.	F		

Table 2-1: Level of Service Definitions

SOURCE: "A Policy on Design of Design of Urban Highways and Arterial Streets" - AASHTO, 1973 based upon material published in "Highway Capacity Manual", National Academy of Sciences, 1965.

For signalized and unsignalized intersections, level of service is defined in terms of **delay**, a measure of driver discomfort, frustration, fuel consumption and lost travel time. **Table 2-2** summarizes the delay associated with each LOS category:

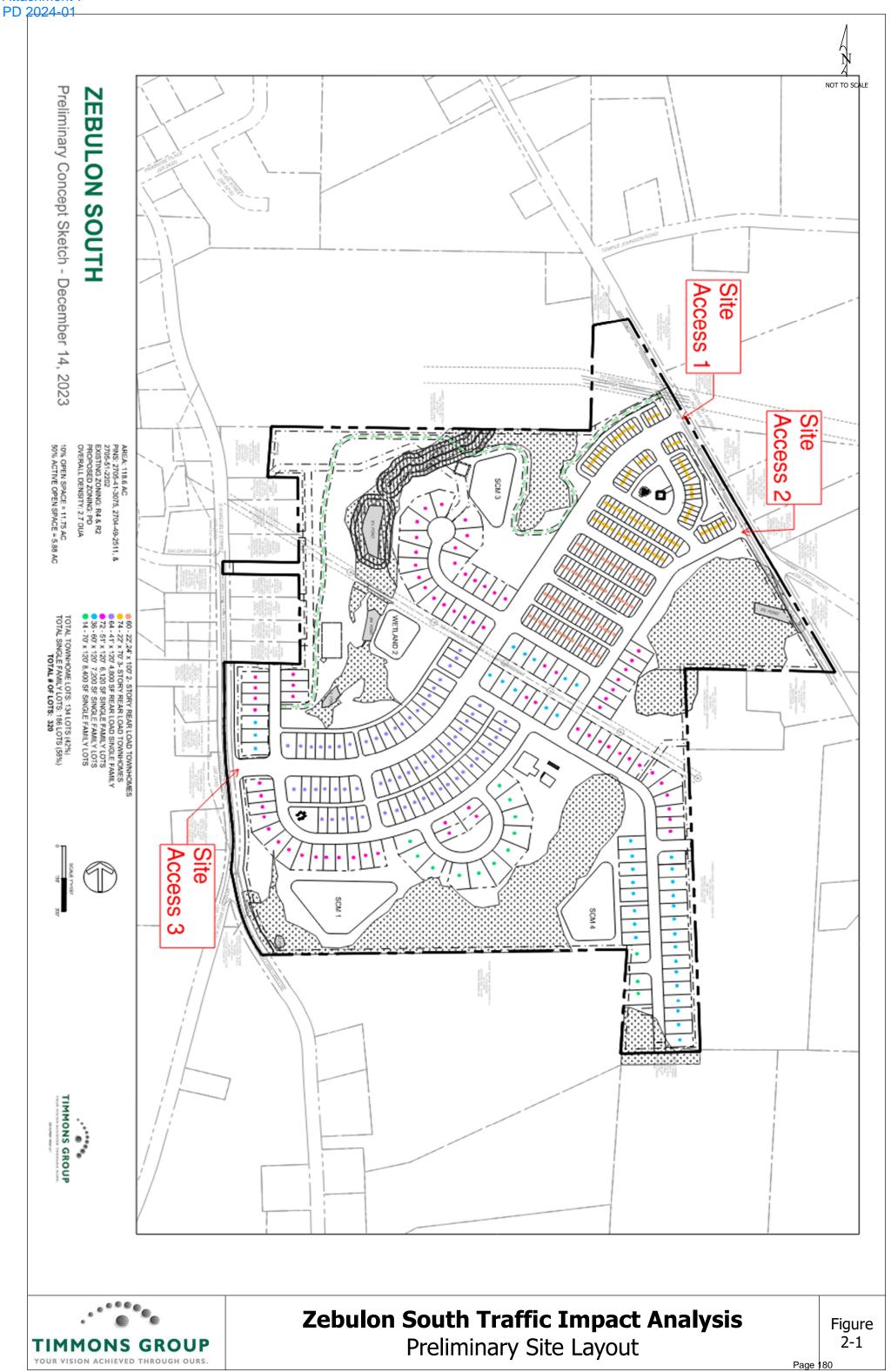
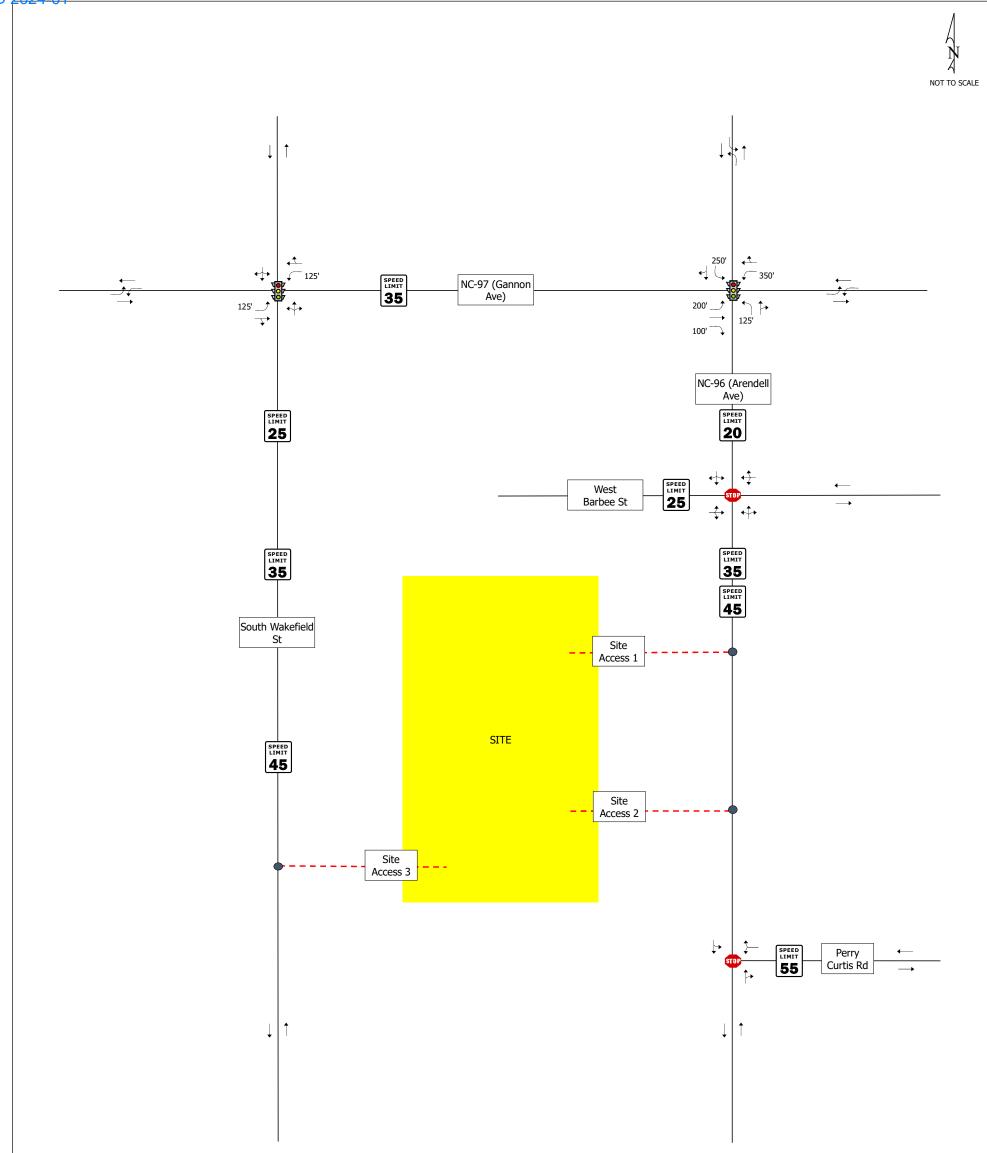
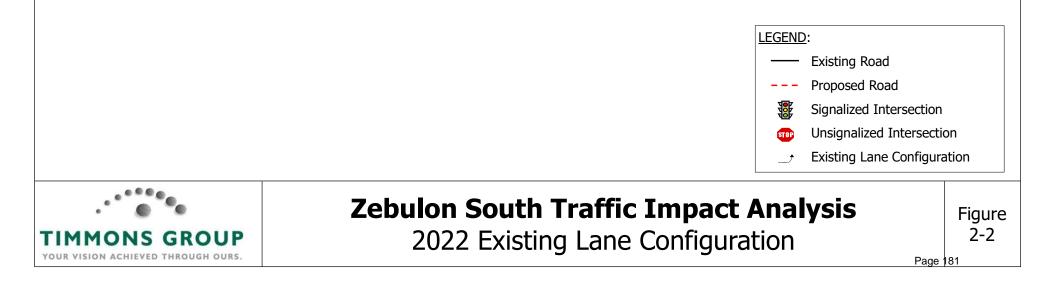
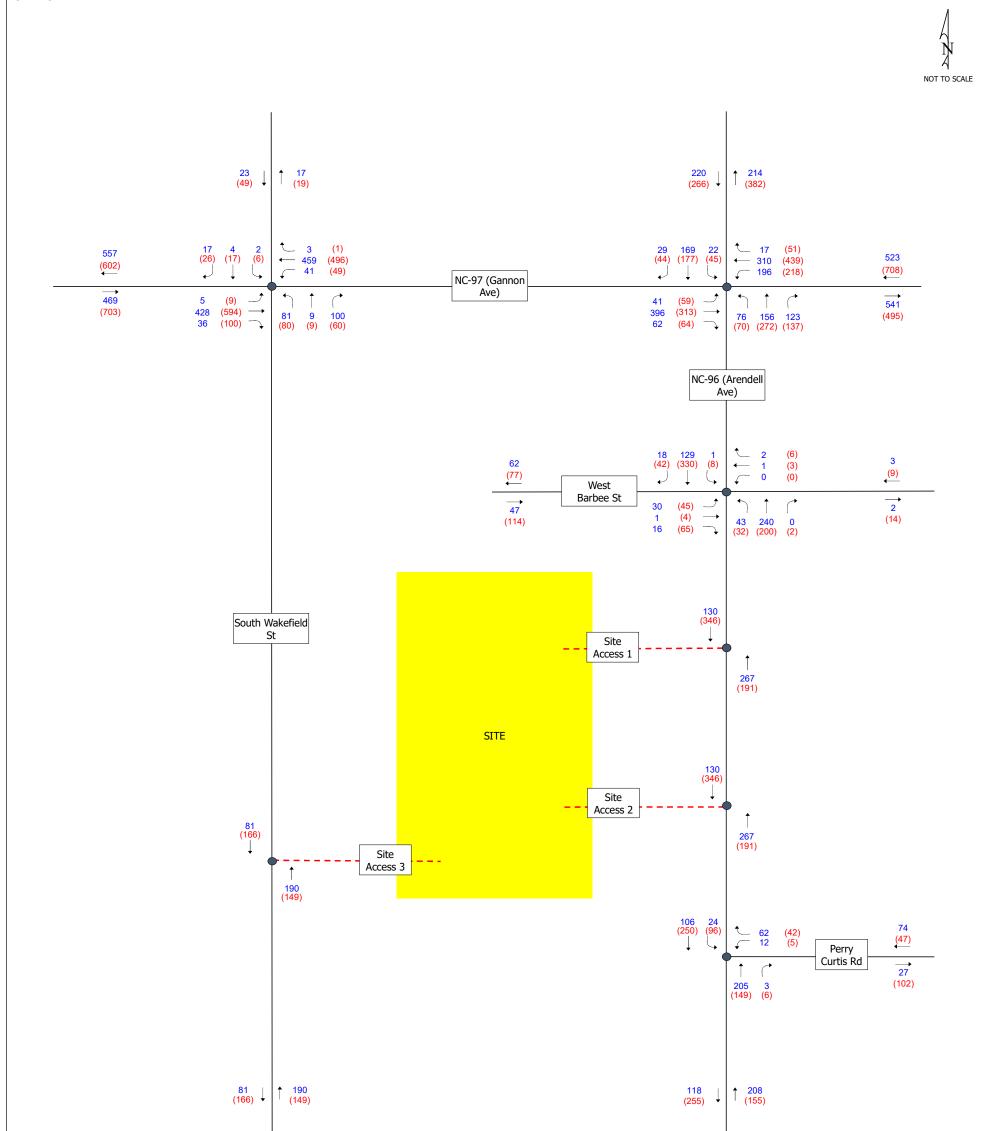

Signalize	d Intersections	Unsignalized Intersections	
Level of Service	Control Delay per Vehicle (sec/veh)	Level of Service	Average Control Delay (sec/veh)
А	≤ 10	А	0 to 10
В	> 10 to ≤ 20	В	> 10 to ≤ 15
С	> 20 to ≤ 35	С	> 15 to ≤ 25
D	> 35 to ≤ 55	D	> 25 to ≤ 35
E	> 55 to ≤ 80	E	> 35 to ≤ 50
F	> 80	F	> 50

Table 2-2: Signalized and Unsignalized Intersection Level of Service Criteria

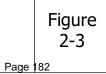

Source: Exhibit 16-2 and Exhibit 17-2 from TRB's "Highway Capacity Manual 2000"


Capacity analyses were performed to assess operational conditions. Study area intersections were analyzed using Synchro Version 11.1 based on Highway Capacity Manual (HCM) methodologies with the following assumptions:

- Existing grades;
- 12-foot lane widths;
- No parking activity, bus stops, or pedestrians;
- Peak hour factor (PHF) of 0.90;
- Heavy vehicle percentages 2%; and
- Minimum turning movement volume of 4 vehicles per hour (VPH) for all allowed movements; and
- Existing traffic signal plan signal data (see **Appendix C**).







Zebulon South Traffic Impact Analysis

2022 Existing Traffic Volumes

3 EXISTING AND BACKGROUND CONDITIONS AND ANALYSIS

3.1 2022 EXISTING ANALYSES

Table 3-1 summarizes the 2022 Existing intersection LOS and delay based on the geometry shown in **Figure 2-2** and the 2022 Existing traffic volumes shown in **Figure 2-3**. The corresponding Synchro output is included in **Appendix D**.

The signalized intersection of NC-97 / South Wakefield Street is currently operating at an overall LOS B during both 2022 Existing peak hours. All intersection approaches are currently operating at a LOS C or better during both peak hours.

The signalized intersection of NC-97 / NC-96 is currently operating at an overall LOS C during both 2022 Existing peak hours. All intersection approaches are currently operating at a LOS D or better during both peak hours.

All NC-96 / West Barbee Street unsignalized intersection approaches are currently operating at a LOS C or better during the 2022 Existing AM and PM peak hours.

All NC-96 / Perry Curtis Road unsignalized intersection approaches are currently operating at a LOS B or better during the 2022 Existing AM and PM peak hours.

		AM PEAK	HOUR	PM PEAK	HOUR			AM PEAK HOUR	PM PEAK HOUR
Intersection	Approach / Overall	Delay ¹ (sec/veh)	LOS 1	Delay ¹ (sec/veh)	LOS 1	Movement	Turn Lane Storage (ft)	95th Percentile Queue Length (ft)*	95th Percentile Queue Length (ft)*
1: S Wakefield Street & NC-97						EB Left	125	5	6
Gannon Avenue)	Eastbound	11.6	В	10.8	в	EB Thru/Right		170	291
Signalized	2-2222 B					EB Approach		226	
						WB Left	125	21	24
	Westbound	11.2	В	7.7	A	WB Thru/Right		168	170
						WB Approach			1944 1944
	Northbound	18.1		24.5		NB Left/Thru/Right		94	113
	Northbound	18.1	В	24.6	C	NB Approach		373	-
	- 110 C 1 V	1002	2	82755	22	SB Left/Thru/Right		18	44
	Southbound	11.0	В	17.9	В	SB Approach		2257	1944 1
	Overall	12.5	В	11.3	В	Overall		2657	1722
2: NC-96 (Arendell Avenue) & NC-97						EB Left	200	34	52
Gannon Avenue))	5 8 8	3.33		1000	22	EB Thru		#399	#321
Signalized	Eastbound	31.2	С	32.6	C	EB Right	100	47	56
						EB Approach		200	2
						WB Left	350	125	#175
	Westbound	21.4	С	40.3	D	WB Thru/Right		271	#599
						WB Approach		22.57	
						NB Left	125	54	50
	Northbound	27.3	С	33.1	с	NB Thru/Right	- 110000	233	357
						NB Approach			
						SB Left	250	22	35
	Southbound	31.9	с	26.0	с	SB Thru/Right		170	184
	977792049 SHARASING	820,820,825		201003		SB Approach			
	Overall	27.2	С	34.7	С	Overall			-
3: NC-96 (Arendell Avenue) &			1			EB Left/Thru/Right		0.4	1.1
Barbee Street	Eastbound	12.7	В	15.7	C	EB Approach			
Unsignalized	0.022 02 22	5	22	83555	0250	WB Left/Thru/Right		0.1	0,1
	Westbound	12.3	В	13.9	В	WB Approach			124
	Contract of the Original State	1.0005		10000		NB Left/Thru/Right		0.1	0.1
	Northbound	1.1	A	1.1	A	NB Approach			
	337000001100	1222	- 22	50020	10	SB Left/Thru/Right		0	0
	Southbound	0.2	A	0.2	A	SB Approach			34
: NC-96 (Arendell Avenue) & Perry						WB Left/Right		0.4	0.2
Curtis Road	Westbound	10.3	В	10.0	В	WB Approach			-
Unsignalized	365 - 55	1000				NB Thru/Right		0	0
	Northbound	0.0	Α	0.0	A	NB Approach			<u></u>
		10000				SB Left/Thru		0.1	0.2
	Southbound	1.4	Α	2.2	Α	SB Approach			

Table 3-1: Intersection Level of Service and Delay Summary 2022 Existing Traffic Volumes

¹ Overall intersection LOS and delay not reported for TWSC intersections.

* - 95th percentile queues for unsignalized intersections reported in number of vehicles.

- 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles

3.2 2026 BACKGROUND TRAFFIC VOLUMES

Figure 3-1 shows the 2026 ambient traffic volumes calculated using a 3% growth rate (based on published AADTs) for four (4) years.

Per the scoping document, there are currently no approved area developments or public improvement projects within the study area (see **Appendix A**).

3.3 2026 BACKGROUND ANALYSIS

Table 3-2 summarizes the intersection LOS and delay based on the geometry shown in **Figure 2-2** and the 2026 Background traffic volumes shown in **Figure 3-1**. The corresponding Synchro output is included in **Appendix D**.

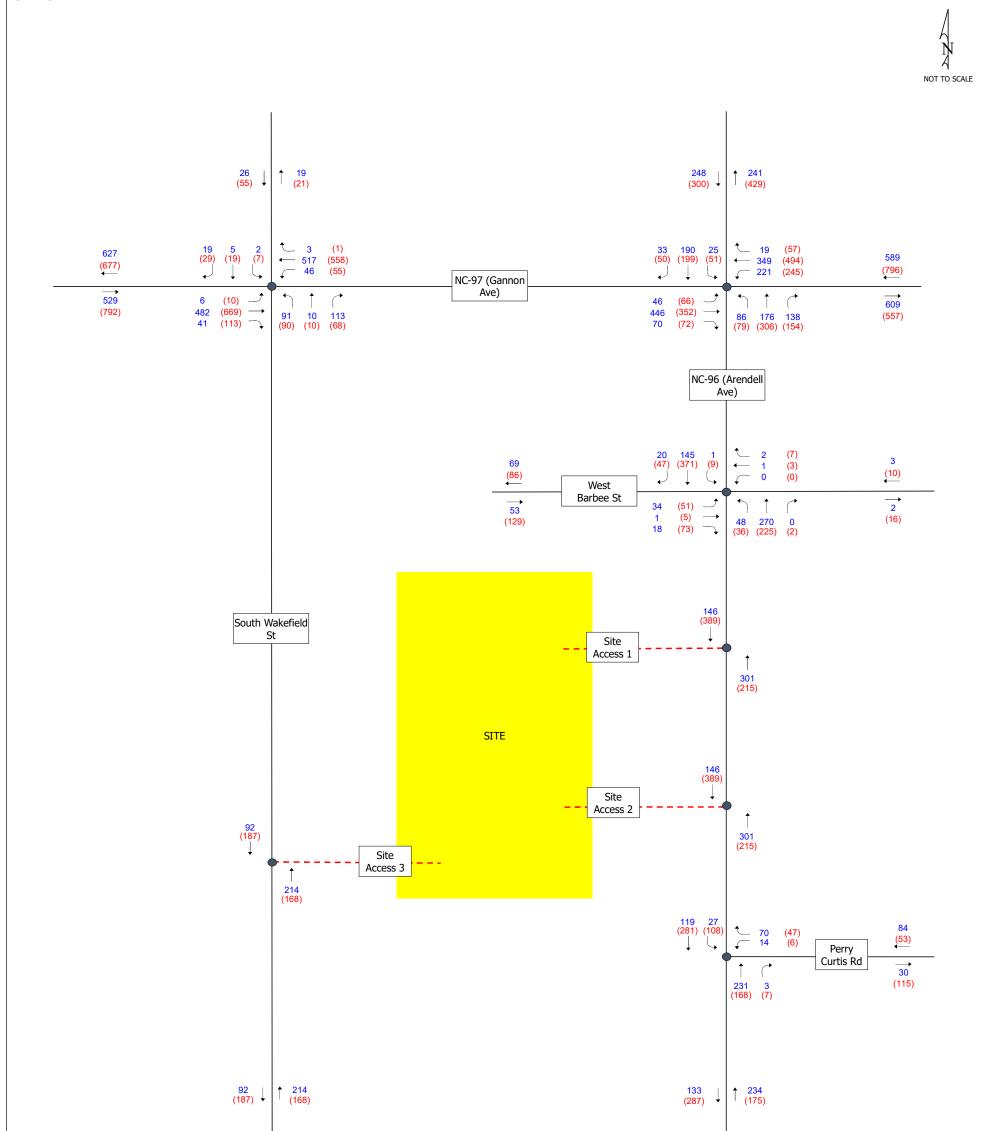
The signalized intersection of NC-97 / South Wakefield Street is projected to operate at an overall LOS B and C during the 2026 Background AM and PM peak hours, respectively. All intersection approaches are projected to operate at a LOS D or better during both peak hours.

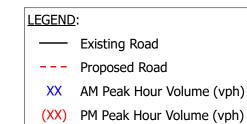
The signalized intersection of NC-97 / NC-96 is projected to operate at an overall LOS C during the 2026 Background peak hours. All intersection approaches are projected to operate at a LOS D or better during both peak hours.

All NC-96 / West Barbee Street unsignalized intersection approaches are projected to operate at a LOS C or better during the 2026 Background AM and PM peak hours.

All NC-96 / Perry Curtis Road unsignalized intersection approaches are projected to operate at a LOS B or better during the 2026 Background AM and PM peak hours.

		AM PEAK	HOUR	PM PEAK	HOUR			AM PEAK HOUR	PM PEAK HOUR
Intersection	Approach / Overall	Delay ¹ (sec/veh)	LOS 1	Delay ¹ (sec/veh)	LOS 1	Movement	Turn Lane Storage (ft)	95th Percentile Queue Length (ft)*	95th Percentile Queue Length (ft)*
1: S Wakefield Street & NC-97						EB Left	125	10	10
(Gannon Avenue)	Eastbound	22.3	С	25.1	С	EB Thru/Right		368	#602
Signalized						EB Approach		33 43	1.44
						WB Left	125	63	72
	Westbound	13.4	В	10.0	Α	WB Thru/Right		241	184
						WB Approach		500	1000
	Northbound	31.3	с	54.1	D	NB Left/Thru/Right		199	#213
	Northbound	31.3	C	54.1	D	NB Approach		8 <u>80</u>	
	2010/00/00	200400	1		100	SB Left/Thru/Right		35	67
	Southbound	23.3	С	33.8	С	SB Approach		5 	
	Overall	20.0	В	22.7	С	Overall			
2: NC-96 (Arendell Avenue) & NC-97			-			EB Left	200	45	72
(Gannon Avenue))	122070700000	12320	-	100000	420	EB Thru	190000	360	#309
Signalized	Eastbound	31.6	С	36.6	D	EB Right	100	60	70
						EB Approach		222	1000
						WB Left	350	#226	#276
	Westbound	21.6	с	27.2	с	WB Thru/Right		155	339
		200707031510		100000000		WB Approach		3373	
				-		NB Left	125	92	74
	Northbound	38.6	D	37.1	D	NB Thru/Right		#304	#422
	AC 161 67 61 69 61 69 65 6	DC0047-1		23365671		NB Approach			
						SB Left	250	36	66
	Southbound	30.8	с	26.4	с	SB Thru/Right		195	189
	0.5030000000	055550	100	0.523460	1.22	SB Approach			
	Overall	29.8	с	31.8	с	Overall		2029 20 20	2000 2000
3: NC-96 (Arendell Avenue) &	111		-			EB Left/Thru/Right		0.4	1.5
Barbee Street	Eastbound	13.6	В	18.3	С	EB Approach			
Unsignalized	1.000 MAR (221-940)					WB Left/Thru/Right		0.1	0.1
	Westbound	13.0	В	14.9	В	WB Approach			
	1918 U				-	NB Left/Thru/Right		0.1	0.1
	Northbound	1.1	A	1.1	Α	NB Approach			0.1
						SB Left/Thru/Right		0	0
	Southbound	0.2	A	0.2	Α	SB Approach		-	
5: NC-96 (Arendell Avenue) & Perry			-		-	WB Left/Right		0.4	0.3
Curtis Road	Westbound	10.7	В	10.4	В	WB Approach			
Unsignalized						NB Thru/Right		0	0
	Northbound	0.0	A	0.0	Α	NB Approach		0	
			-	-		SB Left/Thru		0.1	0.3
	Southbound	1.4	A	2.2	Α			0.1	0.3
		1	1		1000	SB Approach			


Table 3-2: Intersection Level of Service and Delay Summary2026 Background Traffic Volumes


¹ Overall intersection LOS and delay not reported for TWSC intersections.

* - 95th percentile queues for unsignalized intersections reported in number of vehicles.

- 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles

Zebulon South Traffic Impact Analysis 2026 Background Traffic Volumes

Figure 3-1 Page 187

4 SITE TRIP GENERATION AND DISTRIBUTION

Proposed development site trips were estimated based on the proposed land uses supplied by the developer and subsequently distributed onto the surrounding roadway network.

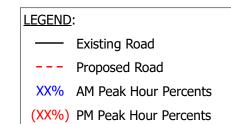
4.1 TRIP GENERATION

The site-generated trips shown in **Table 4-1** are based on trip generation information provided in the 10th Edition of the Institute of Transportation Engineers' (ITE's) *Trip Generation Manual* and the anticipated development size. The trip generation was calculated using the proposed number of residential units as the independent variable and the provided equation (per NCDOT standards). The proposed development was analyzed to consist of 225 single-family residential units and 125 multi-family residential units and will be constructed by 2026. The current site plan shows 186 single-family residential units and 134 multi-family residential units. This change results in a more conservative analysis.

ITE Land Use Code	Independent	ADT	А	M Peak Ho	our	PI	M Peak H	our
	Variable	ADT	In	Out	Total	In	Out	Total
210- Single Family Detached Housing	225	2193	41	124	165	139	82	221
220- Multifamily Housing (Low-Rise)	125	904	14	45	59	45	27	72
Total		3097	55	169	224	184	109	293

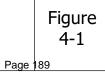
Table 4-1: Trip Generation Summary

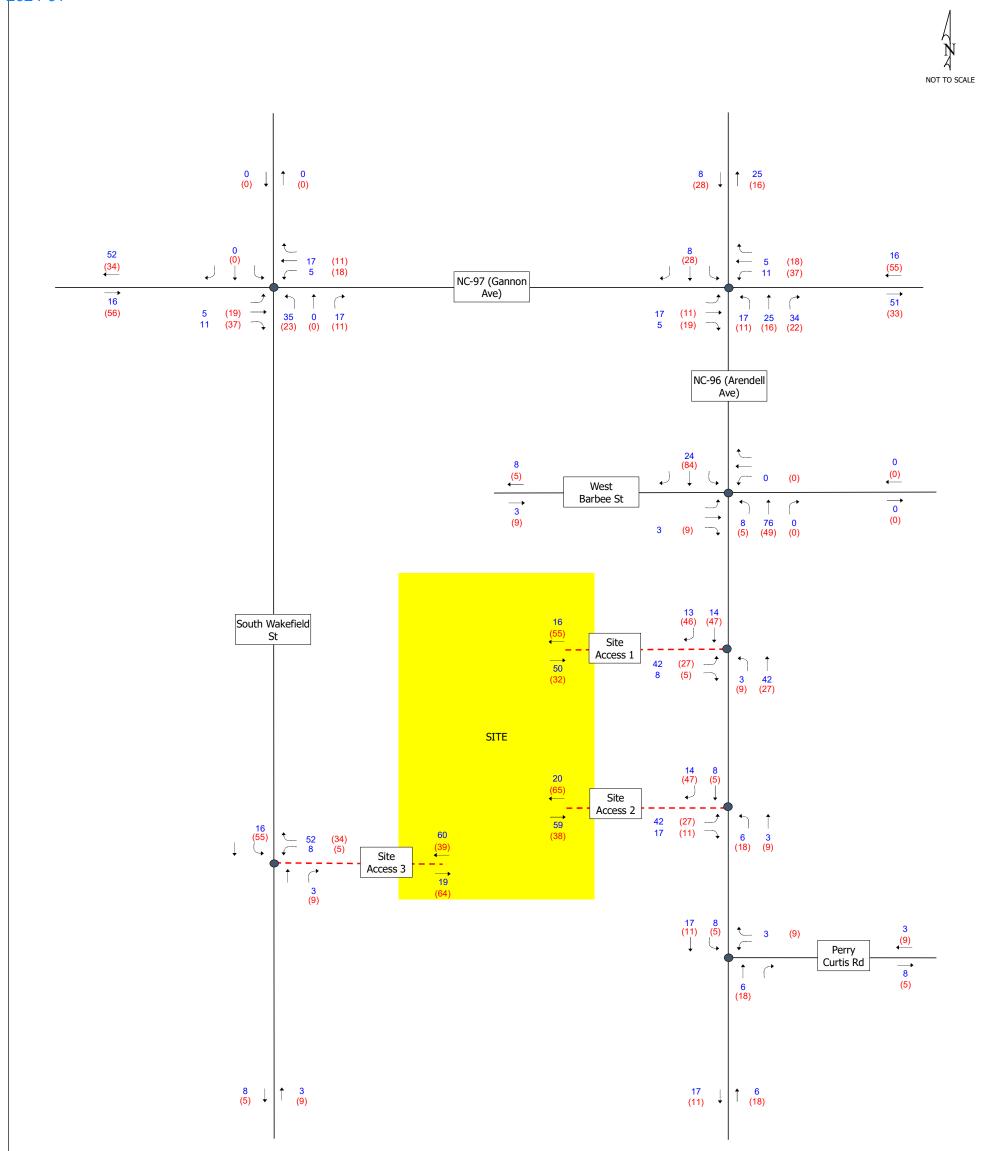

SOURCE: Institute of Transportation Engineers' *Trip Generation Manual* 10th Edition (2017)

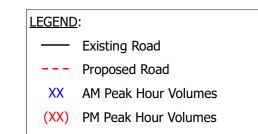

AM peak hour trips generated totaled 55 incoming and 169 outgoing where PM peak hour trips totaled 184 incoming and 109 outgoing. Average daily traffic (ADT) volumes generated by the development totaled 3,097 VPD. No reduction in trips were included due to internal capture or pass-by trips.

4.2 TRIP DISTRIBUTION

The directional traffic patterns, or trip distribution, of the site-generated traffic was determined using the existing traffic characteristics and engineering judgement. It was assumed, for purposes of this study, that all site traffic would enter and exit the study area in a similar manner as the existing traffic. Area trip distribution is based on traffic counts performed by Timmons Group. Total trips into and out of the study area using NC-96, NC-97, South Wakefield Street, and Perry Curtis Road form the basis for the percentage distribution. The percentages were routed, via shortest path, to and from the proposed development. The distribution percentages were then applied to the generated trips to predict routes and project traffic volumes for the 2026 Build scenario. Trip distribution percentages are shown in **Figure 4-1** and trip distribution volumes are shown in **Figure 4-2**.






Zebulon South Traffic Impact Analysis

Trip Distribution Percentages

Attachment 7 PD <u>2024-01</u>

Zebulon South Traffic Impact Analysis Trip Distribution Volumes

Figure 4-2

5 2026 BUILD CONDITION AND ANALYSIS

To complete the 2026 Build analyses (including proposed development), the estimated site trips were added to the 2026 Background traffic volumes. The projected total volumes, along with the existing intersection geometry, were used to complete the capacity analyses. The 2026 Background traffic volumes (**Figure 3-1**) were added to the projected site trips (**Figure 4-2**) to generate the 2026 Build traffic volumes (background + site) shown in **Figure 5-1**.

To summarize, the 2026 Build traffic volumes shown in **Figure 5-1** contain the following:

- Existing 2022 traffic volumes grown by a 3% per year ambient growth rate for 4 years; and
- Site trips generated by the subject development.

5.1 2026 BUILD ANALYSIS

Table 5-1 summarizes the intersection LOS and delay based on the geometry shown in **Figure 2-2** and the 2026 Build traffic volumes shown in **Figure 5-1**. The corresponding Synchro output is included in **Appendix D**.

The signalized intersection of NC-97 / South Wakefield Street is projected to operate at an overall LOS C during both 2026 Build peak hours. All intersection approaches are projected to operate at a LOS D or better during both peak hours. No improvements are recommended at this intersection due to the proposed development's construction.

The signalized intersection of NC-97 / NC-96 is projected to operate at an overall LOS C and D during the 2026 Build AM and PM peak hours, respectively. All intersection approaches are projected to operate at a LOS D or better during both peak hours. No improvements are recommended at this intersection due to the proposed development's construction.

All NC-96 / West Barbee Street unsignalized intersection approaches are projected to operate at a LOS C or better during the 2026 Background AM and PM peak hours. No improvements are recommended at this intersection due to the proposed development's construction.

All NC-96 / Site Access 1 unsignalized intersection approaches are projected to operate at a LOS C or better during the 2026 Background AM and PM peak hours. Per the NCDOT Policy on Street and Driveway Access to North Carolina Highways Manual:

"Generally left and right turn lanes and tapers shall be considered when:

• In accordance with G.S. 136-18(29), the average daily traffic meets or exceeds 4,000 vehicles per day on any secondary route (the average daily traffic should include both the existing traffic plus traffic generated by the proposed development)"

The 2026 AADT along NC-96 currently exceeds 4,000 VPD and is not projected to decrease. Because of this, turn lanes were considered at Site Access 1. Per the NCDOT Nomograph (see **Appendix E**) and projected 2026 peak hour volumes, a 50-foot southbound right-turn lane (with appropriate taper) is recommended. As shown in **Table 5-2**, all intersection movements are projected to operate acceptably following the turn-lane's construction. No additional improvements are recommended at this intersection due to the proposed development's construction.

All NC-96 / Site Access 2 unsignalized intersection approaches are projected to operate at a LOS B or better during the 2026 Background AM and PM peak hours. The 2026 AADT along NC-96 currently exceeds 4,000 VPD and is not projected to decrease.Because of this, turn lanes were considered at Site Access 2. Per the NCDOT Nomograph (see **Appendix E**) and projected 2026 peak hour volumes, a 50-foot southbound right-turn lane (with appropriate taper) is recommended. As shown in **Table 5-2**, all intersection movements are projected to operate acceptably following the turn-lane's construction. No additional improvements are recommended at this intersection due to the proposed development's construction.

All NC-96 / Perry Curtis Road unsignalized intersection approaches are projected to operate at a LOS B or better during the 2026 Background AM and PM peak hours. No improvements are recommended at this intersection due to the proposed development's construction.

All South Wakefield Street/ Site Access 3 unsignalized intersection approaches are projected to operate at a LOS B or better during the 2026 Background AM and PM peak hours. The 2026 AADT along South Wakefield Street is projected to exceed 4,000 VPD (based on recent AADT counts grown at 3% annually to 2026 and 30% of daily site trips on S Wakefield Street north of Site Access 3). Because of this, turn lanes were considered at Site Access 3. Per the NCDOT Nomograph (see **Appendix E**) and projected 2026 peak hour volumes, a 50-foot southbound left-turn lane (with appropriate taper) is recommended. As shown in **Table 5-2**, all intersection movements are projected to operate acceptably following the turn-lane's construction. No additional improvements are recommended at this intersection due to the proposed development's construction.

		AM PEAK	HOUR	PM PEAK	HOUR		Turn	AM PEAK HOUR	PM PEAK HOUR
Intersection	Approach / Overall	Delay ¹ (sec/veh)	LOS 1	Delay ¹ (sec/veh)	LOS 1	Movement	Lane Storage (ft)	95th Percentile Queue Length (ft)*	95th Percentile Queue Length (ft)*
1: S Wakefield Street & NC-97						EB Left	125	10	11
(Gannon Avenue) Signalized	Eastbound	25.4	с	37.5	D	EB Thru/Right		403	#774
			_			EB Approach	10.001		
						WB Left	125	68	90
	Westbound	15.7	В	12.9	В	WB Thru/Right		272	229
						WB Approach			
	Northbound	33.9	c	53.0	D	NB Left/Thru/Right		#264	#234
	The broad is		~	33.9	10	NB Approach			
	Southbound	22.5	с	30.8	с	SB Left/Thru/Right		34	63
	Southoonia	22.5	1	20.0		SB Approach			
	Overall	22.9	C	30.0	с	Overall		144	
2: NC-96 (Arendell Avenue) & NC-						EB Left	200	45	75
97 (Gannon Avenue))	0.200200.005	0.2202	12	1200	-	EB Thru		378	#365
Signalized	Eastbound	33.6	С	42.2	D	EB Right	100	63	87
						EB Approach		1	1
						WB Left	350	#268	#309
	Westbound	25.9	с	29.9	с	WB Thru/Right	330	168	356
	Westbound	23.5	~	23.5	~	the second s		100	330
						WB Approach	175	-	1.20
		2.000			6	NB Left	125	106	85
	Northbound	41.6	D	42.1	D	NB Thru/Right		#370	#481
						NB Approach	-		**
	0911080/11100	100800	255	122.5		SB Left	250	36	#84
	Southbound	29.4	C	29.1	С	SB Thru/Right		195	212
						SB Approach			
-	Overall	32.6	C	35.7	D	Overall			
3: NC-96 (Arendell Avenue) &	Eastbound	15.4	с	23.7	с	EB Left/Thru/Right		0.6	2.2
Barbee Street	castbound	15.4	C	23.7	C	EB Approach			
Unsignalized	Westbound	14.7	в	17.7	с	WB Left/Thru/Right WB Approach		0.1	0.2
	Northbound	1.1	A	1.1	A	NB Left/Thru/Right NB Approach		0.1	0.1
	Southbound	0.2	A	0.1	А	SB Left/Thru/Right		0	0
4: NC-96 (Arendell Avenue) & Site	-					SB Approach			
Access 1	Eastbound	12.9	в	15.7	с	EB Left/Right		0.4	0.3
Unsignalized						EB Approach			**
	Northbound	0.1	A	0.3	A	NB Left/Thru		0	0
	0.0000000000000000000000000000000000000	3025	- 355	3565	SS	NB Approach			**
	Southbound	0.0	A	0.0	A	SB Thru/Right		0	0
		0.0	~	0.0	~	SB Approach			
5: NC-96 (Arendell Avenue) & Site Access 2	Eastbound	12.1	в	14.7	в	EB Left/Right		0.4	0.3
unsignalized			~	10,000	27	EB Approach			
analy names	Northbound	0.1	A	0.6	A	NB Left/Thru		0	0.1
	Northbound	0.1	0	0.0	10	NB Approach			
	Southbound		5		12	SB Thru/Right		0	0
	Southbound	0.0	A	0.0	A	SB Approach			
5: NC-96 (Arendell Avenue) & Perry	(and the second of the second of the second s	1793	100	12.2	12	WB Left/Right	8 ()	0.5	0.3
Curtis Road	Westbound	10.8	в	10.5	В	WB Approach			
Unsignalized						NB Thru/Right	-	0	0
	Northbound	0.0	A	0.0	A	NB Approach			-
	03110XW = 23	gross	~	329722	10.	SB Left/Thru	1	0.1	0.3
	Southbound	1.6	A	2.2	A	SB Approach		0.1	0.5
7: S Wakefield Street & Site Access	-					and the second se		0.3	0.2
3	Westbound	10.1	В	9.9	A	WB Left/Right	-	1.0	64513
Unsignalized		1000	201	10.00		WB Approach			
1002107-01-5503	Northbound	0.0	A	0.0	A	NB Thru/Right		0	0
						NB Approach			
	Southbound	1.1	A	1.8	A	SB Left/Thru		0	0.1
	STREET, STREET	8075	- 22	1.000	100	SB Approach			

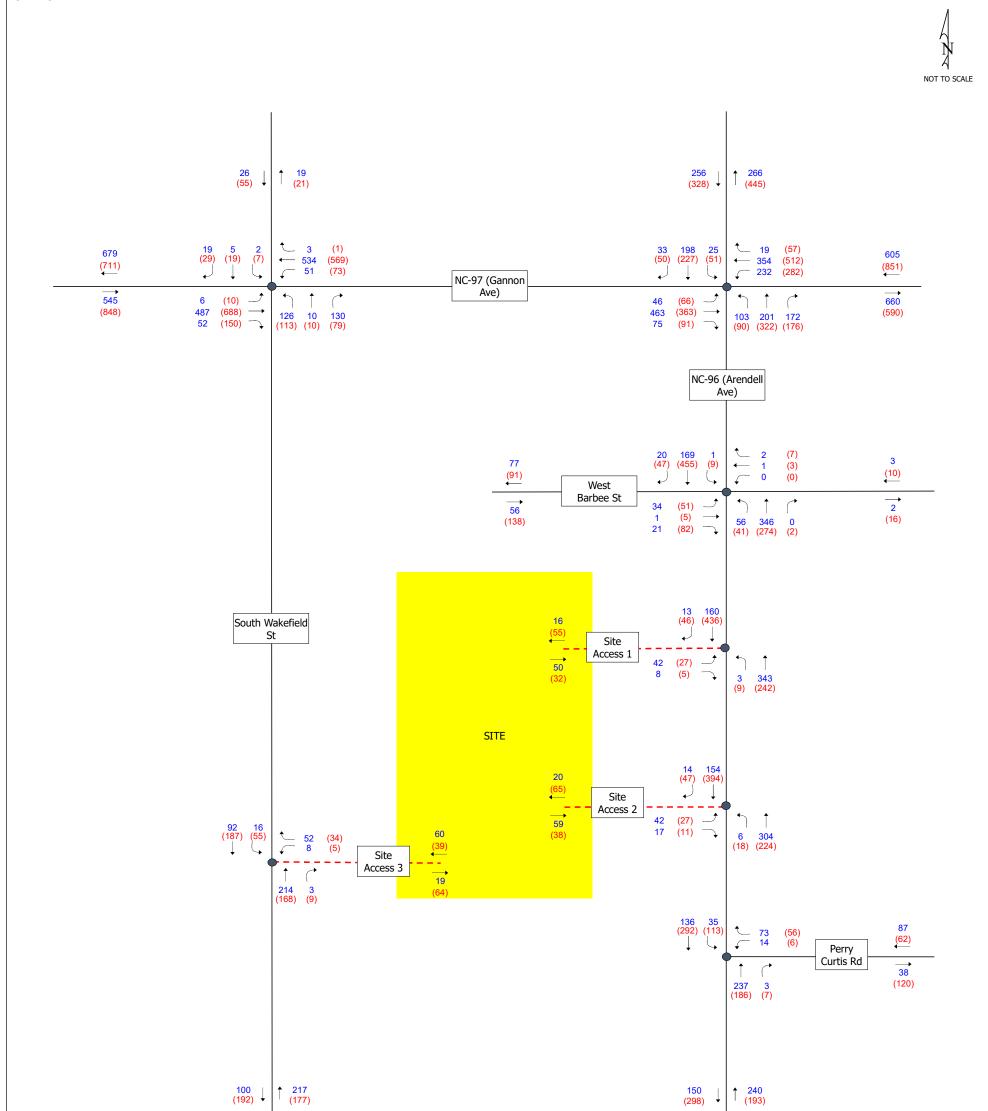
Table 5-1: Intersection Level of Service and Delay Summary2026 Build Traffic Volumes

¹ Overall intersection LOS and delay not reported for TWSC intersections.

* - 95th percentile queues for unsignalized intersections reported in number of vehicles.

- 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles

		AM PEAK	HOUR	PM PEAK	HOUR			AM PEAK HOUR	PM PEAK HOUR
Intersection	Approach / Overall	Delay ¹ (sec/veh)	LOS 1	Delay ¹ (sec/veh)	LOS 1	Movement	Turn Lane Storage (ft)	95th Percentile Queue Length (ft)*	95th Percentile Queue Length (ft)*
4: NC-96 (Arendell Avenue) & Site	Eastbound	12.7	в	15.3	С	EB Left/Right		0.4	0.3
Access 1 Unsignalized	Lastbound	12.7		13.5	100	EB Approach			
Unaignalizeu	Northbound	0.1	A	0.3	A	NB Left/Thru		0	0
	Hordhoodha	0.1	<u></u>	0.5		NB Approach		577	
	VA 10510	a contemport				SB Thru		0	0
	Southbound	0.0	A	0.0	Α	SB Right	50	0	0
		3				SB Approach		3	
5: NC-96 (Arendell Avenue) & Site	Eastbound	12.0	в	14.3	в	EB Left/Right		0.4	0.3
Access 2 Unsignalized	Lustovana	12.0	×			EB Approach		877	8775
Unsignalized	Northbound	0.1	A	0.6	A	NB Left/Thru		0	0.1
	Northooding	0.1	<u> </u>	0.0	2	NB Approach		1	
		1111111				SB Thru		0	0
	Southbound	0.0	A	0.0	Α	SB Right	50	0	0
						SB Approach		89228	320
7: S Wakefield Street & Site Access	Westbound	10.1	в	9,9	A	WB Left/Right		0.3	0.2
3 Unsignalized	Westbound	10.1	- N	2.2		WB Approach		100	
Unsignalized	Northbound	0.0	A	0.0	A	NB Thru/Right		0	0
	Horaboana	0.0		0.0	~	NB Approach		-	3220
						SB Left	50	0	0.1
	Southbound	1.1	A	1.8	Α	SB Thru		0	0
						SB Approach		-	-


Table 5-2: Intersection Level of Service and Delay Summary2026 Build + Improvement Traffic Volumes


¹ Overall intersection LOS and delay not reported for TWSC intersections.

* - 95th percentile queues for unsignalized intersections reported in number of vehicles.

- 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles

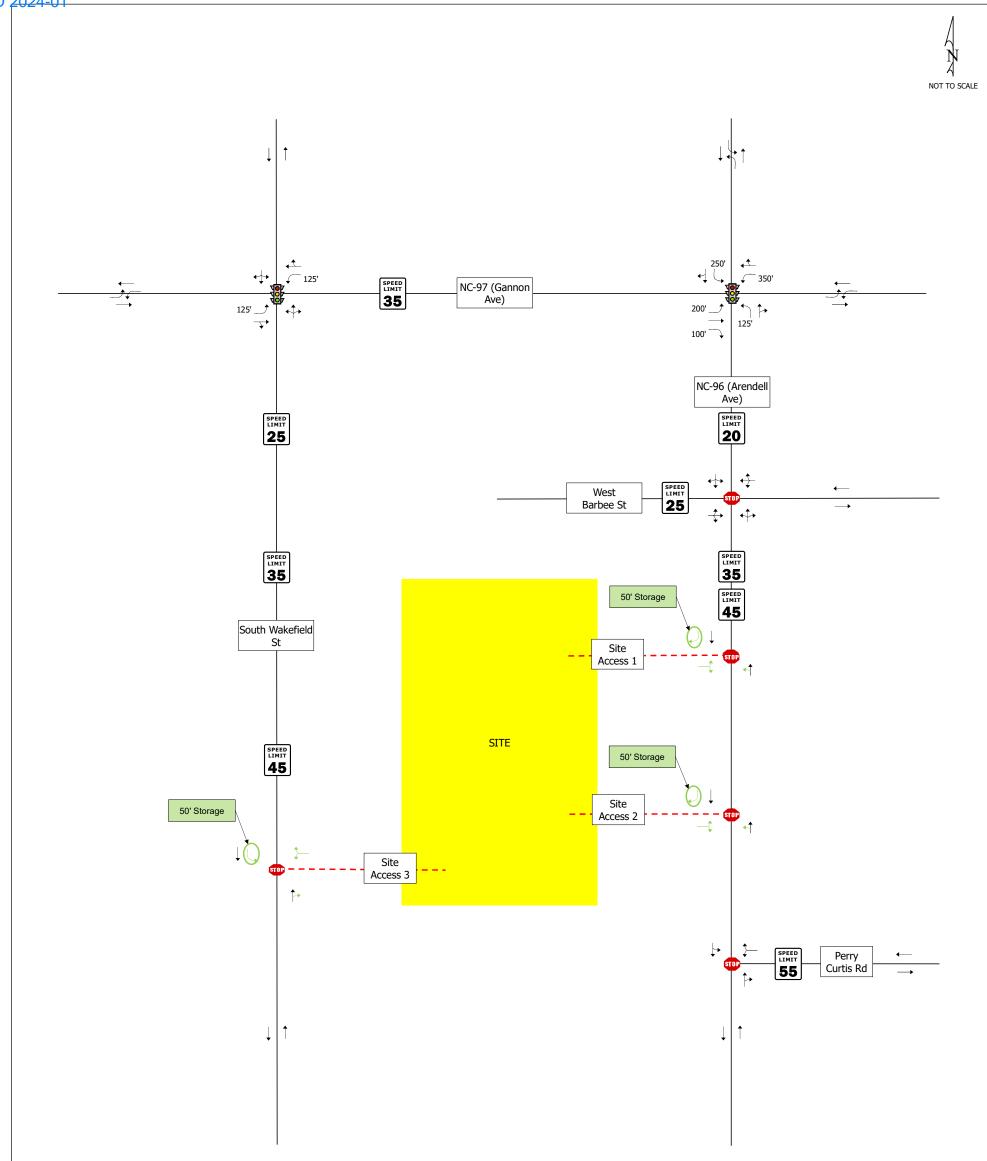
Zebulon South Traffic Impact Analysis 2026 Build Traffic Volumes

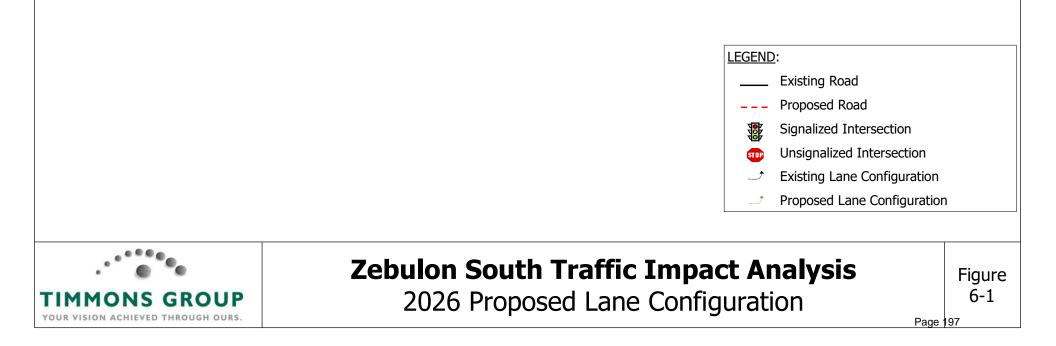
Figure 5-1 Page 195

6 CONCLUSIONS AND RECOMMENDATIONS

Capacity analyses were performed for the following scenarios:

- 2022 Existing traffic volumes
- 2026 Background traffic volumes
- 2026 Build traffic volumes (Background + site trips)


In closing, the following improvements (see **Figure 6-1**) are recommended in conjunction with the construction of the proposed development*:


- NC-97 / South Wakefield Street
 - o None
- NC-97 / NC-96
 - \circ None
- NC-96 / West Barbee Street
 - o None
- NC-96 / Site Access 1
 - 50-foot southbound right-turn lane (with appropriate taper)
 - 100-feet IPS (Internal Protected Stem) along Site Access 1**
- NC-96 / Site Access 2
 - 50-foot southbound right-turn lane (with appropriate taper)
 - 100-feet IPS along Site Access 2**
- NC-96 / Perry Curtis Road
 - o None
- South Wakefield Street / Site Access 3
 - 50-foot southbound left-turn lane (with appropriate taper)
 - 100-feet IPS along Site Access 3**

* NCDOT comments provided in July 2022 (**see Appendix F)** required additional improvements at the intersections of NC-96 / Site Access 1 and NC-96 / Site Access 2. These improvements were not analyzed or included to represent a more conservative scenario.

** IPS requirements are defined in the NCDOT's Driveway Manual.

Appendix A – Scoping Information

Attachment 7 PD 2024-01

From:	Brennan, Sean P
To:	Jeff Hochanadel; Meade Bradshaw; Warren, Jeremy L; Ishak, Doumit Y; Bunting, Clarence B; Lineberger,
	Nicholas C; Walker, Braden M
Cc:	<u>Cliff Lawson; Beth Blackmon</u>
Subject:	Re: [External] Zebulon South TIA Scoping
Date:	Friday, April 1, 2022 10:20:18 AM
Attachments:	49084-331C-SPLAYO3-Layout1.pdf

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Jeff,

Isn't there a 3rd site access that connects to S Wakefield St? So you might want to include S Wakefield and W Gannon Ave as well.

I have some concerns with the site access to S Arendell located across from Perry Curtis Rd. The geometry of that intersection makes adding a 4th leg difficult.

Regards,

Sean Brennan, PE Senior Assistant District Engineer Division 5/District 1 Department of Transportation

919-733-3213 office 919-715-5778 fax <u>spbrennan@ncdot.gov</u>

4009 District Drive (Physical Address) Raleigh, NC 27607

1575 Mail Service Center (Mailing Address) Raleigh, NC 27699-1575

cid:image001.png@01D10DA4.5CC88DA0

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

?

From: Jeff Hochanadel <Jeff.Hochanadel@timmons.com>

Sent: Thursday, March 31, 2022 4:51 PM

To: Meade Bradshaw <Mbradshaw@townofzebulon.org>; Brennan, Sean P <spbrennan@ncdot.gov>; Warren, Jeremy L <jlwarren@ncdot.gov>; Ishak, Doumit Y <dishak@ncdot.gov>; Bunting, Clarence B <cbunting@ncdot.gov>; Lineberger, Nicholas C <nclineberger@ncdot.gov>; Walker, Braden M <bmwalker1@ncdot.gov> **Cc:** Cliff Lawson <cliff.lawson@timmons.com>; Beth Blackmon <Beth.Blackmon@timmons.com> **Subject:** [External] Zebulon South TIA Scoping

CAUTION: External email. Do not click links or open attachments unless you verify. Send all suspicious email as an attachment to <u>Report Spam.</u>

All,

Timmons Group would like to scope a TIA for the subject residential development in Zebulon, NC. Per the attached conceptual site plan, the proposed development will consist of 148 townhomes and 166 single-family lots to be constructed off NC-96 (Arendell Avenue). I am ok scoping this via email or we could set up a virtual meeting to discuss the subject project.

Our scoping assumptions include the following:

- Study Area Intersections:
 - NC-97 (Gannon Avenue) / NC-96 (Arendell Avenue)
 - W Barbee Street / NC-96 (Arendell Avenue)
 - Site Access 1 / NC-96 (Arendell Avenue)
 - Site Access 2 / NC-96 (Arendell Avenue)
 - Perry Curtis Road / NC-96 (Arendell Avenue)
- Growth Rate:
 - 3%
- Approved Area Developments:
 - <mark>None</mark>
- STIP Projects:
 - None
- Build-Out Years:
 - Phase 1 2024
 - Phase 2 2026

Once we have determined the final project scope, I will be happy to submit the NCDOT TIA Scoping Checklist (as needed).

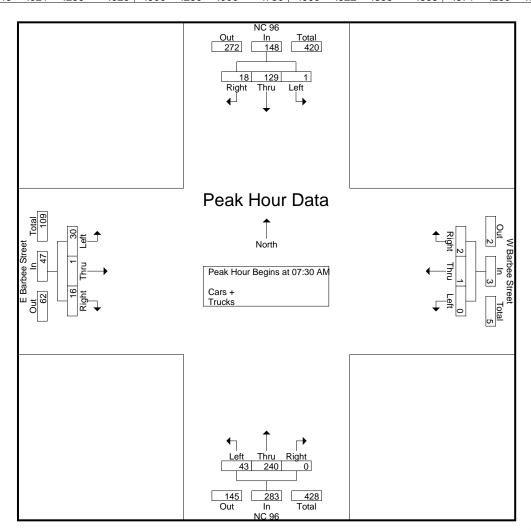
Please do not hesitate to contact me with any questions.

Thanks! Jeff

Jeff Hochanadel, PE, PTOE

Principal | North Carolina Transportation Group Leader **TIMMONS GROUP** | www.timmons.com 5410 Trinity Rd, Suite 102 | Raleigh, NC 27607 Office: 919.866.4511 | Fax: 919.859.5663 Cell: 919.426.8405 jeff.hochanadel@timmons.com Your Vision Achieved Through Ours **To send me files greater than 20MB click here**

Email correspondence to and from this sender is subject to the N.C. Public Records Law and may be disclosed to third parties.

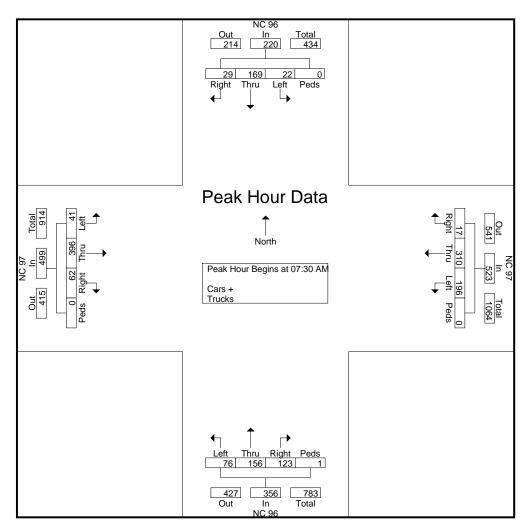

Appendix B – Traffic Counts

						G	roups F	rinted- C	ars + - 1	Frucks							
		NC	96		١	N Barbe	e Stre	et		NC	C 96			E Barbe	e Stree	et	
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
07:00 AM	7	15	0	22	1	0	0	1	1	47	7	55	7	1	5	13	91
07:15 AM	3	18	1	22	1	1	0	2	1	67	11	79	2	0	5	7	110
07:30 AM	5	27	0	32	0	0	0	0	0	62	12	74	2	1	5	8	114
07:45 AM	7	33	0	40	1	0	0	1	0	73	9	82	6	0	10	16	139
Total	22	93	1	116	3	1	0	4	2	249	39	290	17	2	25	44	454
08:00 AM	2	34	0	36	1	0	0	1	0	53	12	65	7	0	5	12	114
08:15 AM	4	35	1	40	0	1	0	1	0	52	10	62	1	0	10	11	114
08:30 AM	5	26	1	32	1	0	0	1	0	52	7	59	4	0	10	14	106
08:45 AM	8	26	0	34	0	0	0	0	0	50	14	64	6	1	6	13	111
Total	19	121	2	142	2	1	0	3	0	207	43	250	18	1	31	50	445
Grand Total	41	214	3	258	5	2	0	7	2	456	82	540	35	3	56	94	899
Apprch %	15.9	82.9	1.2		71.4	28.6	0		0.4	84.4	15.2		37.2	3.2	59.6		
Total %	4.6	23.8	0.3	28.7	0.6	0.2	0	0.8	0.2	50.7	9.1	60.1	3.9	0.3	6.2	10.5	
Cars +	37	195	3	235	5	2	0	7	2	436	81	519	34	3	53	90	851
<u>% Cars +</u>	90.2	91.1	100	91.1	100	100	0	100	100	95.6	98.8	96.1	97.1	100	94.6	95.7	94.7
Trucks	4	19	0	23	0	0	0	0	0	20	1	21	1	0	3	4	48
% Trucks	9.8	8.9	0	8.9	0	0	0	0	0	4.4	1.2	3.9	2.9	0	5.4	4.3	5.3

		NC	; 96		\	N Barbe	e Stree	et		NC	96			E Barbe	e Stree	et	
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	alysis Fro	om 07:0	0 AM t	o 08:45 A	M - Pea	k 1 of 1											
Peak Hour for I	Entire In	tersecti	on Beg	ins at 07:	30 AM												
07:30 AM	5	27	0	32	0	0	0	0	0	62	12	74	2	1	5	8	114
07:45 AM	7	33	0	40	1	0	0	1	0	73	9	82	6	0	10	16	139
08:00 AM	2	34	0	36	1	0	0	1	0	53	12	65	7	0	5	12	114
08:15 AM	4	35	1	40	0	1	0	1	0	52	10	62	1	0	10	11	114
Total Volume	18	129	1	148	2	1	0	3	0	240	43	283	16	1	30	47	481
% App. Total	12.2	87.2	0.7		66.7	33.3	0		0	84.8	15.2		34	2.1	63.8		
PHF	.643	.921	.250	.925	.500	.250	.000	.750	.000	.822	.896	.863	.571	.250	.750	.734	.865

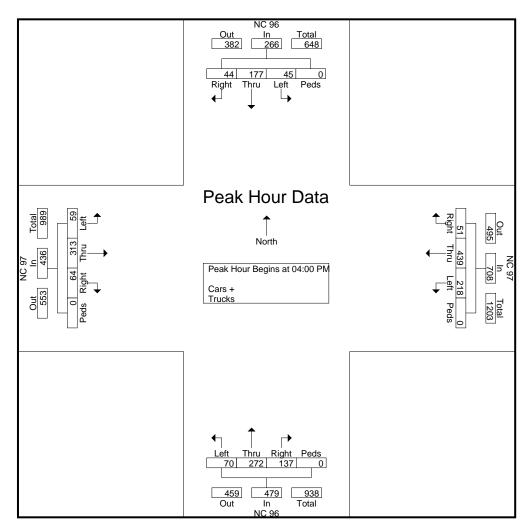
						G	roups F	Printed- C	ars + - 1	Frucks							
		NC	96		۱ ۱	N Barbe	e Stre	et		NC	96			E Barbe	e Stree	et	
		South	bound			West	bound			North	bound			East	ound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	11	71	1	83	0	1	1	2	0	47	6	53	13	1	13	27	165
04:15 PM	14	57	2	73	0	0	0	0	1	52	14	67	14	0	16	30	170
04:30 PM	12	72	0	84	1	1	0	2	0	49	6	55	22	2	12	36	177
04:45 PM	14	75	0	89	2	2	0	4	0	44	12	56	14	2	12	28	177
Total	51	275	3	329	3	4	1	8	1	192	38	231	63	5	53	121	689
05:00 PM	12	80	3	95	0	1	0	1	0	42	11	53	15	0	7	22	171
05:15 PM	9	90	1	100	2	1	0	3	0	55	7	62	17	3	14	34	199
05:30 PM	8	75	1	84	1	1	0	2	1	52	7	60	18	1	11	30	176
05:45 PM	13	85	3	101	3	0	0	3	1	51	7	59	15	0	13	28	191
Total	42	330	8	380	6	3	0	9	2	200	32	234	65	4	45	114	737
Grand Total	93	605	11	709	9	7	1	17	3	392	70	465	128	9	98	235	1426
Apprch %	13.1	85.3	1.6		52.9	41.2	5.9		0.6	84.3	15.1		54.5	3.8	41.7		
Total %	6.5	42.4	0.8	49.7	0.6	0.5	0.1	1.2	0.2	27.5	4.9	32.6	9	0.6	6.9	16.5	
Cars +	87	593	11	691	9	7	1	17	3	379	66	448	127	9	96	232	1388
% Cars +	93.5	98	100	97.5	100	100	100	100	100	96.7	94.3	96.3	99.2	100	98	98.7	97.3
Trucks	6	12	0	18	0	0	0	0	0	13	4	17	1	0	2	3	38
% Trucks	6.5	2	0	2.5	0	0	0	0	0	3.3	5.7	3.7	0.8	0	2	1.3	2.7

		NC	96		١	N Barbe	e Stree	et		NC	96			E Barbe	e Stree	et	
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	alysis Fro	om 04:0	0 PM t	o 05:45 F	M - Pea	k 1 of 1							_				
Peak Hour for I	Entire In	tersecti	on Beg	ins at 05:	00 PM												
05:00 PM	12	80	3	95	0	1	0	1	0	42	11	53	15	0	7	22	171
05:15 PM	9	90	1	100	2	1	0	3	0	55	7	62	17	3	14	34	199
05:30 PM	8	75	1	84	1	1	0	2	1	52	7	60	18	1	11	30	176
05:45 PM	13	85	3	101	3	0	0	3	1	51	7	59	15	0	13	28	191
Total Volume	42	330	8	380	6	3	0	9	2	200	32	234	65	4	45	114	737
% App. Total	11.1	86.8	2.1		66.7	33.3	0		0.9	85.5	13.7		57	3.5	39.5		
PHF	.808.	.917	.667	.941	.500	.750	.000	.750	.500	.909	.727	.944	.903	.333	.804	.838	.926



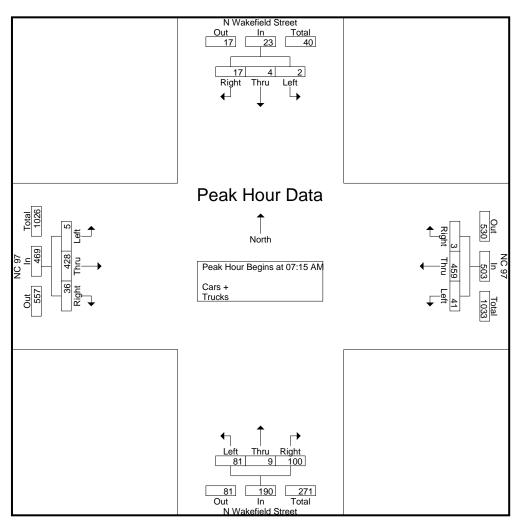
								Gro	ups Pr	rinted- C	Cars +	- Truc	ks								
			NC 96	6				NC 97	7				NC 96	6				NC 97	7		
		Sc	outhbo	und			W	estbou	und			N	orthbo	und			E	astbou	ind		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	4	32	6	1	43	1	38	28	0	67	22	23	4	0	49	9	59	3	0	71	230
07:15 AM	9	59	7	0	75	1	56	42	0	99	30	21	8	0	59	16	62	7	0	85	318
07:30 AM	7	47	9	0	63	6	83	39	0	128	25	36	16	0	77	22	94	7	0	123	391
07:45 AM	9	42	4	0	55	4	94	52	0	150	46	35	26	0	107	11	111	9	0	131	443
Total	29	180	26	1	236	12	271	161	0	444	123	115	54	0	292	58	326	26	0	410	1382
08:00 AM	11	37	5	0	53	3	83	56	0	142	19	41	19	1	80	16	109	10	0	135	410
08:15 AM	2	43	4	0	49	4	50	49	0	103	33	44	15	0	92	13	82	15	0	110	354
08:30 AM	7	44	5	0	56	8	35	42	0	85	40	41	9	0	90	12	46	9	0	67	298
08:45 AM	7	46	10	0	63	9	55	44	0	108	39	36	6	0	81	11	57	1	0	69	321
Total	27	170	24	0	221	24	223	191	0	438	131	162	49	1	343	52	294	35	0	381	1383
Grand Total	56	350	50	1	457	36	494	352	0	882	254	277	103	1	635	110	620	61	0	791	2765
Apprch %	12.3	76.6	10.9	0.2		4.1	56	39.9	0		40	43.6	16.2	0.2		13.9	78.4	7.7	0		
Total %	2	12.7	1.8	0	16.5	1.3	17.9	12.7	0	31.9	9.2	10	3.7	0	23	4	22.4	2.2	0	28.6	
Cars +	55	336	48	1	440	34	482	341	0	857	244	260	100	1	605	104	599	60	0	763	2665
% Cars +	98.2	96	96	100	96.3	94.4	97.6	96.9	0	97.2	96.1	93.9	97.1	100	95.3	94.5	96.6	98.4	0	96.5	96.4
Trucks	1	14	2	0	17	2	12	11	0	25	10	17	3	0	30	6	21	1	0	28	100
% Trucks	1.8	4	4	0	3.7	5.6	2.4	3.1	0	2.8	3.9	6.1	2.9	0	4.7	5.5	3.4	1.6	0	3.5	3.6

			NC 96	3				NC 97	7				NC 96	3				NC 97	7]
		Sc	uthbo	und			W	estbou	und			N	orthbo	und			E	astbou	Ind		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s From	n 07:00	O AM to	o 08:45	AM - I	Peak 1	of 1													
Peak Hour for	or Entii	re Inte	rsectio	n Beg	ins at 0	7:30 A	Μ														
07:30 AM	7	47	9	0	63	6	83	39	0	128	25	36	16	0	77	22	94	7	0	123	391
07:45 AM	9	42	4	0	55	4	94	52	0	150	46	35	26	0	107	11	111	9	0	131	443
08:00 AM	11	37	5	0	53	3	83	56	0	142	19	41	19	1	80	16	109	10	0	135	410
08:15 AM	2	43	4	0	49	4	50	49	0	103	33	44	15	0	92	13	82	15	0	110	354
Total Volume	29	169	22	0	220	17	310	196	0	523	123	156	76	1	356	62	396	41	0	499	1598
% App. Total	13.2	76.8	10	0		3.3	59.3	37.5	0		34.6	43.8	21.3	0.3		12.4	79.4	8.2	0		
PHF	.659	.899	.611	.000	.873	.708	.824	.875	.000	.872	.668	.886	.731	.250	.832	.705	.892	.683	.000	.924	.902



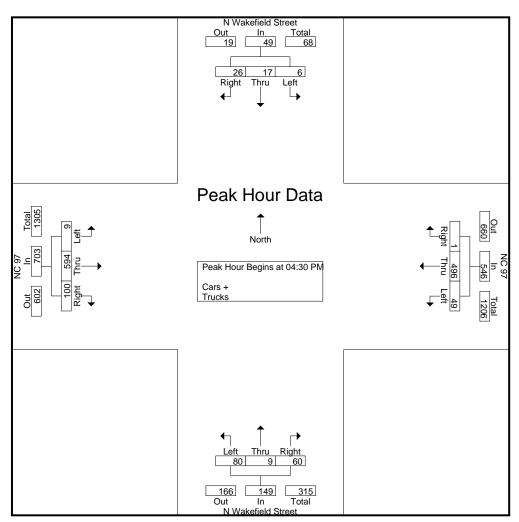
								Gro	ups Pr	rinted- C	Cars +	- Truc	ks								
			NC 96	6				NC 97	7				NC 96	6				NC 97	7		
		Sc	outhbo	und			W	estbo	und			No	orthbo	und			E	astbou	ind		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	15	56	17	0	88	10	115	61	0	186	33	67	17	0	117	12	84	17	0	113	504
04:15 PM	7	38	7	0	52	10	98	40	0	148	34	64	25	0	123	19	93	15	0	127	450
04:30 PM	11	44	8	0	63	19	117	59	0	195	36	75	14	0	125	16	69	9	0	94	477
04:45 PM	11	39	13	0	63	12	109	58	0	179	34	66	14	0	114	17	67	18	0	102	458
Total	44	177	45	0	266	51	439	218	0	708	137	272	70	0	479	64	313	59	0	436	1889
05:00 PM	8	54	13	0	75	9	117	64	0	190	37	57	17	0	111	15	70	16	0	101	477
05:15 PM	12	47	9	0	68	9	111	56	0	176	29	56	13	1	99	21	87	11	0	119	462
05:30 PM	11	59	9	0	79	16	94	63	0	173	37	61	16	0	114	9	61	15	0	85	451
05:45 PM	12	48	8	0	68	10	106	48	0	164	52	62	13	0	127	17	60	16	0	93	452
Total	43	208	39	0	290	44	428	231	0	703	155	236	59	1	451	62	278	58	0	398	1842
Grand Total	87	385	84	0	556	95	867	449	0	1411	292	508	129	1	930	126	591	117	0	834	3731
Apprch %	15.6	69.2	15.1	0		6.7	61.4	31.8	0		31.4	54.6	13.9	0.1		15.1	70.9	14	0		
Total %	2.3	10.3	2.3	0	14.9	2.5	23.2	12	0	37.8	7.8	13.6	3.5	0	24.9	3.4	15.8	3.1	0	22.4	
Cars +	86	384	82	0	552	94	858	442	0	1394	284	497	124	1	906	126	581	117	0	824	3676
% Cars +	98.9	99.7	97.6	0	99.3	98.9	99	98.4	0	98.8	97.3	97.8	96.1	100	97.4	100	98.3	100	0	98.8	98.5
Trucks	1	1	2	0	4	1	9	7	0	17	8	11	5	0	24	0	10	0	0	10	55
% Trucks	1.1	0.3	2.4	0	0.7	1.1	1	1.6	0	1.2	2.7	2.2	3.9	0	2.6	0	1.7	0	0	1.2	1.5

			NC 96	6				NC 97	7				NC 96	3				NC 97	7]
		Sc	outhbo	und			W	estbou	und			N	orthbo	und			E	astbou	Ind		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s From	n 04:00	DPM t	o 05:45	PM - I	Peak 1	of 1													
Peak Hour for	or Enti	re Inte	rsectio	on Beg	ins at 0	4:00 P	M														
04:00 PM	15	56	17	0	88	10	115	61	0	186	33	67	17	0	117	12	84	17	0	113	504
04:15 PM	7	38	7	0	52	10	98	40	0	148	34	64	25	0	123	19	93	15	0	127	450
04:30 PM	11	44	8	0	63	19	117	59	0	195	36	75	14	0	125	16	69	9	0	94	477
04:45 PM	11	39	13	0	63	12	109	58	0	179	34	66	14	0	114	17	67	18	0	102	458
Total Volume	44	177	45	0	266	51	439	218	0	708	137	272	70	0	479	64	313	59	0	436	1889
% App. Total	16.5	66.5	16.9	0		7.2	62	30.8	0		28.6	56.8	14.6	0		14.7	71.8	13.5	0		
PHF	.733	.790	.662	.000	.756	.671	.938	.893	.000	.908	.951	.907	.700	.000	.958	.842	.841	.819	.000	.858	.937



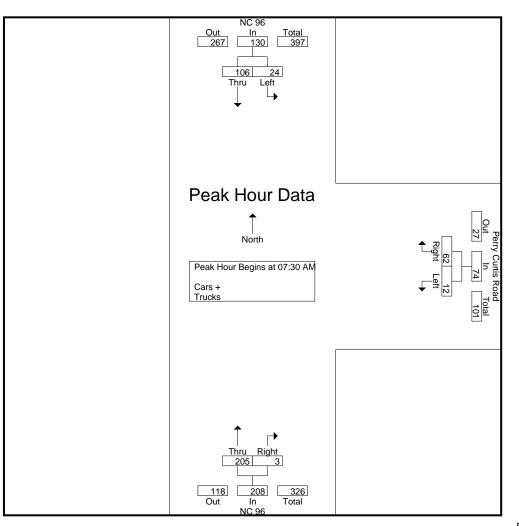
						G	roups F	Printed- C	ars + -	Trucks							
	N	l Wakefi	eld Str	eet		NC	97		N	I Wakef	ield Stre	eet		NC	C 97		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
07:00 AM	2	1	0	3	0	85	8	93	30	1	16	47	6	59	2	67	210
07:15 AM	1	1	1	3	0	92	12	104	22	3	15	40	5	89	0	94	241
07:30 AM	3	0	0	3	1	104	8	113	25	3	26	54	14	127	0	141	311
07:45 AM	8	3	1	12	1	125	10	136	26	1	24	51	6	119	3	128	327
Total	14	5	2	21	2	406	38	446	103	8	81	192	31	394	5	430	1089
08:00 AM	5	0	0	5	1	138	11	150	27	2	16	45	11	93	2	106	306
08:15 AM	2	4	1	7	0	125	8	133	12	2	14	28	12	59	0	71	239
08:30 AM	1	1	0	2	0	115	6	121	22	1	16	39	15	78	1	94	256
08:45 AM	3	6	0	9	0	111	5	116	17	0	21	38	11	73	3	87	250
Total	11	11	1	23	1	489	30	520	78	5	67	150	49	303	6	358	1051
Grand Total	25	16	3	44	3	895	68	966	181	13	148	342	80	697	11	788	2140
Apprch %	56.8	36.4	6.8		0.3	92.7	7		52.9	3.8	43.3		10.2	88.5	1.4		
Total %	1.2	0.7	0.1	2.1	0.1	41.8	3.2	45.1	8.5	0.6	6.9	16	3.7	32.6	0.5	36.8	
Cars +	24	16	3	43	3	873	68	944	177	13	144	334	78	665	11	754	2075
% Cars +	96	100	100	97.7	100	97.5	100	97.7	97.8	100	97.3	97.7	97.5	95.4	100	95.7	97
Trucks	1	0	0	1	0	22	0	22	4	0	4	8	2	32	0	34	65
% Trucks	4	0	0	2.3	0	2.5	0	2.3	2.2	0	2.7	2.3	2.5	4.6	0	4.3	3

	N	Makafi		1			97		N	Makaf					1		
	IN	Wakefi		eet					IN	Wakefi		et			97		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	alysis Fro	om 07:0	0 AM t	o 08:45 A	M - Pea	ak 1 of 1											
Peak Hour for	Entire In	tersection	on Beg	ins at 07:	15 AM												
07:15 AM	1	1	1	3	0	92	12	104	22	3	15	40	5	89	0	94	241
07:30 AM	3	0	0	3	1	104	8	113	25	3	26	54	14	127	0	141	311
07:45 AM	8	3	1	12	1	125	10	136	26	1	24	51	6	119	3	128	327
08:00 AM	5	0	0	5	1	138	11	150	27	2	16	45	11	93	2	106	306
Total Volume	17	4	2	23	3	459	41	503	100	9	81	190	36	428	5	469	1185
% App. Total	73.9	17.4	8.7		0.6	91.3	8.2		52.6	4.7	42.6		7.7	91.3	1.1		
PHF	.531	.333	.500	.479	.750	.832	.854	.838	.926	.750	.779	.880	.643	.843	.417	.832	.906



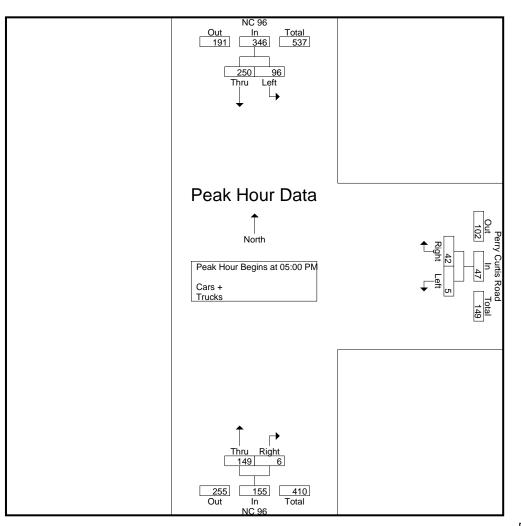
						G	roups F	Printed- C	ars +	Trucks							
	N	l Wakefi	eld Str	eet		NC	97		N	Wakef	ield Stre	eet		NC	97		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	9	10	1	20	0	132	10	142	22	2	20	44	22	127	2	151	357
04:15 PM	3	3	0	6	2	88	8	98	16	2	18	36	34	158	2	194	334
04:30 PM	7	4	2	13	0	118	12	130	12	1	20	33	27	158	6	191	367
04:45 PM	6	4	0	10	0	135	14	149	13	2	26	41	21	157	2	180	380
Total	25	21	3	49	2	473	44	519	63	7	84	154	104	600	12	716	1438
05:00 PM	8	5	3	16	1	113	13	127	13	4	16	33	18	151	0	169	345
05:15 PM	5	4	1	10	0	130	10	140	22	2	18	42	34	128	1	163	355
05:30 PM	11	1	3	15	0	113	10	123	16	1	16	33	24	136	0	160	331
05:45 PM	5	2	1	8	0	116	13	129	18	2	15	35	22	128	2	152	324
Total	29	12	8	49	1	472	46	519	69	9	65	143	98	543	3	644	1355
Grand Total	54	33	11	98	3	945	90	1038	132	16	149	297	202	1143	15	1360	2793
Apprch %	55.1	33.7	11.2		0.3	91	8.7		44.4	5.4	50.2		14.9	84	1.1		
Total %	1.9	1.2	0.4	3.5	0.1	33.8	3.2	37.2	4.7	0.6	5.3	10.6	7.2	40.9	0.5	48.7	
Cars +	53	33	11	97	3	914	88	1005	127	16	144	287	197	1120	15	1332	2721
% Cars +	98.1	100	100	99	100	96.7	97.8	96.8	96.2	100	96.6	96.6	97.5	98	100	97.9	97.4
Trucks	1	0	0	1	0	31	2	33	5	0	5	10	5	23	0	28	72
% Trucks	1.9	0	0	1	0	3.3	2.2	3.2	3.8	0	3.4	3.4	2.5	2	0	2.1	2.6

	N	Wakefi	eld Stre	eet		NC	97		N	Wakefi	eld Stre	et		NC	97		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	lysis Fro	om 04:0	0 PM t	o 05:45 F	PM - Pea	ak 1 of 1											
Peak Hour for	Entire In	tersecti	on Beg	ins at 04:	30 PM												
04:30 PM	7	4	2	13	0	118	12	130	12	1	20	33	27	158	6	191	367
04:45 PM	6	4	0	10	0	135	14	149	13	2	26	41	21	157	2	180	380
05:00 PM	8	5	3	16	1	113	13	127	13	4	16	33	18	151	0	169	345
05:15 PM	5	4	1	10	0	130	10	140	22	2	18	42	34	128	1	163	355
Total Volume	26	17	6	49	1	496	49	546	60	9	80	149	100	594	9	703	1447
% App. Total	53.1	34.7	12.2		0.2	90.8	9		40.3	6	53.7		14.2	84.5	1.3		
PHF	.813	.850	.500	.766	.250	.919	.875	.916	.682	.563	.769	.887	.735	.940	.375	.920	.952

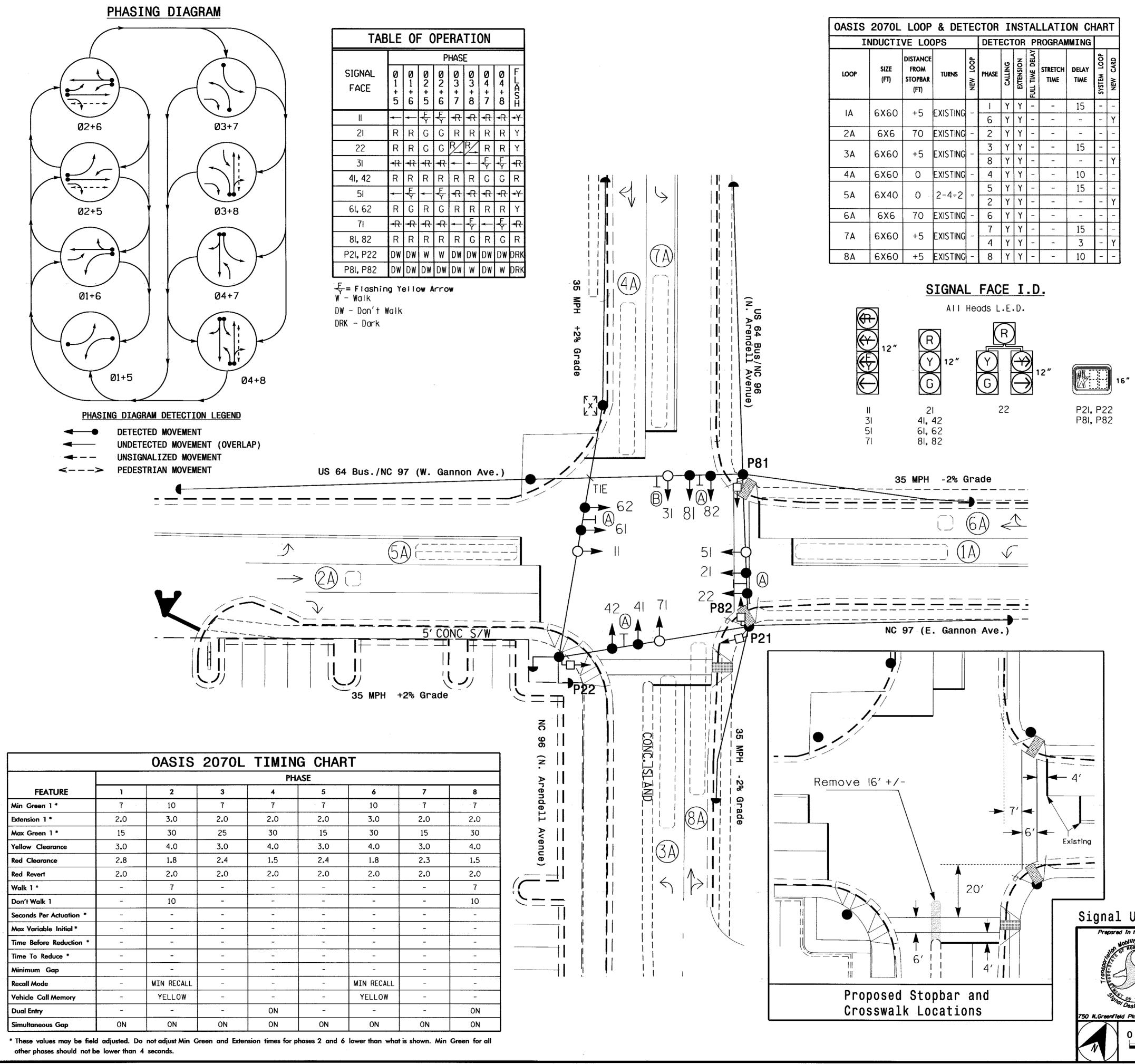


		NC 96		Perr	y Curtis Ro	bad		NC 96		
	S	outhbound	ł	V	Vestbound		N	orthbound	k	
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Tota
07:00 AM	17	3	20	17	3	20	2	42	44	8
07:15 AM	20	2	22	13	0	13	0	64	64	g
07:30 AM	20	4	24	9	3	12	0	61	61	9
07:45 AM	31	5	36	19	3	22	1	57	58	11
Total	88	14	102	58	9	67	3	224	227	39
08:00 AM	27	6	33	13	2	15	1	49	50	9
08:15 AM	28	9	37	21	4	25	1	38	39	10
08:30 AM	17	8	25	8	2	10	2	47	49	8
08:45 AM	24	2	26	19	3	22	1	43	44	ç
Total	96	25	121	61	11	72	5	177	182	37
Grand Total	184	39	223	119	20	139	8	401	409	77
Apprch %	82.5	17.5		85.6	14.4		2	98		
Total %	23.9	5.1	28.9	15.4	2.6	18	1	52	53	
Cars +	166	38	204	117	19	136	5	378	383	72
% Cars +	90.2	97.4	91.5	98.3	95	97.8	62.5	94.3	93.6	93
Trucks	18	1	19	2	1	3	3	23	26	4
% Trucks	9.8	2.6	8.5	1.7	5	2.2	37.5	5.7	6.4	6

		NC 96		Per	ry Curtis R	oad		NC 96		
		Southbound	k	١	Nestbound			Northbound	k	
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
Peak Hour Analysis Fro	m 07:00 AM	to 08:45 AM	I - Peak 1 of 1							
Peak Hour for Entire Inte	ersection Be	gins at 07:3	BO AM							
07:30 AM	20	4	24	9	3	12	0	61	61	97
07:45 AM	31	5	36	19	3	22	1	57	58	116
08:00 AM	27	6	33	13	2	15	1	49	50	98
08:15 AM	28	9	37	21	4	25	1	38	39	101
Total Volume	106	24	130	62	12	74	3	205	208	412
% App. Total	81.5	18.5		83.8	16.2		1.4	98.6		
PHF	.855	.667	.878	.738	.750	.740	.750	.840	.852	.888


File Name : Zebulon(NC96 and Perry) Site Code : Start Date : 4/12/2022 Page No : 1

			Gro	oups Printed	- Cars + -	Trucks				
		NC 96		Perr	y Curtis R	oad				
	S	outhbound	ł	V	Vestbound		N			
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
04:00 PM	56	20	76	12	4	16	2	35	37	129
04:15 PM	50	12	62	21	2	23	1	37	38	123
04:30 PM	52	28	80	14	1	15	2	41	43	138
04:45 PM	63	24	87	17	1	18	0	32	32	137
Total	221	84	305	64	8	72	5	145	150	527
05:00 PM	49	24	73	13	2	15	1	31	32	120
05:15 PM	72	23	95	10	2	12	3	40	43	150
05:30 PM	64	19	83	8	0	8	1	36	37	128
05:45 PM	65	30	95	11	1	12	1	42	43	150
Total	250	96	346	42	5	47	6	149	155	548
Grand Total	471	180	651	106	13	119	11	294	305	1075
Apprch %	72.4	27.6		89.1	10.9		3.6	96.4		
Total %	43.8	16.7	60.6	9.9	1.2	11.1	1	27.3	28.4	
Cars +	461	178	639	104	11	115	11	280	291	1045
% Cars +	97.9	98.9	98.2	98.1	84.6	96.6	100	95.2	95.4	97.2
Trucks	10	2	12	2	2	4	0	14	14	30
% Trucks	2.1	1.1	1.8	1.9	15.4	3.4	0	4.8	4.6	2.8



File Name : Zebulon(NC96 and Perry) Site Code : Start Date : 4/12/2022 Page No : 2

		NC 96		Perr	y Curtis R	oad		NC 96		
		Southbound	ł	V	Vestbound			Northbound	ł	
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
Peak Hour Analysis Fro	m 04:00 PM	to 05:45 PM	/ - Peak 1 of 1	-						
Peak Hour for Entire Inte	ersection Be	gins at 05:0	0 PM							
05:00 PM	49	24	73	13	2	15	1	31	32	120
05:15 PM	72	23	95	10	2	12	3	40	43	150
05:30 PM	64	19	83	8	0	8	1	36	37	128
05:45 PM	65	30	95	11	1	12	1	42	43	150
Total Volume	250	96	346	42	5	47	6	149	155	548
% App. Total	72.3	27.7		89.4	10.6		3.9	96.1		
PHF	.868	.800	.911	.808	.625	.783	.500	.887	.901	.913

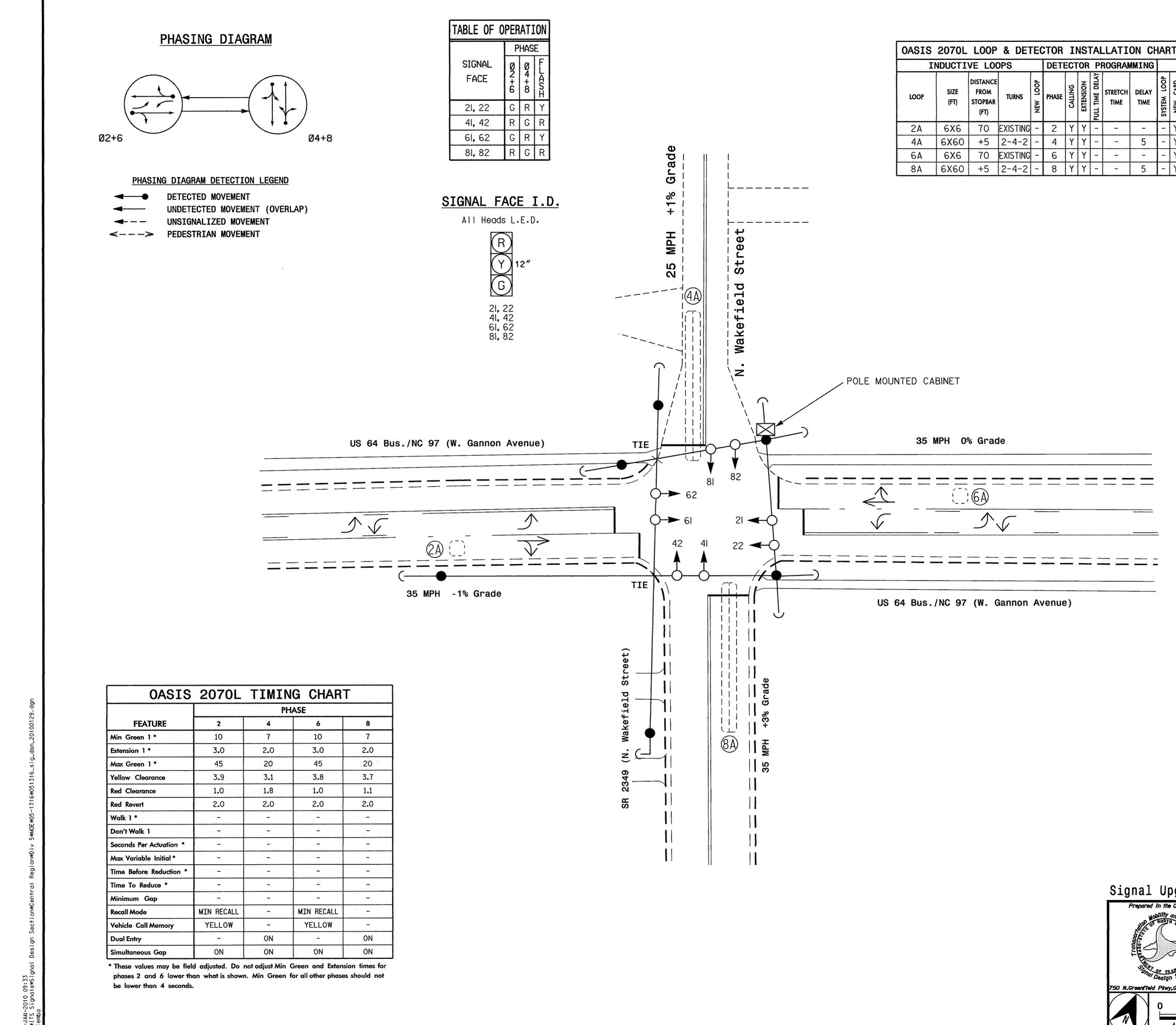
Appendix C – Signal Timing Plans

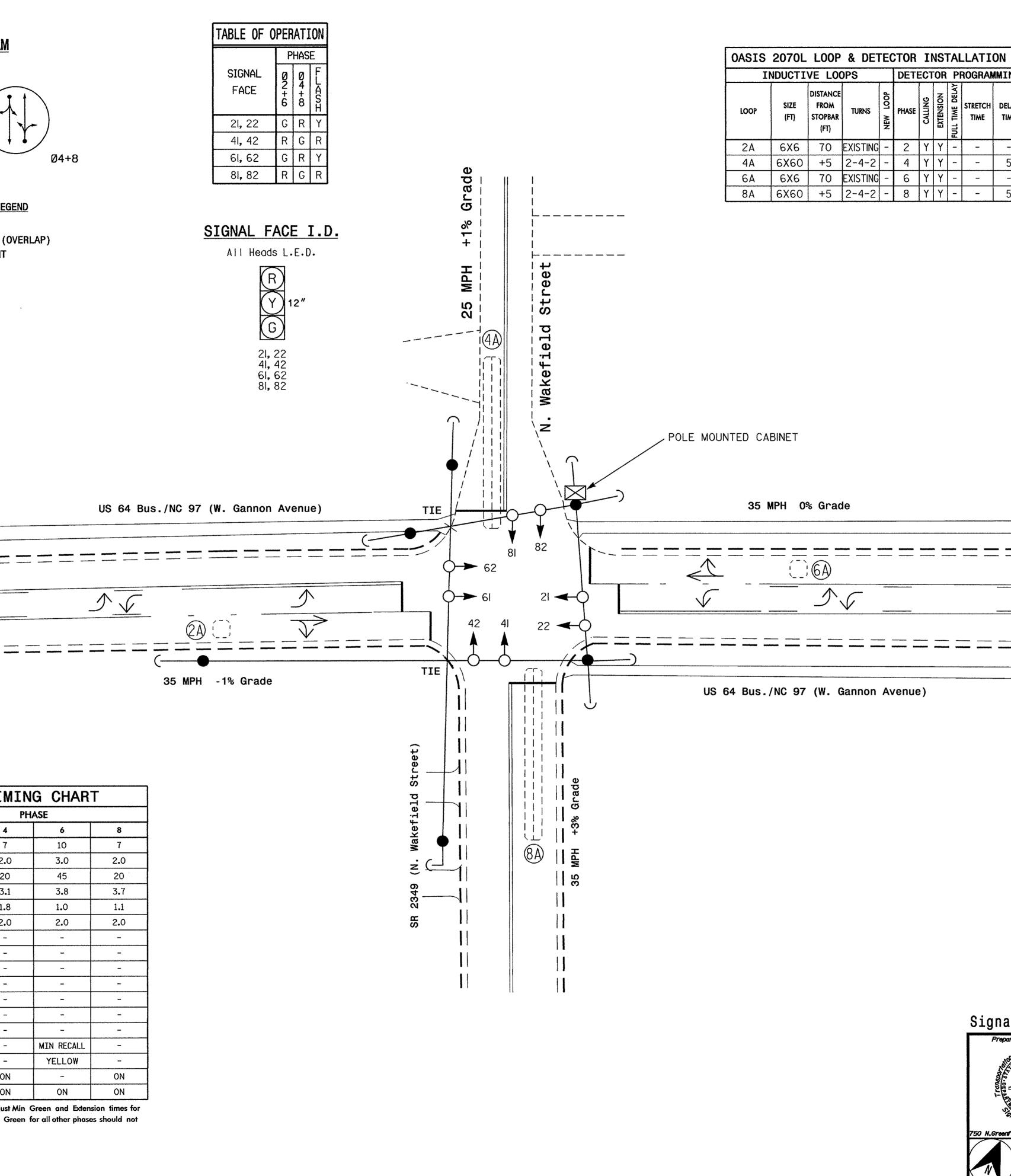
		OASIS	2070L	TIMIN	IG CHAF	RT		
				PH	IASE			
FEATURE	1	2	3	4	5	6	7	8
Min Green 1*	7	10	7	7	· 7	10	·7 ·	7
Extension 1 *	2.0	3.0	2.0	2.0	2.0	3.0	2.0	2.0
Max Green 1 *	15	30	25	30	15	30	15	30
Yellow Clearance	3.0	4.0	3.0	4.0	3.0	4.0	3.0	4.0
Red Clearance	2.8	1.8	2.4	1.5	2.4	1.8	2.3	1.5
Red Revert	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Walk 1 *	_	7	-		-	-	-	7
Don't Walk 1	_	10	-	-		-	-	10
Seconds Per Actuation *	_	-	-	-	-	-	-	-
Max Variable Initial *	_	-	-	-		-	-	
Time Before Reduction *	_	-	-	-	-	-	-	-
Time To Reduce *	_	-	-	-	_	-	-	-
Minimum Gap	_	-	-		-	-	-	-
Recall Mode	_	MIN RECALL	-	_	-	MIN RECALL	-	-
Vehicle Call Memory	_	YELLOW	-	-	_	YELLOW	-	-
Dual Entry	_	-	_	ON	_	-	-	ON
Simultaneous Gap	ON	ON	ON	ON	ON	ON	ON	ON

PROJECT REFERENCE NO.	SHEET	NO
05-0156	Sig.	1

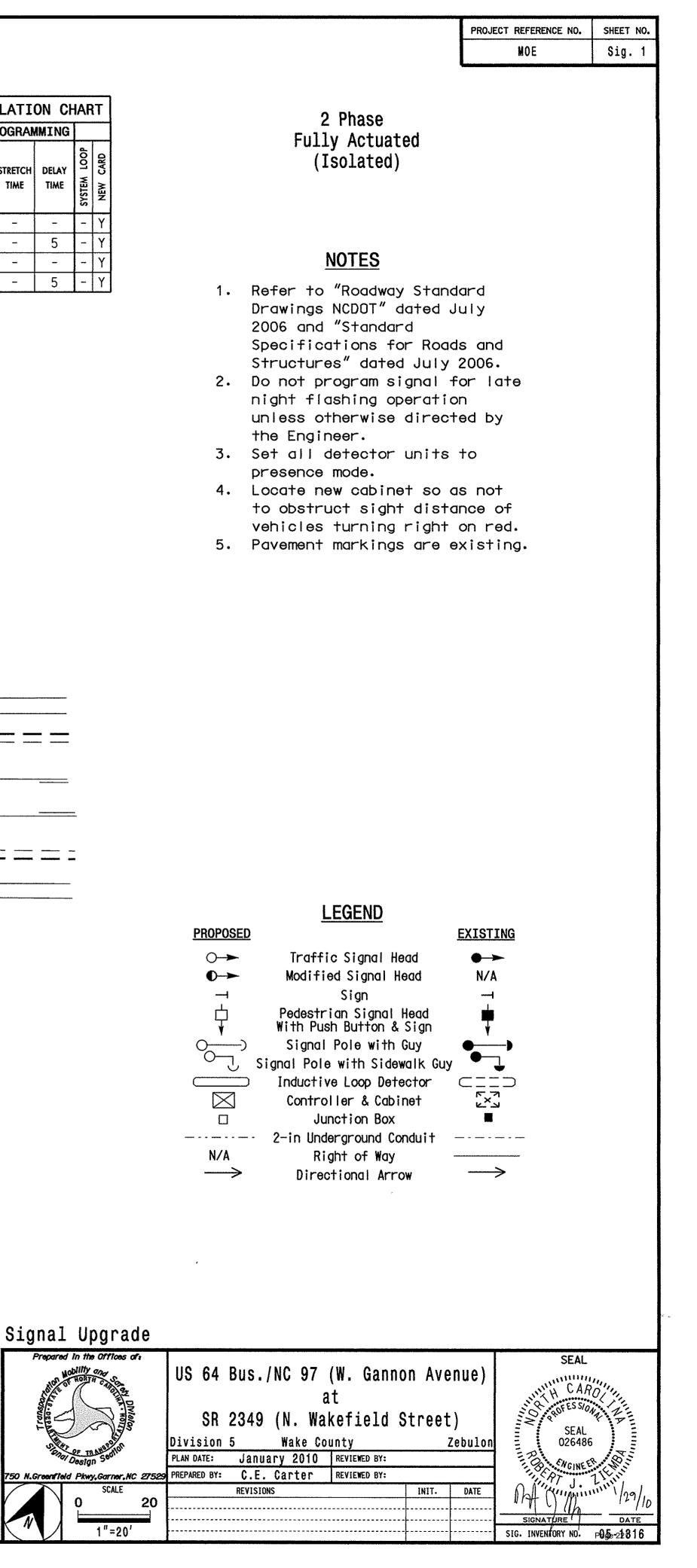
8 Phase Fully Actuated (Isolated)

NOTES


- 1. Refer to "Roadway Standard Drawings NCDOT" dated July 2006 and "Standard Specifications for Roads and Structures" dated July 2006.
- 2. Do not program signal for late night flashing operation unless otherwise directed by the Engineer.
- Phase 1 and/or phase 5 may be lagged. 3.
- Phase 3 and/or phase 7 may be lagged. 4.
- Set all detector units to presence mode. 5. In the event of loop replacement, refer 6.
- to the current ITS and Signals Design Manual and submit a Plan of Record to the Signal Design Section.
- 7. Omit "WALK" and flashing "DON'T WALK" with no pedestrian calls.
- 8. Program pedestrian heads to countdown the flashing "Don't Walk" time only.
- 9. Pavement markings are existing unless otherwise shown.


LEGEND

	·	
PROPOSED		EXISTING
\frown	Traffic Signal Head	•>-
●→	Modified Signal Head	N/A
1	Sign	
i ↓	Pedestrian Signal Head With Push Button & Sign	v v a∰n
\sim	Signal Pole with Guy	•
<u> </u>	Signal Pole with Sidewalk Guy	•
	Inductive Loop Detector	\square
\bowtie	Controller & Cabinet	
	Junction Box	
	- 2-in Underground Conduit	
N/A	Right of Way	
\rightarrow	Directional Arrow	\rightarrow
$\langle A \rangle$	Street Name Sign (D3-1)	(A)
B	"U-TURN YIELD TO RIGHT TURN" Sign (R10-16)	B


Signal Upgrade

nur opgrade		
Prepared in the Offices of: Nobility on- Nobility on- N	US 64 Bus./NC 97 (Gannon Ave.) at US 64 Bus./NC 96 (N. Arendell Ave Division 5 Wake County Zebu PLAN DATE: November 2011 Reviewed By:	SEAL HOFESSIONAL A
"Design "	PLAN DATE: NOVEHDEL ZUTT REVIEWED DI:	- FOR CHGINEER
reenfield Pkwy,Garner,NC 27529	PREPARED BY: Sterling REVIEWED BY:	THE AT THE THE
SCALE 0 20 1"=20'	REVISIONS INIT. DA	ITE

OASIS	2070L	TIMINO	G CHAR	Т
		\SE		
FEATURE	2	4	6	8
Min Green 1 *	10	7	10	7
Extension 1 *	3.0	2.0	3.0	2.0
Max Green 1 *	45	20	45	20
Yellow Clearance	3.9	3.1	3.8	3.7
Red Clearance	1.0	1.8	1.0	1.1
Red Revert	2.0	2.0	2.0	2.0
Walk 1 *	-	-		-
Don't Walk 1	-	-		-
Seconds Per Actuation *	-	-	-	_
Max Variable Initial *	-	-	-	
Time Before Reduction *	-		-	-
Time To Reduce *	-	-		-
Minimum Gap		-		_
Recall Mode	MIN RECALL	-	MIN RECALL	_
Vehicle Call Memory	YELLOW	-	YELLOW	-
Dual Entry		ON	-	ON
Simultaneous Gap	ON	ON	ON	ON

Appendix D – Synchro Output

2022 Existing Traffic Volumes

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/04/2023

Lane Configurations Image: Configurations <	SBR 17 1900 0 0 1.00 0 0 No
Lane Configurations 1 1 1 4 4 Traffic Volume (vph) 5 428 36 41 459 4 81 9 100 4 4 Ideal Flow (vph) 5 428 36 41 459 4 81 9 100 4 4 Ideal Flow (vph) 1900	17 17 1900 0 0 1.00 0 0
Traffic Volume (vph) 5 428 36 41 459 4 81 9 100 4 4 Ideal Flow (vphp) 1900 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00	17 1900 0 1.00 0
Future Volume (vph) 5 428 36 41 459 4 81 9 100 4 4 Ideal Flow (vphpl) 1900 100 <t< td=""><td>17 1900 0 1.00 0</td></t<>	17 1900 0 1.00 0
Ideal Flow (vphpi) 1900 <td>1900 0 1.00 0</td>	1900 0 1.00 0
Grade (%) -1% 0% 3% 1% Storage Length (ft) 125 0 1 0	0 0 1.00 0
Storage Length (ft) 125 0 125 0 0 0 0 0 Storage Lanes 1 0 1 0	0 1.00 0 0
Storage Lanes 1 0 1 0 0 0 0 Taper Length (ft) 25 <td>0 1.00 0 0</td>	0 1.00 0 0
Taper Length (ft) 25 25 25 25 Lane Util. Factor 1.00 </td <td>1.00 0 0</td>	1.00 0 0
Lane Util. Factor 1.00 <th1.00< th=""> 1.00 1.00</th1.00<>	0
Frt 0.988 0.999 0.929 0.905 Fit Protected 0.950 0.950 0.979 0.993 Satd. Flow (prot) 1778 1850 0 1770 1861 0 0 1669 0 0 1666 Fit Permitted 0.393 0.391 0.849 0.942 0.942 Satd. Flow (perm) 736 1850 0 728 1861 0 0 1447 0 0 1580 Right Turn on Red No No No No No No Satd. Flow (RTOR) 1 1453 1831 462 1 1 1453 1831 462 1 1 12.6 1 <t< td=""><td>0</td></t<>	0
Fit Protected 0.950 0.979 0.993 Satd. Flow (prot) 1778 1850 0 1770 1861 0 0 1669 0 0 1666 Fit Permitted 0.393 0.391 0.849 0.942 0.849 0.942 Satd. Flow (perm) 736 1850 0 728 1861 0 0 1447 0 0 1580 Right Turn on Red No No No No No No No No Satd. Flow (RTOR) 1831 462 1111 462 1111 1453 1831 462 1111 462 1111 462 1111 1453 1831 462 1111 462 1111 14 4 1111 14 4 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 11111	0
Satd. Flow (prot) 1778 1850 0 1770 1861 0 0 1669 0 0 1666 Fit Permitted 0.393 0.391 0.849 0.942 1831 462 177 1453 1831 463 165 126 126 126 126 126 126 126 126 126 126 126	0
Fit Permitted 0.393 0.391 0.849 0.942 Satd. Flow (perm) 736 1850 0 728 1861 0 0 1447 0 0 1580 Right Turn on Red No No No No No No Satd. Flow (RTOR) 1650 1535 25 25 25 25 161 162 17avel Time (s) 15.1 28.3 49.9 12.6 12.	0
Satd. Flow (perm) 736 1850 0 728 1861 0 0 1447 0 0 1580 Right Turn on Red No No No No No No No Satd. Satd. Flow (RTOR) Satd. Flow (RTOR) Iks Speed (mph) 35 35 25 25 25 Link Distance (ft) 774 1453 1831 462 462 12.6 Peak Hour Factor 0.90	
Right Turn on Red No No No Satd. Flow (RTOR) 1 35 35 25 25 Link Speed (mph) 35 35 25 25 1 Link Distance (ft) 774 1453 1831 462 1 Travel Time (s) 15.1 28.3 49.9 12.6 1 Peak Hour Factor 0.90 <	
Satd. Flow (RTOR) Link Speed (mph) 35 35 25 25 Link Distance (ft) 774 1453 1831 462 Travel Time (s) 15.1 28.3 49.9 12.6 Peak Hour Factor 0.90 <td></td>	
Link Speed (mph) 35 35 25 25 Link Distance (ft) 774 1453 1831 462 Travel Time (s) 15.1 28.3 49.9 12.6 Peak Hour Factor 0.90	
Link Distance (ft) 774 1453 1831 462 Travel Time (s) 15.1 28.3 49.9 12.6 Peak Hour Factor 0.90	
Travel Time (s) 15.1 28.3 49.9 12.6 Peak Hour Factor 0.90	
Peak Hour Factor 0.90	
Adj. Flow (vph) 6 476 40 46 510 4 90 10 111 4 4 Shared Lane Traffic (%) 4 90 10 111 4 4 Shared Lane Traffic (%) Lane Group Flow (vph) 6 516 0 46 514 0 0 211 0 0 27 Enter Blocked Intersection No Left I 0 0 0 0 0 0 0 0 0 0	0.90
Shared Lane Traffic (%) Lane Group Flow (vph) 6 516 0 46 514 0 0 211 0 0 27 Enter Blocked Intersection No No </td <td>19</td>	19
Lane Group Flow (vph) 6 516 0 46 514 0 0 211 0 0 27 Enter Blocked Intersection No No </td <td></td>	
Enter Blocked IntersectionNo </td <td>0</td>	0
Lane AlignmentLeftLeftRightLeftRightLeftRightLeftRightLeftRightLeftLeftFMedian Width(ft)121200000Link Offset(ft)000000Crosswalk Width(ft)1616161616	No
Median Width(ft) 12 12 0 0 Link Offset(ft) 0 <	Right
Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 <td< td=""><td></td></td<>	
Crosswalk Width(ft) 16 16 16 16	
Two way Left Turn Lane Yes Yes	
	1.01
Turning Speed (mph) 15 9 15 9 15 9 15	9
Turn Type Perm NA Perm NA Perm NA Perm NA	
Protected Phases 2 6 8 4	
Permitted Phases 2 6 8 4	
Detector Phase 2 2 6 6 8 8 4 4	
Switch Phase	
Minimum Initial (s) 10.0 10.0 10.0 10.0 7.0 7.0 7.0 7.0 7.0	
Minimum Split (s) 14.9 14.9 14.8 14.8 11.8 11.8 11.9 11.9	
Total Split (s) 45.0 45.0 45.0 45.0 20.0 20.0 20.0 20.0	
Total Split (%) 69.2% 69.2% 69.2% 69.2% 30.8% 30.8% 30.8%	
Maximum Green (s) 40.1 40.1 40.2 40.2 15.2 15.2 15.1 15.1	
Yellow Time (s) 3.9 3.9 3.8 3.8 3.7 3.7 3.1 3.1	
All-Red Time (s) 1.0 1.0 1.0 1.0 1.1 1.1 1.8 1.8	
Lost Time Adjust (s) 0.1 0.1 0.2 0.2 0.2 0.2 0.1	
Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
Lead/Lag	
Lead-Lag Optimize?	
Vehicle Extension (s) 3.0 3.0 3.0 3.0 2.0	
Recall Mode Min Min Min Min None None None None	
Act Effct Green (s) 17.6 17.6 17.6 17.6 9.9 9.9	
Actuated g/C Ratio 0.46 0.46 0.46 0.46 0.26 0.26	
v/c Ratio 0.02 0.60 0.14 0.59 0.56 0.07	
Control Delay 6.6 11.6 7.9 11.5 18.1 11.0	

2022 Existing AM Peak Hour Timmons Group

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/04/2023

	٠	-	7	•	+	*	1	t	1	4	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	6.6	11.6		7.9	11.5			18.1			11.0	
LOS	А	В		А	В			В			В	
Approach Delay		11.6			11.2			18.1			11.0	
Approach LOS		В			В			В			В	
Queue Length 50th (ft)	1	65		4	65			31			3	
Queue Length 95th (ft)	5	170		21	168			94			18	
Internal Link Dist (ft)		694			1373			1751			382	
Turn Bay Length (ft)	125			125								
Base Capacity (vph)	706	1775		699	1786			591			645	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.01	0.29		0.07	0.29			0.36			0.04	
Intersection Summary												
Area Type:	Other											
Cycle Length: 65												
Actuated Cycle Length: 37	.9											
Natural Cycle: 40												
Control Type: Actuated-Un	coordinate	d										
Maximum v/c Ratio: 0.60												
Intersection Signal Delay: 7						n LOS: B						
Intersection Capacity Utiliz	ation 60.2%	6		IC	CU Level	of Service	e B					
Analysis Period (min) 15												

Splits and Phases: 1: S Wakefield Street & NC-97 (Gannon Avenue)

	↓ Ø4	
45 s	20 s	
₩ Ø6	1 øs	
45 s	20 s	

Zebulon South TIA

2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue	e) & NC-97 (Gannon Avenue)
---	----------------------------

12/04/2023

	٠	+	*	1	Ļ	*	1	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	3	1	1	3	1	WBI(5	1	NBIX	<u> </u>	1	
Traffic Volume (vph)	41	396	62	196	310	17	76	156	123	22	169	29
Future Volume (vph)	41	396	62	196	310	17	76	156	123	22	169	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)	1000	2%	1000	1000	-2%	1000	1000	-2%	1000	1000	2%	1000
Storage Length (ft)	200	270	100	350	270	0	125	270	0	250	270	0
Storage Lanes	1		100	1		0	120		0	1		0
Taper Length (ft)	25			25		U	25		U	25		U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.850	1.00	0.992	1.00	1.00	0.934	1.00	1.00	0.978	1.00
Flt Protected	0.950		0.000	0.950	0.002		0.950	0.004		0.950	0.010	
Satd. Flow (prot)	1752	1844	1567	1787	1866	0	1787	1757	0	1752	1804	0
Flt Permitted	0.418	1044	1007	0.263	1000	U	0.495	1101	U	0.380	1004	U
Satd. Flow (perm)	771	1844	1567	495	1866	0	931	1757	0	701	1804	0
Right Turn on Red		1044	No	-50	1000	No	501	1101	No	701	1004	No
Satd. Flow (RTOR)			NO			110			110			NO
Link Speed (mph)		35			35			20			35	
Link Distance (ft)		1453			677			1822			478	
Travel Time (s)		28.3			13.2			62.1			9.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	46	440	69	218	344	19	84	173	137	24	188	32
Shared Lane Traffic (%)	-0	-+0	00	210		15		175	107	27	100	52
Lane Group Flow (vph)	46	440	69	218	363	0	84	310	0	24	220	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	12	rtight	Lon	12	rtight	Lon	12	rtight	Lon	12	rtight
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes			10			Yes	
Headway Factor	1.01	1.01	1.01	0.99	0.99	0.99	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15	1.01	9	15	0.00	9	15	0.00	9	15	1.01	9
Turn Type	D.P+P	NA	pm+ov	D.P+P	NA	Ū	D.P+P	NA	Ū	D.P+P	NA	Ű
Protected Phases	5	2	3	1	6		3	8		7	4	
Permitted Phases	6	-	2	2	Ŭ		4	Ŭ		8		
Detector Phase	5	2	3	1	6		3	8		7	4	
Switch Phase	U	2	U	1	U		Ū	U		,		
Minimum Initial (s)	7.0	10.0	7.0	7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	12.4	22.8	12.4	12.8	15.8		12.4	22.5		12.3	12.5	
Total Split (s)	15.0	30.0	25.0	15.0	30.0		25.0	40.0		15.0	30.0	
Total Split (%)	15.0%	30.0%	25.0%	15.0%	30.0%		25.0%	40.0%		15.0%	30.0%	
Maximum Green (s)	9.6	24.2	19.6	9.2	24.2		19.6	34.5		9.7	24.5	
Yellow Time (s)	3.0	4.0	3.0	3.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	2.4	1.8	2.4	2.8	1.8		2.4	1.5		2.3	1.5	
Lost Time Adjust (s)	-0.4	-0.8	-0.4	-0.8	-0.8		-0.4	-0.5		-0.3	-0.5	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lead	Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Loud	Lug	Loud	Loud	Lug		Loud	Lug		Loud	Lug	
Vehicle Extension (s)	2.0	3.0	2.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	None	Min	None	None	Min		None	None		None	None	
Walk Time (s)	None	7.0	Nono	TONO	TVIII I		None	7.0		TONO		
Flash Dont Walk (s)		10.0						10.0				
Pedestrian Calls (#/hr)		0.01						0.0				
Act Effct Green (s)	36.0	23.5	36.9	33.5	31.9		22.3	21.8		24.3	16.3	
	00.0	20.0	00.0	00.0	01.0		22.0	21.0		27.0	10.0	

2022 Existing AM Peak Hour Timmons Group

Zebulon South TIA

Lane Group Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn	EBL	_		•	1000	-			-		+	*
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn	0.40	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn	0.48	0.31	0.49	0.45	0.42		0.30	0.29		0.32	0.22	
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn	0.10	0.76	0.09	0.56	0.46		0.23	0.61		0.07	0.56	
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn	12.7	36.0	13.3	19.2	22.7		17.6	29.9		15.7	33.6	
LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn	12.7	36.0	13.3	19.2	22.7		17.6	29.9		15.7	33.6	
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn	В	D	В	В	С		В	С		В	С	
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		31.2			21.4			27.3			31.9	
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		С			С			С			С	
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn	10	182	17	52	134		27	115		7	98	
Turn Bay Length (ff) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn	34	#399	47	125	271		54	233		22	170	
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		1373			597			1742			398	
Starvation Cap Reductn Spillback Cap Reductn	200		100	350			125			250		
Spillback Cap Reductn	518	636	1032	401	792		592	849		380	622	
	0	0	0	0	0		0	0		0	0	
	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.09	0.69	0.07	0.54	0.46		0.14	0.37		0.06	0.35	
Intersection Summary												
3 1	her											
Cycle Length: 100												
Actuated Cycle Length: 75.1												
Natural Cycle: 75												
Control Type: Actuated-Uncod	ordinated	b										
Maximum v/c Ratio: 0.76	-											
Intersection Signal Delay: 27.2					tersection		_					
Intersection Capacity Utilization	on 69.9%	0		IC	U Level o	of Service	e C					
Analysis Period (min) 15												
# 95th percentile volume ex Queue shown is maximum				y be long	er.							
Splits and Phases: 2: NC-9	6 (Arend	lell Avenu	ue) & NC·	-97 (Gan	non Aven	ue)						
✓ø1 →ø2				1	Ø 3							

Ø1		20	3	₽ Ø4	
15 s	30 s	25 s		30 s	
	Ø6		07 Ø8		
15 s	30 s	15 s	40 s		

Intersection													
Int Delay, s/veh	2.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	30	4	16	4	4	4	43	240	4	4	129	18	
Future Vol, veh/h	30	4	16	4	4	4	43	240	4	4	129	18	
Conflicting Peds, #/h	r 0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storag	ge, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	33	4	18	4	4	4	48	267	4	4	143	20	
Major/Minor	Minor2		Ν	/linor1		Ν	/lajor1		N	/lajor2			
Conflicting Flow All	530	528	153	537	536	269	163	0	0	271	0	0	
Stage 1	161	161	-	365	365	-	-	-	-	-	-	-	
				4-0	4 - 4								

Conflicting Flow All	530	528	153	537	536	269	163	0	0	2/1	0	0	
Stage 1	161	161	-	365	365	-	-	-	-	-	-	-	
Stage 2	369	367	-	172	171	-	-	-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-	
Pot Cap-1 Maneuver	460	456	893	455	451	770	1416	-	-	1292	-	-	
Stage 1	841	765	-	654	623	-	-	-	-	-	-	-	
Stage 2	651	622	-	830	757	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	439	436	893	428	432	770	1416	-	-	1292	-	-	
Mov Cap-2 Maneuver	439	436	-	428	432	-	-	-	-	-	-	-	
Stage 1	807	763	-	628	598	-	-	-	-	-	-	-	
Stage 2	617	597	-	806	755	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	12.7	12.3	1.1	0.2	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1416	-	-	524	504	1292	-	-
HCM Lane V/C Ratio	0.034	-	-	0.106	0.026	0.003	-	-
HCM Control Delay (s)	7.6	0	-	12.7	12.3	7.8	0	-
HCM Lane LOS	А	А	-	В	В	А	А	-
HCM 95th %tile Q(veh)	0.1	-	-	0.4	0.1	0	-	-

Zebulon South TIA 6: NC-96 (Arendell Avenue) & Perry Curtis Road

Intersection						
Int Delay, s/veh	2.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ħ			र्स
Traffic Vol, veh/h	12	62	205	4	24	106
Future Vol, veh/h	12	62	205	4	24	106
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,#0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	13	69	228	4	27	118

Major/Minor	Minor1	Ν	/lajor1	Ν	/lajor2	
Conflicting Flow All	402	230	0	0	232	0
Stage 1	230	-	-	-	-	-
Stage 2	172	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	604	809	-	-	1336	-
Stage 1	808	-	-	-	-	-
Stage 2	858	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	er 591	809	-	-	1336	-
Mov Cap-2 Maneuve	er 591	-	-	-	-	-
Stage 1	808	-	-	-	-	-
Stage 2	839	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay,	s 10.3		0		1.4	
HCM LOS	В					
Minor Lane/Major M	vmt	NBT	NBRW	BLn1	SBL	SBT
Capacity (veh/h)		-	-	763	1336	-
HCM Lane V/C Ratio)	-	- (0.108	0.02	-
HCM Control Delay ((s)	-	-	10.3	7.7	0

В

0.4

-

-

-

-

А

0.1

А

-

HCM Lane LOS

HCM 95th %tile Q(veh)

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/04/2023

	٠	-	7	4	+	×	1	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4Î		ሻ	¢Î			4			\$	
Traffic Volume (vph)	9	594	100	49	496	4	80	9	60	6	17	26
Future Volume (vph)	9	594	100	49	496	4	80	9	60	6	17	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		-1%			0%			3%			1%	
Storage Length (ft)	125		0	125		0	0		0	0		0
Storage Lanes	1		0	1		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.978			0.999			0.946			0.929	
Flt Protected	0.950			0.950				0.974			0.994	
Satd. Flow (prot)	1778	1831	0	1770	1861	0	0	1691	0	0	1712	0
Flt Permitted	0.405			0.256				0.803			0.948	
Satd. Flow (perm)	758	1831	0	477	1861	0	0	1394	0	0	1632	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		774			1453			1831			462	
Travel Time (s)		15.1			28.3			49.9			12.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	10	660	111	54	551	4	89	10	67	7	19	29
Shared Lane Traffic (%)												
Lane Group Flow (vph)	10	771	0	54	555	0	0	166	0	0	55	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes							
Headway Factor	0.99	0.99	0.99	1.00	1.00	1.00	1.02	1.02	1.02	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	•	2		•	6			8			4	
Permitted Phases	2	_		6	_		8	•		4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase	40.0	40.0		40.0	40.0		7.0	7.0		7.0	7.0	
Minimum Initial (s)	10.0	10.0		10.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	14.9	14.9		14.8	14.8		11.8	11.8		11.9	11.9	
Total Split (s)	45.0	45.0		45.0	45.0		20.0	20.0		20.0	20.0	
Total Split (%)	69.2%	69.2%		69.2%	69.2%		30.8%	30.8%		30.8%	30.8%	
Maximum Green (s)	40.1 3.9	40.1 3.9		40.2 3.8	40.2 3.8		15.2 3.7	15.2 3.7		15.1 3.1	15.1 3.1	
Yellow Time (s) All-Red Time (s)	3.9 1.0	3.9 1.0		3.0 1.0	3.0 1.0		3. <i>1</i> 1.1	3.7 1.1		3.1 1.8	3. i 1.8	
Lost Time Adjust (s)	0.1	0.1		0.2	0.2		1.1	0.2		1.0	0.1	
2 . /	5.0	5.0		5.0	5.0			0.2 5.0			5.0	
Total Lost Time (s) Lead/Lag	5.0	5.0		5.0	J.U			5.0			5.0	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min		Min	Min		None	None		None	None	
Act Effct Green (s)	28.4	28.4		28.4	28.4			10.0			10.1	
Actuated g/C Ratio	0.64	0.64		0.64	0.64			0.23			0.23	
v/c Ratio	0.04	0.66		0.04	0.04			0.23			0.25	
Control Delay	5.0	10.8		7.1	7.7			24.6			17.9	
	5.0	10.0		1.1	1.1			27.0			11.3	

2022 Existing PM Peak Hour Timmons Group

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/04/2023

	٠	-	7	4	-	*	1	Ť	1	4	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	5.0	10.8		7.1	7.7			24.6			17.9	
LOS	А	В		А	А			С			В	
Approach Delay		10.8			7.7			24.6			17.9	
Approach LOS		В			А			С			В	
Queue Length 50th (ft)	1	122		6	73			33			10	
Queue Length 95th (ft)	6	291		24	170			113			44	
Internal Link Dist (ft)		694			1373			1751			382	
Turn Bay Length (ft)	125			125								
Base Capacity (vph)	664	1605		418	1631			509			596	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.02	0.48		0.13	0.34			0.33			0.09	
Intersection Summary												
Area Type:	Other											
Cycle Length: 65												
Actuated Cycle Length: 44	.3											
Natural Cycle: 50												
Control Type: Actuated-Un	coordinated	b										
Maximum v/c Ratio: 0.66												
Intersection Signal Delay:				In	tersectio	n LOS: B						
Intersection Capacity Utiliz	ation 64.3%	0		IC	U Level	of Service	эC					
Analysis Period (min) 15												
Splits and Phases: 1: S	Makafiald (Street 8 N		onnon Av	(00110)							

Splits and Phases: 1: S Wakefield Street & NC-97 (Gannon Avenue)

	Ø4
45 s	20 s
₩ Ø6	Ø8
45 s	20 s

Zebulon South TIA

2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)

12/04/2023

`	٠	-+	7	1	+	*	1	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	3	1	1	3	1		3	1		500	1	0.011
Traffic Volume (vph)	59	313	64	218	439	51	70	272	137	45	177	44
Future Volume (vph)	59	313	64	218	439	51	70	272	137	45	177	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)	1000	2%	1000	1000	-2%	1000	1000	-2%	1000	1000	2%	1000
Storage Length (ft)	200	270	100	350	270	0	125	270	0	250	270	0
Storage Lanes	1		100	1		0	1		0	1		0
Taper Length (ft)	25			25		Ū	25		Ŭ	25		Ű
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.850	1.00	0.984	1.00	1.00	0.950	1.00	1.00	0.970	1.00
Fit Protected	0.950		0.000	0.950	0.004		0.950	0.000		0.950	0.010	
Satd. Flow (prot)	1752	1844	1567	1787	1851	0	1787	1787	0	1752	1789	0
Flt Permitted	0.150		1001	0.326	1001	Ū	0.496		•	0.224		U
Satd. Flow (perm)	277	1844	1567	613	1851	0	933	1787	0	413	1789	0
Right Turn on Red			No	•••		No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			20			35	
Link Distance (ft)		1453			677			1822			478	
Travel Time (s)		28.3			13.2			62.1			9.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	66	348	71	242	488	57	78	302	152	50	197	49
Shared Lane Traffic (%)		0.0				•.						
Lane Group Flow (vph)	66	348	71	242	545	0	78	454	0	50	246	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	- ingine
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes						Yes	
Headway Factor	1.01	1.01	1.01	0.99	0.99	0.99	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	D.P+P	NA	pm+ov	D.P+P	NA		D.P+P	NA		D.P+P	NA	
Protected Phases	5	2	. 3	1	6		3	8		7	4	
Permitted Phases	6		2	2			4			8		
Detector Phase	5	2	3	1	6		3	8		7	4	
Switch Phase												
Minimum Initial (s)	7.0	10.0	7.0	7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	12.4	22.8	12.4	12.8	15.8		12.4	22.5		12.3	12.5	
Total Split (s)	15.0	30.0	25.0	15.0	30.0		25.0	40.0		15.0	30.0	
Total Split (%)	15.0%	30.0%	25.0%	15.0%	30.0%		25.0%	40.0%		15.0%	30.0%	
Maximum Green (s)	9.6	24.2	19.6	9.2	24.2		19.6	34.5		9.7	24.5	
Yellow Time (s)	3.0	4.0	3.0	3.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	2.4	1.8	2.4	2.8	1.8		2.4	1.5		2.3	1.5	
Lost Time Adjust (s)	-0.4	-0.8	-0.4	-0.8	-0.8		-0.4	-0.5		-0.3	-0.5	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lead	Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0	3.0	2.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	None	Min	None	None	Min		None	None		None	None	
Walk Time (s)		7.0						7.0				
Flash Dont Walk (s)		10.0						10.0				
Pedestrian Calls (#/hr)		0						0				
Act Effct Green (s)	33.0	21.2	34.9	31.4	27.2		28.8	26.0		29.9	22.9	

2022 Existing PM Peak Hour Timmons Group

Zebulon South TIA

	٠	202	~	1	+	A.	*	ŧ	*	1		1
	62		•			20	7	2003	1	20.00	*	20.00
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Actuated g/C Ratio	0.41	0.27	0.44	0.39	0.34		0.36	0.33		0.37	0.29	
v/c Ratio	0.25	0.71	0.10	0.62	0.87		0.18	0.78		0.17	0.48	
Control Delay	18.4	38.4	17.4	26.0	46.7		15.2	36.2		15.3	28.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	18.4	38.4	17.4	26.0	46.7		15.2	36.2		15.3	28.2	
LOS	В	D	В	С	D		В	D		В	С	
Approach Delay		32.6			40.3			33.1			26.0	
Approach LOS		С			D			С			С	
Queue Length 50th (ft)	21	173	24	84	~306		23	227		15	107	
Queue Length 95th (ft)	52	#321	56	#175	#599		50	357		35	184	
Internal Link Dist (ft)		1373			597			1742			398	
Turn Bay Length (ft)	200		100	350			125			250		
Base Capacity (vph)	316	616	939	401	629		633	836		340	659	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.21	0.56	0.08	0.60	0.87		0.12	0.54		0.15	0.37	
Intersection Summary												
21	Other											
Cycle Length: 100												
Actuated Cycle Length: 79.	9											
Natural Cycle: 90												
Control Type: Actuated-Uno	coordinate	d										
Maximum v/c Ratio: 0.87												
Intersection Signal Delay: 3					tersectio							
Intersection Capacity Utiliza	ation 77.2%	0		IC	U Level	of Service	e D					
Analysis Period (min) 15												
 Volume exceeds capac 			ically infi	nite.								
Queue shown is maximu												
# 95th percentile volume				y be long	jer.							
Queue shown is maximu	um after tw	o cycles.										

Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)

€ø1		\$ Ø3	Ø4	
15 s	30 s	25 s	30 s	
▶ Ø5		Ø7	Ø8	
15 s	30 s	15 s 4	0 s	

Intersection													
Int Delay, s/veh	3.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	45	4	65	4	4	6	32	200	4	8	330	42	
Future Vol, veh/h	45	4	65	4	4	6	32	200	4	8	330	42	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	50	4	72	4	4	7	36	222	4	9	367	47	

Major/Minor	Minor2		[Minor1			Major1			Μ	lajor2			
Conflicting Flow All	711	707	391	743	728	224	414	C)	0	226	0	0	
Stage 1	409	409	-	296	296	-	-		-	-	-	-	-	
Stage 2	302	298	-	447	432	-	-		-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	•	-	4.12	-	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-		-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	•	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218		-	- 2	2.218	-	-	
Pot Cap-1 Maneuver	348	360	658	331	350	815	1145		-	-	1342	-	-	
Stage 1	619	596	-	712	668	-	-		•	-	-	-	-	
Stage 2	707	667	-	591	582	-	-		-	-	-	-	-	
Platoon blocked, %									•	-		-	-	
Mov Cap-1 Maneuve	r 330	344	658	282	334	815	1145		-	-	1342	-	-	
Mov Cap-2 Maneuve	r 330	344	-	282	334	-	-		•	-	-	-	-	
Stage 1	597	591	-	686	644	-	-		-	-	-	-	-	
Stage 2	671	643	-	517	577	-	-		-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	15.7	13.9	1.1	0.2	
HCM LOS	С	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1145	-	-	462	418	1342	-	-
HCM Lane V/C Ratio	0.031	-	-	0.274	0.037	0.007	-	-
HCM Control Delay (s)	8.2	0	-	15.7	13.9	7.7	0	-
HCM Lane LOS	A	А	-	С	В	Α	А	-
HCM 95th %tile Q(veh)	0.1	-	-	1.1	0.1	0	-	-

Zebulon South TIA 6: NC-96 (Arendell Avenue) & Perry Curtis Road

Intersection						
Int Delay, s/veh	2.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		Þ			4
Traffic Vol, veh/h	5	42	149	6	96	250
Future Vol, veh/h	5	42	149	6	96	250
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,#0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	6	47	166	7	107	278

Major/Minor	Minor1	Ν	/lajor1	Ν	/lajor2	
Conflicting Flow All	662	170	0	0	173	0
Stage 1	170	-	-	-	-	-
Stage 2	492	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	427	874	-	-	1404	-
Stage 1	860	-	-	-	-	-
Stage 2	615	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	r 389	874	-	-	1404	-
Mov Cap-2 Maneuve	r 389	-	-	-	-	-
Stage 1	860	-	-	-	-	-
Stage 2	560	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		2.2	
HCM LOS	В					
Minor Lane/Major Mv	mt	NBT	NBRW	BLn1	SBL	SBT
Capacity (veh/h)		_	-	772	1404	_
HCM Lane V/C Ratio		_	- (0.068		-

Capacity (veh/h)	-	-	772	1404	-				
HCM Lane V/C Ratio	-	-	0.068	0.076	-				
HCM Control Delay (s)	-	-	10	7.8	0				
HCM Lane LOS	-	-	В	А	А				
HCM 95th %tile Q(veh)	-	-	0.2	0.2	-				

2026 Background Traffic Volumes

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/01/2023

Lane Group EBL EBT EBR WBL WBT WBL NBL NBR SBL SBT		٠	+	*	1	+	*	1	t	1	1	ţ	~
Lane Configurations The	Lane Group	FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR
Traffic Volume (vph) 6 482 41 46 517 4 91 10 113 4 5 19 Future Volume (vph) 60 482 41 46 517 4 91 100 113 4 5 19 Grade (%) -1% 0% 0% 3% 17% 500 1900 100 1.00<				LDIX			WBI(NBL		NB IX	ODL		OBIX
Future volume (vph) 6 482 41 46 517 4 91 10 113 4 5 190 ideal Flow (vph) 1900 190 1900 1900 1900 190 1900 1900 1900 1900 1900 1	•	-		41			4	91		113	4		19
Ideal Flow (rphp) 1900 <td></td>													
Crade (%) -1% 0% 3% 1% Storage Length (ft) 125 0 0 0 0 0 Taper Length (ft) 25 25 25 25 25 25 100 1.00 <td></td>													
Storage Length (ft) 125 0 125 0 0 0 0 0 Storage Lanes 1 0 1 0 1 0	· · · <i>· ·</i>	1000		1000	1000		1000	1000		1000	1000		1000
Storage Lanes 1 0 1 0 0 0 0 0 Taper Length (ft) 25 26 26 26 27 27 25 26 26 26 26 26 27 25 26 26 26 26 27 27 25 26 26 26 27 26 27 <td></td> <td>125</td> <td>170</td> <td>٥</td> <td>125</td> <td>070</td> <td>٥</td> <td>٥</td> <td>070</td> <td>٥</td> <td>0</td> <td>170</td> <td>0</td>		125	170	٥	125	070	٥	٥	070	٥	0	170	0
Taper Length (ft) 25 25 25 25 Lane UII, Factor 1.00 <td>• • • • •</td> <td></td>	• • • • •												
Lane Util, Factor 1.00 <td>-</td> <td>-</td> <td></td> <td>0</td> <td>•</td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td>	-	-		0	•		0			0			0
Frit 0.988 0.999 0.929 0.929 0.909 FI Protected 0.950 0.973 0.994 Stat. Flow (prot) 1778 1850 0 1770 1861 0 0 1669 0 0 1675 0 FI Permitted 0.447 0.950 0.848 0.951 0 1700 1861 0 0 1465 0 0 1602 0 Stat. Flow (RTOR) No No No No No No No No Stat. Flow (RTOR) 774 1453 1831 462 1			1 00	1 00		1 00	1 00		1 00	1 00		1 00	1.00
Fit Protected 0.950 0.979 0.994 Satd. Flow (prot) 1778 1850 0 1770 1861 0 0 1669 0 0 1675 0 Pit Permitted 0.447 0.950 0.848 0.951 0 1600 0 1445 0 0 1602 0 No		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Satd. Flow (prot) 1778 1850 0 1770 1861 0 0 1669 0 0 1675 0 FIt Permitted 0.447 0.950 0.848 0.0951 0.951 0.951 0.951 Satd. Flow (perm) 837 1850 0 1770 1861 0 0 1445 0 0 1602 0 Right Turn on Red No No No No No No No No Link Speed (mph) 35 35 25 25 25 25 Link Distance (ft) 774 1453 1831 462 162 160 166 16 16 16 16 16 16 16 16 16 16 16 17 1861 180 0 0 0 0 0 0 0 17 186 16 16 16 16 16 16 16 16 16 16<		0 950	0.300		0 950	0.333							
Fit Permitted 0.447 0.950 0.848 0.951 Satd. Flow (perm) 837 1850 0 1770 1861 0 0 1442 0 0 1602 0 Right Turn on Red No No No No No No Link Spaced (mph) 35 35 25 25 25 Travel Time (s) 15.1 28.3 49.9 12.6 25 Peak Hour Factor 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00			1850	0		1861	0	0		0	0		0
Satd. Flow (perm) 837 1850 0 1770 1861 0 0 1445 0 0 1602 0 Right Turn on Red No No No No No No No Stadt. Flow (RTOR) 35 35 25 25 25 Link Distance (ft) 774 1453 831 462 177 Travel Time (s) 151 22.3 49.9 0.90 1.90 1.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	· · · · ·		1000	U		1001	0	U		U	U		U
Right Turn on Red No No No No No No No Stadt. Flow (RTOR)			1850	٥		1861	٥	٥		٥	0		٥
Satd. Flow (RTOR) Jink Speed (mph) 35 25 25 Link Distance (ft) 774 1453 1831 462 Travel Time (s) 15.1 28.3 49.9 0.90 1.00 1.00 1.02 1.02 1.01 1.01 <td>. ,</td> <td>001</td> <td>1050</td> <td></td> <td>1110</td> <td>1001</td> <td></td> <td>U</td> <td>1443</td> <td></td> <td>U</td> <td>1002</td> <td></td>	. ,	001	1050		1110	1001		U	1443		U	1002	
Link Speed (mph) 35 35 25 25 Link Distance (tt) 774 1453 1831 462 Travel Time (s) 151 28.3 49.9 12.6 Peak Hour Factor 0.90 1.00 1.00 1.02 1.02 1.01 1.01	•			NU			NO			NU			NO
Link Distance (ft) 774 1453 1831 462 Travel Time (s) 15.1 28.3 49.9 12.6 Peak Hour Factor 0.90			35			35			25			25	
Travel Time (s) 15.1 28.3 49.9 12.6 Peak Hour Factor 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1													
Peak Hour Factor 0.90 1.00 1.00 1.00 1.00	()												
Adj. Flow (vph) 7 536 46 51 574 4 101 11 126 4 6 21 Shared Lane Traffic (%) -	. ,	0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00
Shared Lane Traffic (%) Lane Group Flow (vph) 7 582 0 51 578 0 0 238 0 0 31 0 Enter Blocked Intersection No No </td <td></td>													
Lane Group Flow (vph) 7 582 0 51 578 0 0 238 0 0 31 0 Enter Blocked Intersection No No <td></td> <td>1</td> <td>550</td> <td>40</td> <td>51</td> <td>574</td> <td>4</td> <td>101</td> <td>11</td> <td>120</td> <td>4</td> <td>0</td> <td>21</td>		1	550	40	51	574	4	101	11	120	4	0	21
Enter Blocked Intersection No No <td></td> <td>7</td> <td>500</td> <td>0</td> <td>51</td> <td>570</td> <td>0</td> <td>0</td> <td>220</td> <td>0</td> <td>0</td> <td>21</td> <td>0</td>		7	500	0	51	570	0	0	220	0	0	21	0
Lane Alignment Left Left Right		-		-						-	-		
Median Width(ft) 12 12 0 0 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Yes Yes Yes 1.00 1.02 1.02 1.01 1.01 1.01 Turning Speed (mph) 15 9 15 15 9 15 15 15 16 16 16 16 16 16													
Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 16 Two way Left Turn Lane Yes Yes Yes 102 1.02 1.01 1.01 1.01 Turning Speed (mph) 15 9 15 15 9 15 15 15 15 15 15 15 15 15 15 15<	-	Leit		Right	Leit		Right	Leit		Right	Leit		Right
Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Yes Yes Yes Yes Headway Factor 0.99 0.99 1.00 1.00 1.02 1.02 1.01 1.01 1.01 Turn Type Perm NA Prot NA Perm NA Yes Yes <t< td=""><td>()</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	()												
Two way Left Turn Lane Yes Yes Headway Factor 0.99 0.99 0.99 1.00 1.00 1.02 1.02 1.01 1.01 1.01 Turning Speed (mph) 15 9 15 16 16 16 16 16 17 16 17 16 17 16 17	()												
Headway Factor 0.99 0.99 0.99 1.00 1.00 1.02 1.02 1.01 1.01 1.01 Turn nype Perm NA Prot NA Perm NA Per	、 <i>,</i>								10			10	
Turning Speed (mph) 15 9 15 16 16 16 16 16 17 16 17 17 17 16 17.0 17.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 16 16 <th< td=""><td>•</td><td>0.00</td><td></td><td>0.00</td><td>1 00</td><td></td><td>1 00</td><td>1 00</td><td>1 00</td><td>1 00</td><td>1 0 1</td><td>1.01</td><td>1.01</td></th<>	•	0.00		0.00	1 00		1 00	1 00	1 00	1 00	1 0 1	1.01	1.01
Turn Type Perm NA Prot NA Perm NA Perm NA Protected Phases 2 1 6 8 4 Permitted Phases 2 2 1 6 8 4 Detector Phase 2 2 1 6 8 8 4 Switch Phase 2 2 1 6 8 8 4 4 Switch Phase	-		0.99			1.00			1.02			1.01	
Protected Phases 2 1 6 8 4 Permitted Phases 2 2 1 6 8 8 4 Detector Phase 2 2 1 6 8 8 4 4 Switch Phase 1 6 8 8 4 4 Minimum Initial (s) 10.0 10.0 7.0 10.0 7.0 7.0 7.0 7.0 Minimum Split (s) 17.0 17.0 14.0 17.0 14.0 12.0 12.0			NIA	9		NLA	9		NIA	9		NIA	9
Permitted Phases 2 8 4 Detector Phase 2 2 1 6 8 8 4 4 Switch Phase		Perm						Perm			Perm		
Detector Phase 2 2 1 6 8 8 4 4 Switch Phase Minimum Initial (s) 10.0 10.0 7.0 10.0 7.0 7.0 7.0 7.0 Minimum Split (s) 17.0 17.0 14.0 17.0 14.0 14.0 14.0 14.0 14.0 Total Split (s) 47.0 47.0 14.0 61.0 29.0 29.0 29.0 29.0 Total Split (%) 52.2% 15.6% 67.8% 32.2% 32.2% 32.2% 32.2% Maximum Green (s) 40.0 40.0 7.0 54.0 22.0 22.0 22.0 Yellow Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) -2.0 -2.0 -2.0 -2.0 -2.0 5.0 5.0 5.0 Lead/Lag Lag		0	Z		I	0		0	ð		4	4	
Switch Phase Minimum Initial (s) 10.0 10.0 7.0 10.0 7.0 7.0 7.0 Minimum Split (s) 17.0 17.0 14.0 14.0 14.0 14.0 14.0 Total Split (s) 47.0 47.0 14.0 61.0 29.0 29.0 29.0 29.0 Total Split (%) 52.2% 52.2% 15.6% 67.8% 32.2% 32.0% 32.0 32.0			0		4	0			0			4	
Minimum Initial (s)10.010.07.010.07.07.07.07.0Minimum Split (s)17.017.014.017.014.014.014.014.014.0Total Split (s)47.047.014.061.029.029.029.029.029.0Total Split (%)52.2%52.2%15.6%67.8%32.2%32.2%32.2%32.2%Maximum Green (s)40.040.07.054.022.022.022.022.0Yellow Time (s)5.05.05.05.05.05.05.0All-Red Time (s)2.02.02.02.02.02.02.0Lost Time Adjust (s)-2.0-2.0-2.0-2.0-2.0-2.0Total Lost Time (s)5.05.05.05.05.05.05.0Lead-Lag Optimize?YesYesYesYesYesYesVehicle Extension (s)3.03.03.03.02.02.02.02.0Act Effct Green (s)28.128.110.334.817.617.6		2	2		1	6		8	8		4	4	
Minimum Split (s)17.017.014.017.014.014.014.014.0Total Split (s)47.047.014.061.029.029.029.029.0Total Split (%)52.2%52.2%15.6%67.8%32.2%32.2%32.2%32.2%Maximum Green (s)40.040.07.054.022.022.022.022.0Yellow Time (s)5.05.05.05.05.05.05.05.0All-Red Time (s)2.02.02.02.02.02.02.0Lost Time Adjust (s)-2.0-2.0-2.0-2.0-2.0-2.0Total Lost Time (s)5.05.05.05.05.05.0Lead/LagLagLagLeadLeadLeadLead-Lag Optimize?YesYesYesYesVehicle Extension (s)3.03.03.03.02.02.02.0Act Effct Green (s)28.128.110.334.817.617.6		10.0	10.0		7.0	10.0		7.0	7.0		7.0	7.0	
Total Split (s)47.047.014.061.029.029.029.029.0Total Split (%)52.2%52.2%15.6%67.8%32.2%32.2%32.2%32.2%Maximum Green (s)40.040.07.054.022.022.022.022.0Yellow Time (s)5.05.05.05.05.05.05.05.0All-Red Time (s)2.02.02.02.02.02.02.0Lost Time Adjust (s)-2.0-2.0-2.0-2.0-2.0-2.0Total Lost Time (s)5.05.05.05.05.05.0Lead/LagLagLagLeadLead-2.0-2.02.0Lead/LagLagLagLead-2.02.02.02.0Recall ModeMinMinNoneMinNoneNoneNoneAct Effct Green (s)28.128.110.334.817.617.6	. ,												
Total Split (%)52.2%52.2%15.6%67.8%32.2%32.2%32.2%32.2%Maximum Green (s)40.07.054.022.022.022.022.0Yellow Time (s)5.05.05.05.05.05.05.0All-Red Time (s)2.02.02.02.02.02.0Lost Time Adjust (s)-2.0-2.0-2.0-2.0-2.0Total Lost Time (s)5.05.05.05.05.0Lead/LagLagLagLead-2.0-2.0-2.0Lead-Lag Optimize?YesYesYesVehicle Extension (s)3.03.03.03.02.02.02.0Recall ModeMinMinNoneMinNoneNoneNoneNoneNoneAct Effct Green (s)28.128.110.334.817.617.6													
Maximum Green (s) 40.0 40.0 7.0 54.0 22.0													
Yellow Time (s) 5.0 2.0	,												
All-Red Time (s) 2.0 7.0 7.2.0													
Lost Time Adjust (s) -2.0 -2.0 -2.0 -2.0 -2.0 Total Lost Time (s) 5.0													
Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lag Lag Lead								2.0			2.0		
Lead/LagLagLagLeadLead-Lag Optimize?YesYesVehicle Extension (s)3.03.03.02.02.0Recall ModeMinMinNoneMinNoneNoneAct Effct Green (s)28.128.110.334.817.617.6													
Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 2.0 2.0 2.0 Recall Mode Min Min None Min None None None None Act Effct Green (s) 28.1 28.1 10.3 34.8 17.6 17.6						5.0			5.0			5.0	
Vehicle Extension (s) 3.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 Recall Mode Min Min None Min None		-	-										
Recall Mode Min Mone Min None	- ·												
Act Effct Green (s) 28.1 28.1 10.3 34.8 17.6 17.6													
								None			None		
	. ,												
	Actuated g/C Ratio	0.44	0.44		0.16	0.55			0.28			0.28	
v/c Ratio 0.02 0.72 0.18 0.57 0.60 0.07													
Control Delay 13.3 22.4 34.7 11.5 31.3 23.3	Control Delay	13.3	22.4		34.7	11.5			31.3			23.3	

2026 Background AM Peak Hour Timmons Group

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/01/2023

	٦	-	7	•	+	*	1	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	13.3	22.4		34.7	11.5			31.3			23.3	
LOS	В	С		С	В			С			С	
Approach Delay		22.3			13.4			31.3			23.3	
Approach LOS		С			В			С			С	
Queue Length 50th (ft)	2	213		20	129			92			10	
Queue Length 95th (ft)	10	368		63	241			199			35	
Internal Link Dist (ft)		694			1373			1751			382	
Turn Bay Length (ft)	125			125								
Base Capacity (vph)	598	1322		286	1526			622			690	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.01	0.44		0.18	0.38			0.38			0.04	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 63	3.8											
Natural Cycle: 60												
Control Type: Actuated-U	ncoordinated	d										
Maximum v/c Ratio: 0.72												
Intersection Signal Delay:						n LOS: B						
Intersection Capacity Utiliz	zation 65.7%	6		IC	CU Level	of Service	эC					
Analysis Period (min) 15												
Splits and Phases: 1: S	Wakefield S	Street & N	NC-97 (G	annon Av	/enue)							

Splits and Phases: 1: S Wakefield Street & NC-97 (Gannon Avenue)

√ Ø1	<u>→</u> _{Ø2}	Ø4	
14 s	47 s	29 s	
← Ø6		≪¶ øs	
61s		29 s	

Zebulon South TIA

2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)
--

12/01/2023

	٦	-	>	1	+	*	•	Ť	-	4	Ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	• SBT	SBR
Lane Configurations	<u></u>			NUDL N	••••••	VVDIX		1001	INDIX		1 <u>00</u>	
Traffic Volume (vph)	46	T 446	70	221	349	19	86	176	138	25	190	33
Future Volume (vph)	40	440	70	221	349	19	86	176	138	25	190	33
	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Ideal Flow (vphpl)	1900	2%	1900	1900	-2%	1900	1900	-2%	1900	1900	2%	1900
Grade (%)	000	Ζ%	400	050	-2%	•	405	-2%	0	050	Ζ%	0
Storage Length (ft)	200		100	350		0	125		0	250		0
Storage Lanes	1		1	1		0	1		0	1		0
Taper Length (ft)	25	4.00	4.00	25	4.00	4.00	25	4.00	4.00	25	4.00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.992			0.934			0.978	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	1844	1567	1787	1866	0	1787	1757	0	1752	1804	0
FIt Permitted	0.522			0.950			0.481			0.314		
Satd. Flow (perm)	963	1844	1567	1787	1866	0	905	1757	0	579	1804	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			20			35	
Link Distance (ft)		1453			677			1822			478	
Travel Time (s)		28.3			13.2			62.1			9.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	51	496	78	246	388	21	96	196	153	28	211	37
Shared Lane Traffic (%)												
Lane Group Flow (vph)	51	496	78	246	409	0	96	349	0	28	248	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	_0.1	12		_0.1	12		_0.1	12	. ug.u		12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes			10			Yes	
Headway Factor	1.01	1.01	1.01	0.99	0.99	0.99	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	1.01	1.01	9	15	0.33	9	15	0.33	9	1.01	1.01	9
Turn Type	Perm	NA	Perm	Prot	NA	9	Perm	NA	9	Perm	NA	9
Protected Phases	Feilli	2	Feilli	1	6		Feilli	8		Feilli	4	
	0	Z	n	I	0		0	0		1	4	
Permitted Phases	2	0	2	4	c		8	0		4	4	
Detector Phase	2	2	2	1	6		8	8		4	4	
Switch Phase	40.0	40.0	40.0	7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Initial (s)	10.0	10.0	10.0	7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	24.0	24.0	24.0	14.0	17.0		24.0	24.0		14.0	14.0	
Total Split (s)	38.0	38.0	38.0	23.0	61.0		29.0	29.0		29.0	29.0	
Total Split (%)	42.2%	42.2%	42.2%	25.6%	67.8%		32.2%	32.2%		32.2%	32.2%	
Maximum Green (s)	31.0	31.0	31.0	16.0	54.0		22.0	22.0		22.0	22.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min	Min	None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0	7.0				7.0	7.0				
Flash Dont Walk (s)	10.0	10.0	10.0				10.0	10.0				
Pedestrian Calls (#/hr)	0	0	0				0	0				
Act Effct Green (s)	26.8	26.8	26.8	15.8	47.8		20.7	20.7		20.7	20.7	
	20.0	20.0	20.0	.0.0			20.1	-0.1		20.1	20.1	

2026 Background AM Peak Hour Timmons Group

Zebulon South TIA

2: NC-96 (Arendell	٠		>		+	*	•	t	-	6	1	1
	EBL	EBT	▼ EBR		WBT	WBR	۱ NBL	NBT	NBR	SBL	▼ SBT	SB
Lane Group				WBL		WDK			INDR			30
Actuated g/C Ratio	0.34	0.34	0.34	0.20	0.61		0.26	0.26		0.26	0.26	
v/c Ratio	0.16 20.7	0.79	0.15	0.69	0.36		0.41	0.76 40.2		0.19	0.52	
Control Delay	20.7	34.6 0.0	19.9 0.0	42.3	9.1 0.0		32.4	40.2 0.0		28.8	31.0 0.0	
Queue Delay	20.7	0.0 34.6	19.9	0.0 42.3	9.1		0.0 32.4	40.2		0.0 28.8	31.0	
Total Delay LOS	20.7 C	34.0 C	19.9 B	42.3 D	9.1 A		32.4 С	40.2 D		20.0 C	31.0 C	
Approach Delay	U	31.6	Б	U	21.6		U	38.6		U	30.8	
Approach LOS		51.0 C			21.0 C			30.0 D			30.8 C	
Queue Length 50th (ft)	19	239	29	123	100		42	171		12	113	
Queue Length 95th (ft)	45	360	29 60	#226	155		42 92	#304		36	195	
Internal Link Dist (ft)	40	1373	00	#220	597		ĴΖ	1742		50	398	
Turn Bay Length (ft)	200	1070	100	350	551		125	1742		250	550	
Base Capacity (vph)	417	798	678	422	1370		285	553		182	568	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	000	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.12	0.62	0.12	0.58	0.30		0.34	0.63		0.15	0.44	
Intersection Summary												
71	Other											
Cycle Length: 90												
Actuated Cycle Length: 78.8	3											
Natural Cycle: 65												
Control Type: Actuated-Unc	oordinated	1										
Maximum v/c Ratio: 0.79	~ ~											
Intersection Signal Delay: 2						LOS: C	P					
Intersection Capacity Utiliza	tion 75.9%)		IC	U Level	of Service	ЭD					
Analysis Period (min) 15												
# 95th percentile volume e Quoue shown is maximu			ueue ma	y be long	jer.							
Queue shown is maximu	m alter tw	o cycles.										
Splits and Phases: 2: NC	-96 (Arend	ell Avenu	ie) & NC	-97 (Gan	non Aver	iue)						
	8	A						S253 (C)				

√ Ø1	<i>↓</i> ø2	
23 s	38 s	29 s
← Ø6		1 Ø8
61s		29 s

Intersection													
Int Delay, s/veh	2.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	34	4	18	4	4	4	48	270	4	4	145	20	
Future Vol, veh/h	34	4	18	4	4	4	48	270	4	4	145	20	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storag	e,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	38	4	20	4	4	4	53	300	4	4	161	22	
			-										

Major/Minor	Minor2			Minor1			Major1		Ν	1ajor2			
Conflicting Flow All	592	590	172	600	599	302	183	0	0	304	0	0	
Stage 1	180	180	-	408	408	-	-	-	-	-	-	-	
Stage 2	412	410	-	192	191	-	-	-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-	
Pot Cap-1 Maneuver	418	420	872	413	415	738	1392	-	-	1257	-	-	
Stage 1	822	750	-	620	597	-	-	-	-	-	-	-	
Stage 2	617	595	-	810	742	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuve	r 396	399	872	385	394	738	1392	-	-	1257	-	-	
Mov Cap-2 Maneuve	r 396	399	-	385	394	-	-	-	-	-	-	-	
Stage 1	784	747	-	591	570	-	-	-	-	-	-	-	
Stage 2	581	568	-	784	739	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			

Approach	EB	WB	NB	SB	
HCM Control Delay, s	13.6	13	1.1	0.2	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1392	-	-	481	462	1257	-	-
HCM Lane V/C Ratio	0.038	-	-	0.129	0.029	0.004	-	-
HCM Control Delay (s)	7.7	0	-	13.6	13	7.9	0	-
HCM Lane LOS	A	А	-	В	В	А	А	-
HCM 95th %tile Q(veh)	0.1	-	-	0.4	0.1	0	-	-

Zebulon South TIA 6: NC-96 (Arendell Avenue) & Perry Curtis Road

Intersection						
Int Delay, s/veh	2.4					
	2.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ħ			र्स
Traffic Vol, veh/h	14	70	231	4	27	119
Future Vol, veh/h	14	70	231	4	27	119
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	16	78	257	4	30	132

Major/Minor	Minor1	Ν	/lajor1		Major2	
Conflicting Flow All	451	259	0	0	261	0
Stage 1	259	-	-	-	-	-
Stage 2	192	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	r 566	780	-	-	1303	-
Stage 1	784	-	-	-	-	-
Stage 2	841	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	er 552	780	-	-	1303	-
Mov Cap-2 Maneuve	er 552	-	-	-	-	-
Stage 1	784	-	-	-	-	-
Stage 2	820	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay,	s 10.7		0		1.4	
HCM LOS	В					
Minor Lane/Major My	vmt	NBT	NBRW	'BLn1	SBL	SBT
Capacity (veh/h)		-	-	730	1303	-
HCM Lane V/C Ratio		-	- (0.128	0.023	-
HCM Control Delay ((s)	-	-	10.7	7.8	0

HCM Lane LOS

HCM 95th %tile Q(veh)

-

-

-

-

В

0.4

А

0.1

А

-

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/01/2023

	٢	+	~	1	+	*	•	Ť	1	1	Ţ	~
Lane Group	EBL	EBT	EBR	• WBL	WBT	WBR	NBL	NBT	NBR	SBL	• SBT	SBR
Lane Configurations	<u> </u>	12		<u> </u>	1	WDIX	NDL	4	NDIX		4	
Traffic Volume (vph)	10	669	113	55	558	4	90	10	68	7	19	29
Future Volume (vph)	10	669	113	55	558	4	90	10	68	7	19	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)	1300	-1%	1300	1300	0%	1300	1300	3%	1300	1300	1%	1300
Storage Length (ft)	125	-170	0	125	0 /0	0	0	J /0	0	0	1 70	0
Storage Lanes	125		0	125		0	0		0	0		0
Taper Length (ft)	25		0	25		0	25		0	25		0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.978	1.00	1.00	0.999	1.00	1.00	0.945	1.00	1.00	0.929	1.00
Flt Protected	0.950	0.370		0.950	0.333			0.974			0.923	
Satd. Flow (prot)	1778	1831	0	1770	1861	0	0	1689	0	0	1710	0
Flt Permitted	0.428	1001	U	0.950	1001	0	U	0.813	U	U	0.952	U
Satd. Flow (perm)	801	1831	0	1770	1861	0	0	1410	0	0	1639	0
Right Turn on Red	001	1001	No	1770	1001	No	0	1410	No	0	1059	No
Satd. Flow (RTOR)			NU			NU			NU			NO
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		774			1453			1831			462	
Travel Time (s)		15.1			28.3			49.9			12.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0.90	743	126	0.90 61	620	0.90 4	100	11	0.90 76	0.90	21	32
Shared Lane Traffic (%)	11	745	120	01	020	4	100	11	70	0	21	52
Lane Group Flow (vph)	11	869	0	61	624	0	0	187	0	0	61	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
	Left	Left		Left	Left		Left	Left		Left	Left	
Lane Alignment Median Width(ft)	Leit	12	Right	Leit	12	Right	Leit	Len 0	Right	Leit	Len 0	Right
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
()								10			10	
Two way Left Turn Lane	0.99	Yes 0.99	0.99	1.00	Yes 1.00	1.00	1.02	1.02	1.02	1.01	1.01	1.01
Headway Factor	0.99	0.99	0.99	1.00	1.00	9	1.02	1.02	1.02	1.01	1.01	1.01
Turning Speed (mph)	Perm	NA	9	Prot	NA	9	Perm	NA	9	Perm	NA	9
Turn Type Protected Phases	Feilii	2		1	6		Feilii	NA 8		Feilii	4	
Protected Phases Permitted Phases	0	Z		I	0		0	0		1	4	
Detector Phase	2 2	2		1	6		8 8	8		4	4	
Switch Phase	2	Z		I	0		0	0		4	4	
	10.0	10.0		7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Initial (s) Minimum Split (s)	17.0	17.0		14.0	17.0		14.0	14.0		14.0	14.0	
,	56.0			14.0	70.0		20.0	20.0			20.0	
Total Split (s)	62.2%	56.0 62.2%			70.0			20.0		20.0		
Total Split (%)				15.6%			22.2%	13.0		22.2%	22.2% 13.0	
Maximum Green (s) Yellow Time (s)	49.0 5.0	49.0 5.0		7.0 5.0	63.0 5.0		13.0 5.0	5.0		13.0 5.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
()	-2.0				-2.0		2.0			2.0		
Lost Time Adjust (s)	-2.0 5.0	-2.0 5.0		-2.0 5.0	-2.0 5.0			-2.0 5.0			-2.0 5.0	
Total Lost Time (s)					5.0			5.0			5.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes	20		2.0	2.0		2.0	2.0	
Vehicle Extension (s)	3.0 Min	3.0 Min		3.0	3.0 Min		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min		None	Min		None	None		None	None	
Act Effct Green (s)	45.2	45.2		9.3	55.7			14.3			14.3	
Actuated g/C Ratio	0.56	0.56		0.12	0.69			0.18			0.18	
v/c Ratio	0.02	0.84		0.30	0.48			0.75			0.21	
Control Delay	8.9	25.3		41.2	6.9			54.1			33.8	

2026 Background PM Peak Hour Timmons Group

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/01/2023

	٠	→	7	1	+	*	1	t	1	4	ŧ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	8.9	25.3		41.2	6.9			54.1			33.8	
LOS	А	С		D	А			D			С	
Approach Delay		25.1			10.0			54.1			33.8	
Approach LOS		С			А			D			С	
Queue Length 50th (ft)	3	380		32	124			99			29	
Queue Length 95th (ft)	10	#602		72	184			#213			67	
Internal Link Dist (ft)		694			1373			1751			382	
Turn Bay Length (ft)	125			125								
Base Capacity (vph)	524	1200		204	1497			272			316	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.02	0.72		0.30	0.42			0.69			0.19	
Intersection Summary												
	Other											
Cycle Length: 90												
Actuated Cycle Length: 80.3	3											
Natural Cycle: 80												
Control Type: Actuated-Unc	coordinate	d										
Maximum v/c Ratio: 0.84												
Intersection Signal Delay: 2					tersection							
Intersection Capacity Utiliza	ation 70.4%	0		IC	U Level	of Service	эC					
Analysis Period (min) 15												
# 95th percentile volume			ueue ma	y be long	jer.							
Queue shown is maximu	um after tw	o cycles.										
Splits and Phases: 1: S V	Vakefield S	Street & N	IC-97 (G	annon Av	(enue)							
1 91	3											

Ø1		
14 s	56 s	20 s
← Ø6		₫ø8
70 s		20 s

Zebulon South TIA

2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)

12/01/2023

	٠	-	¥	4	+	*	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1	1	5	ţ,		٦	ĥ		۲	ţ,	
Traffic Volume (vph)	66	352	72	245	494	57	79	306	154	51	199	50
Future Volume (vph)	66	352	72	245	494	57	79	306	154	51	199	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		2%			-2%			-2%			2%	
Storage Length (ft)	200		100	350		0	125		0	250		0
Storage Lanes	1		1	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.985			0.950			0.970	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	1844	1567	1787	1853	0	1787	1787	0	1752	1789	0
Flt Permitted	0.433			0.950			0.489			0.199		
Satd. Flow (perm)	799	1844	1567	1787	1853	0	920	1787	0	367	1789	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			20			35	
Link Distance (ft)		1453			677			1822			478	
Travel Time (s)		28.3			13.2			62.1			9.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	73	391	80	272	549	63	88	340	171	57	221	56
Shared Lane Traffic (%)	70	004	00	070	040	•	00	5 44	•		077	
Lane Group Flow (vph)	73	391	80	272	612	0	88	511	0	57	277	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0 16			0 16			0 16			0 16	
Crosswalk Width(ft) Two way Left Turn Lane		Yes			Yes			10			Yes	
Headway Factor	1.01	1.01	1.01	0.99	0.99	0.99	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	1.01	1.01	1.01	0.99	0.99	0.99	15	0.99	0.99	1.01	1.01	1.01
Turn Type	Perm	NA	Perm	Prot	NA	3	Perm	NA	3	Perm	NA	3
Protected Phases	L GIIII	2	r enn	1	6		r enn	8		r enn	4	
Permitted Phases	2	L	2	1	0		8	0		4	-	
Detector Phase	2	2	2	1	6		8	8		4	4	
Switch Phase	L	L	2		U		U	U		Т		
Minimum Initial (s)	10.0	10.0	10.0	7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	24.0	24.0	24.0	14.0	17.0		24.0	24.0		14.0	14.0	
Total Split (s)	31.0	31.0	31.0	22.0	53.0		37.0	37.0		37.0	37.0	
Total Split (%)	34.4%	34.4%	34.4%	24.4%	58.9%		41.1%	41.1%		41.1%	41.1%	
Maximum Green (s)	24.0	24.0	24.0	15.0	46.0		30.0	30.0		30.0	30.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min	Min	None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0	7.0				7.0	7.0				
	10.0	10.0	10.0				10.0	10.0				
Pedestrian Calls (#/hr)	0	0	0				0	0				
Act Effct Green (s)	22.5	22.5	22.5	16.2	43.8		28.0	28.0		28.0	28.0	
Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	Min 7.0 10.0 0	Min 7.0 10.0 0	Min 7.0 10.0 0	None	Min		None 7.0 10.0 0	None 7.0 10.0 0		None	None	

2026 Background PM Peak Hour Timmons Group

Zebulon South TIA

	٨	+	*	1	Ļ	*	1	t	1	4	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Actuated g/C Ratio	0.27	0.27	0.27	0.20	0.53		0.34	0.34		0.34	0.34	
v/c Ratio	0.33	0.78	0.19	0.77	0.62		0.28	0.84		0.46	0.45	
Control Delay	30.2	40.1	25.4	49.6	17.3		23.6	39.4		36.1	24.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	30.2	40.1	25.4	49.6	17.3		23.6	39.4		36.1	24.5	
LOS	С	D	С	D	В		С	D		D	С	
Approach Delay		36.6			27.2			37.1			26.4	
Approach LOS		D			С			D			С	
Queue Length 50th (ft)	32	200	34	148	229		35	256		24	117	
Queue Length 95th (ft)	72	#309	70	#276	339		74	#422		66	189	
Internal Link Dist (ft)		1373			597			1742			398	
Turn Bay Length (ft)	200		100	350			125			250		
Base Capacity (vph)	259	598	508	379	1109		367	713		146	714	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.28	0.65	0.16	0.72	0.55		0.24	0.72		0.39	0.39	
Intersection Summary												
21	Other											
Cycle Length: 90												
Actuated Cycle Length: 82												
Natural Cycle: 70												
Control Type: Actuated-Unc	coordinate	d										
Maximum v/c Ratio: 0.84												
Intersection Signal Delay: 3						n LOS: C						
Intersection Capacity Utiliza	ation 85.8%	0		IC	CU Level	of Service	θE					
Analysis Period (min) 15	·											
# 95th percentile volume e				ly be long	jer.							
Queue shown is maximu	im after tw	o cycles.										
Splits and Phases: 2: NC	-96 (Areno	lell Aveni	ie) & NC	-97 (Gan	non Aver	nue)						
Ø1	+	Ø2				4	Ø4					
22 s	31 s					37	s					
← Ø6							ØS					
20						27	120					-

Intersection													
Int Delay, s/veh	3.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	51	5	73	4	4	7	36	225	4	9	371	47	
Future Vol, veh/h	51	5	73	4	4	7	36	225	4	9	371	47	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	57	6	81	4	4	8	40	250	4	10	412	52	

Major/Minor	Minor2		1	Minor1			Major1			Мајо	2				
Conflicting Flow All	796	792	438	834	816	252	464	0	0	25	4	0	0		
Stage 1	458	458	-	332	332	-	-	-	-		-	-	-		
Stage 2	338	334	-	502	484	-	-	-	-		-	-	-		
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.1	2	-	-		
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-		-	-	-		
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-		-	-	-		
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.21	8	-	-		
Pot Cap-1 Maneuver	305	322	619	288	311	787	1097	-	-	131	1	-	-		
Stage 1	583	567	-	681	644	-	-	-	-		-	-	-		
Stage 2	676	643	-	552	552	-	-	-	-		-	-	-		
Platoon blocked, %								-	-			-	-		
Mov Cap-1 Maneuve	r 287	305	619	237	295	787	1097	-	-	131	1	-	-		
Mov Cap-2 Maneuve	r 287	305	-	237	295	-	-	-	-		-	-	-		
Stage 1	559	561	-	652	617	-	-	-	-		-	-	-		
Stage 2	637	616	-	470	546	-	-	-	-		-	-	-		

Approach	EB	WB	NB	SB	
HCM Control Delay, s	18.3	14.9	1.1	0.2	
HCM LOS	С	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1097	-	-	413	381	1311	-	-
HCM Lane V/C Ratio	0.036	-	-	0.347	0.044	0.008	-	-
HCM Control Delay (s)	8.4	0	-	18.3	14.9	7.8	0	-
HCM Lane LOS	A	А	-	С	В	Α	А	-
HCM 95th %tile Q(veh)	0.1	-	-	1.5	0.1	0	-	-

Zebulon South TIA 6: NC-96 (Arendell Avenue) & Perry Curtis Road

Intersection						
Int Delay, s/veh	2.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		¢Î,			ŧ
Traffic Vol, veh/h	6	47	168	7	108	281
Future Vol, veh/h	6	47	168	7	108	281
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,#0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	7	52	187	8	120	312

Major/Minor	Minor1	Ν	/lajor1	М	lajor2		
Conflicting Flow All	743	191	0	0	195	0	
Stage 1	191	-	-	-	-	-	
Stage 2	552	-	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy		3.318	-		2.218	-	
Pot Cap-1 Maneuver		851	-	-	1378	-	
Stage 1	841	-	-	-	-	-	
Stage 2	577	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuve		851	-	-	1378	-	
Mov Cap-2 Maneuve		-	-	-	-	-	
Stage 1	841	-	-	-	-	-	
Stage 2	516	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay,	s 10.4		0		2.2		
HCM LOS	В						
Minor Lane/Major My	/mt	NBT	NBRWB	Ln1	SBL	SBT	
Capacity (veh/h)		-	-	729	1378	-	
HCM Lane V/C Ratio		-	- 0.	081 (0.087	-	
HCM Control Delay (s)	-	- 1	10.4	7.9	0	

В

0.3

-

-

-

-

А

0.3

А

-

HCM Lane LOS

HCM 95th %tile Q(veh)

2026 Build Traffic Volumes

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/01/2023

	٠	-+	~	1	+	*	1	t	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	1	LDIX	5	1	WBR	NDL	4	NDR	ODL	4	OBIC
Traffic Volume (vph)	6	487	52	51	534	4	126	10	130	4	5	19
Future Volume (vph)	6	487	52	51	534	4	126	10	130	4	5	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)	1300	-1%	1300	1300	0%	1300	1300	3%	1300	1300	1%	1300
Storage Length (ft)	125	-170	0	125	0 70	0	0	J /0	0	0	1 /0	0
Storage Lanes	125		0	125		0	0		0	0		0
Taper Length (ft)	25		0	25		0	25		0	25		0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.985	1.00	1.00	0.999	1.00	1.00	0.934	1.00	1.00	0.909	1.00
FIt Protected	0.950	0.900		0.950	0.999			0.934			0.909	
	1778	1844	0	1770	1861	0	0	1674	0	0	1675	0
Satd. Flow (prot) Flt Permitted	0.439	1044	0	0.950	1001	0	0	0.833	0	0	0.952	U
	0.439 822	1844	0	1770	1861	0	0	1428	0	0	1604	0
Satd. Flow (perm)	022	1044	No	1770	1001	No	U	1420	No	U	1004	
Right Turn on Red			INO			INO			INO			No
Satd. Flow (RTOR)		25			25			05			05	
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		774			1453			1831			462	
Travel Time (s)	0.00	15.1	0.00	0.00	28.3	0.00	0.00	49.9	0.00	0.00	12.6	0.00
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	7	541	58	57	593	4	140	11	144	4	6	21
Shared Lane Traffic (%)	_		_			•			_	<u>,</u>		
Lane Group Flow (vph)	7	599	0	57	597	0	0	295	0	0	31	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes							
Headway Factor	0.99	0.99	0.99	1.00	1.00	1.00	1.02	1.02	1.02	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2						8			4		
Detector Phase	2	2		1	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	17.0	17.0		14.0	17.0		14.0	14.0		14.0	14.0	
Total Split (s)	45.0	45.0		14.0	59.0		31.0	31.0		31.0	31.0	
Total Split (%)	50.0%	50.0%		15.6%	65.6%		34.4%	34.4%		34.4%	34.4%	
Maximum Green (s)	38.0	38.0		7.0	52.0		24.0	24.0		24.0	24.0	
Yellow Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0		-2.0	-2.0			-2.0			-2.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min		None	Min		None	None		None	None	
Act Effct Green (s)	29.8	29.8		10.2	36.6			21.2			21.2	
Actuated g/C Ratio	0.43	0.43		0.15	0.53			0.31			0.31	
v/c Ratio	0.02	0.75		0.22	0.61			0.68			0.06	
Control Delay	14.5	25.5		37.2	13.6			33.9			22.5	
,	-	-			-			-			-	

2026 Build AM Peak Hour Timmons Group

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/01/2023

	٦	-	7	1	+	*	1	Ť	1	4	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	14.5	25.5		37.2	13.6			33.9			22.5	
LOS	В	С		D	В			С			С	
Approach Delay		25.4			15.7			33.9			22.5	
Approach LOS		С			В			С			С	
Queue Length 50th (ft)	2	252		26	164			129			11	
Queue Length 95th (ft)	10	403		68	272			#264			34	
Internal Link Dist (ft)		694			1373			1751			382	
Turn Bay Length (ft)	125			125								
Base Capacity (vph)	519	1164		261	1452			609			684	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.01	0.51		0.22	0.41			0.48			0.05	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 69	9.1											
Natural Cycle: 65												
Control Type: Actuated-U	ncoordinate	d										
Maximum v/c Ratio: 0.75												
Intersection Signal Delay:	22.9			In	tersection	n LOS: C						
Intersection Capacity Utiliz	zation 71.3%	6		IC	U Level	of Service	ЭC					
Analysis Period (min) 15												
# 95th percentile volume	e exceeds c	apacity, q	ueue ma	y be long	jer.							
Queue shown is maxin	num after tw	o cycles.										
Splits and Phases: 1: S	Wakefield	Street & N	IC-97 (G	annon Av	/enue)							
· 1	1.1		· ·		,		S	6				

√ Ø1	<u></u> ø₂		-032
14 s	45 s	31 s	
← Ø6		⊴ ¶ø8	
59 s		31 s	

Zebulon South TIA

2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)

12/01/2023

`	٠		>	1	+	1	•	Ť	*	1	Ţ	~
Lane Group	EBL	EBT	EBR	▼ WBL	WBT	WBR	NBL	NBT	NBR	SBL	▼ SBT	SBR
Lane Configurations	<u></u>			<u></u>		VVDIX		1001	INDIX			JUN
Traffic Volume (vph)	46	↑ 463	7 5	232	₽ 354	19	103	201	172	25	1 98	33
	40	403	75	232	354	19	103	201	172	25	198	33
Future Volume (vph)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190	1900
Ideal Flow (vphpl)	1900		1900	1900		1900	1900		1900	1900		1900
Grade (%)	000	2%	400	050	-2%	0	405	-2%	•	050	2%	0
Storage Length (ft)	200		100	350		0	125		0	250		0
Storage Lanes	1		1	1		0	1		0	1		0
Taper Length (ft)	25	4.00	4.00	25	4.00	1 00	25	4 00	1 00	25	4.00	1 00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.050		0.850	0.050	0.992		0.050	0.931		0.050	0.978	
Flt Protected	0.950	4044	4507	0.950	4000	•	0.950	4750	•	0.950	4004	0
Satd. Flow (prot)	1752	1844	1567	1787	1866	0	1787	1752	0	1752	1804	0
Flt Permitted	0.520	4044	4507	0.950	4000	•	0.479	4750	•	0.243	4004	0
Satd. Flow (perm)	959	1844	1567	1787	1866	0	901	1752	0	448	1804	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			20			35	
Link Distance (ft)		1453			677			1822			478	
Travel Time (s)		28.3			13.2			62.1			9.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	51	514	83	258	393	21	114	223	191	28	220	37
Shared Lane Traffic (%)												
Lane Group Flow (vph)	51	514	83	258	414	0	114	414	0	28	257	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes						Yes	
Headway Factor	1.01	1.01	1.01	0.99	0.99	0.99	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	Perm	Prot	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2		2				8			4		
Detector Phase	2	2	2	1	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	24.0	24.0	24.0	14.0	17.0		24.0	24.0		14.0	14.0	
Total Split (s)	38.0	38.0	38.0	21.0	59.0		31.0	31.0		31.0	31.0	
Total Split (%)	42.2%	42.2%	42.2%	23.3%	65.6%		34.4%	34.4%		34.4%	34.4%	
Maximum Green (s)	31.0	31.0	31.0	14.0	52.0		24.0	24.0		24.0	24.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min	Min	None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0	7.0				7.0	7.0				
Flash Dont Walk (s)	10.0	10.0	10.0				10.0	10.0				
Pedestrian Calls (#/hr)	0	0	0				0	0				
Act Effct Green (s)	28.0	28.0	28.0	15.3	48.4		23.4	23.4		23.4	23.4	
	20.0	20.0	20.0	.0.0	10.4		20.7	20.7		20.7	20.7	

2026 Build AM Peak Hour Timmons Group

Zebulon South TIA

Control Delay 20.8 37.0 20.2 51.0 10.2 32.1 44.3 29.4 29.4 Queue Delay 0.0		٠	-	7	1	+	*	1	t	1	1	ţ	~
Actuated g/C Ratio 0.34 0.34 0.19 0.59 0.29 0.50 Control Delay 20.8 37.0 20.2 51.0 10.2 32.1 44.3 29.4	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
vic Ratio 0.16 0.82 0.16 0.77 0.38 0.44 0.83 0.22 0.50 Control Delay 20.8 37.0 20.2 51.0 10.2 32.1 44.3 29.4 29.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	•	0.34	0.34	0.34		0.59		0.29	0.29		0.29	0.29	
Control Delay 20.8 37.0 20.2 51.0 10.2 32.1 44.3 29.4 29.4 Queue Delay 0.0													
Queue Delay 0.0													
Total Delay 20.8 37.0 20.2 51.0 10.2 32.1 44.3 29.4 29.4 LOS C D C D B C D C C Approach Delay 33.6 25.9 41.6 29.4 Approach LOS C D C D C Queue Length 50th (ft) 19 253 31 138 111 51 211 12 116 Queue Length 95th (ft) 45 378 63 #268 168 106 #370 36 195 Internal Link Dist (ft) 1373 597 1742 388 29.4 29.4 Base Capacity (vph) 393 756 642 355 1255 250 Base Capacity (vph) 393 756 642 355 1252 291 566 144 583 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•			0.0								0.0	
LOS C D C D B C D C C Approach LOS C C C D C D C Queue Length 50th (ft) 19 253 31 138 111 51 211 12 116 Queue Length 50th (ft) 45 378 63 #268 168 106 #370 36 195 Internal Link Dist (ft) 1373 597 1742 398 398 Tum Bay Length (ft) 200 100 350 125 250 250 Base Capacity (vph) 393 756 642 355 1252 291 566 144 583 Starvation Cap Reductn 0													
Approach Delay 33.6 25.9 41.6 29.4 Approach LOS C C D C Queue Length 50th (ft) 19 25.3 31 138 111 51 211 12 116 Queue Length 95th (ft) 45 378 63 #268 168 106 #370 36 195 Internal Link Dist (ft) 1373 597 1742 398 70 1742 398 Tum Bay Length (ft) 200 100 350 125 250 250 Base Capacity (vph) 393 756 642 355 1252 291 566 144 583 Starvation Cap Reductn 0 10 44 583 58 58		С	D	С	D	В		С	D		С	С	
Approach LOS C C D C Queue Length 50th (ft) 19 253 31 138 111 51 211 12 116 Queue Length 95th (ft) 45 378 63 #268 168 106 #370 36 195 Internal Link Dist (ft) 1373 597 1742 398 398 Tum Bay Length (ft) 200 100 350 125 250 Base Capacity (vph) 393 756 642 355 1252 291 566 144 583 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0									41.6				
Queue Length 50th (ft) 19 253 31 138 111 51 211 12 116 Queue Length 95th (ft) 45 378 63 #268 168 106 #370 36 195 Internal Link Dist (ft) 1373 597 1742 398 Turn Bay Length (ft) 200 100 350 125 250 Base Capacity (vph) 393 756 642 355 1252 291 566 144 583 Starvation Cap Reductn 0 4													
Queue Length 95th (ft) 45 378 63 #268 168 106 #370 36 195 Internal Link Dist (ft) 1373 597 1742 398 Tum Bay Length (ft) 200 100 350 125 250 Base Capacity (vph) 393 756 642 355 1252 291 566 144 583 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 10		19		31	138	111		51	211		12		
Internal Link Dist (ft) 1373 597 1742 398 Turn Bay Length (ft) 200 100 350 125 250 Base Capacity (vph) 393 756 642 355 1252 291 566 144 583 Starvation Cap Reductn 0 144 5		45		63				106			36	195	
Turn Bay Length (ft) 200 100 350 125 250 Base Capacity (vph) 393 756 642 355 1252 291 566 144 583 Starvation Cap Reductn 0 </td <td></td> <td></td> <td>1373</td> <td></td> <td></td> <td>597</td> <td></td> <td></td> <td>1742</td> <td></td> <td></td> <td>398</td> <td></td>			1373			597			1742			398	
Base Capacity (vph) 393 756 642 355 1252 291 566 144 583 Starvation Cap Reductn 0 <td< td=""><td></td><td>200</td><td></td><td>100</td><td>350</td><td></td><td></td><td>125</td><td></td><td></td><td>250</td><td></td><td></td></td<>		200		100	350			125			250		
Spillback Cap Reductn 0		393	756	642	355	1252		291	566		144	583	
Spillback Cap Reductn 0	Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio 0.13 0.68 0.13 0.73 0.33 0.39 0.73 0.19 0.44 Intersection Summary Area Type: Other Cycle Length: 90 Actuated Cycle Length: 82 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 32.6 Intersection LOS: C Intersection Capacity Utilization 80.8% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue) Image: Q1		0	0	0	0	0		0	0		0	0	
Intersection Summary Area Type: Other Cycle Length: 90 Actuated Cycle Length: 82 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 32.6 Intersection Capacity Utilization 80.8% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)	Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Area Type: Other Cycle Length: 90 Actuated Cycle Length: 82 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 32.6 Intersection Capacity Utilization 80.8% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)	Reduced v/c Ratio	0.13	0.68	0.13	0.73	0.33		0.39	0.73		0.19	0.44	
Cycle Length: 90 Actuated Cycle Length: 82 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 32.6 Intersection LOS: C Intersection Capacity Utilization 80.8% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)													
Actuated Cycle Length: 82 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 32.6 Intersection LOS: C Intersection Capacity Utilization 80.8% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)	· · · /r ·	Other											
Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 32.6 Intersection LOS: C Intersection Capacity Utilization 80.8% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue) $\int \sqrt[6]{01}$													
Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 32.6 Intersection LOS: C Intersection Capacity Utilization 80.8% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)													
Maximum v/c Ratio: 0.83 Intersection Signal Delay: 32.6 Intersection LOS: C Intersection Capacity Utilization 80.8% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue) 1000													
Intersection Signal Delay: 32.6 Intersection LOS: C Intersection Capacity Utilization 80.8% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)		coordinated	d										
Intersection Capacity Utilization 80.8% ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)													
Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)													
 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue) 		ation 80.8%	0		IC	U Level	of Service	e D					
Queue shown is maximum after two cycles. Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue) Image: I													
Splits and Phases: 2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)				ueue ma	y be long	jer.							
	Queue shown is maximu	um after tw	o cycles.										
✓ Ø1 ✓ Ø2 Ø4	Splits and Phases: 2: NC	-96 (Arenc	dell Aveni	ue) & NC	-97 (Gan	non Aver	nue)						
	· /			,	,								
	▼ Ø1 21s	38 s	02					21					

A ØS

Ø6

Intersection													
Int Delay, s/veh	2.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	34	4	21	4	4	4	56	346	4	4	169	20	
Future Vol, veh/h	34	4	21	4	4	4	56	346	4	4	169	20	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	38	4	23	4	4	4	62	384	4	4	188	22	

Minor2		I	Minor1			Major1			N	lajor2			
721	719	199	731	728	386	210	0		0	388	0	0	
207	207	-	510	510	-	-	-		-	-	-	-	
514	512	-	221	218	-	-	-		-	-	-	-	
7.12	6.52	6.22	7.12	6.52	6.22	4.12	-		-	4.12	-	-	
6.12	5.52	-	6.12	5.52	-	-	-		-	-	-	-	
6.12	5.52	-	6.12	5.52	-	-	-		-	-	-	-	
3.518	4.018	3.318	3.518	4.018	3.318	2.218	-		- 2	2.218	-	-	
343	354	842	337	350	662	1361	-		-	1170	-	-	
795	731	-	546	538	-	-	-		-	-	-	-	
543	536	-	781	723	-	-	-		-	-	-	-	
							-		-		-	-	
· 321	332	842	309	328	662	1361	-		-	1170	-	-	
· 321	332	-	309	328	-	-	-		-	-	-	-	
749	728	-	514	507	-	-	-		-	-	-	-	
504	505	-	752	720	-	-	-		-	-	-	-	
	207 514 7.12 6.12 3.518 343 795 543 725 543 7321 749	721 719 207 207 514 512 7.12 6.52 6.12 5.52 6.12 5.52 3.518 4.018 343 354 795 731 543 536 6.321 332 749 728	721 719 199 207 207 - 514 512 - 7.12 6.52 6.22 6.12 5.52 - 3.518 4.018 3.318 343 354 842 795 731 - 543 536 - 321 332 842 749 728 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	721 719 199 731 728 386 207 207 - 510 510 - 514 512 - 221 218 - 7.12 6.52 6.22 7.12 6.52 6.22 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 3.518 4.018 3.318 3.518 4.018 3.318 343 354 842 337 350 662 795 731 - 546 538 - 543 536 - 781 723 - 321 332 842 309 328 662 321 332 - 309 328 - 749 728 - 514 507 -	721 719 199 731 728 386 210 207 207 - 510 510 - - 514 512 - 221 218 - - 7.12 6.52 6.22 7.12 6.52 6.22 4.12 6.12 5.52 - 6.12 5.52 - - 6.12 5.52 - 6.12 5.52 - - 6.12 5.52 - 6.12 5.52 - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 343 354 842 337 350 662 1361 795 731 - 546 538 - - 543 536 - 781 723 - - 321 332 842 309 328 662 1361 321 332 - 309 328 - - 749 728 - <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Approach	EB	WB	NB	SB	
HCM Control Delay, s	15.4	14.7	1.1	0.2	
HCM LOS	С	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1361	-	-	413	385	1170	-	-	
HCM Lane V/C Ratio	0.046	-	-	0.159	0.035	0.004	-	-	
HCM Control Delay (s)	7.8	0	-	15.4	14.7	8.1	0	-	
HCM Lane LOS	А	А	-	С	В	А	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	0.6	0.1	0	-	-	

Intersection						
Int Delay, s/veh	1.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्भ	f.	
Traffic Vol, veh/h	42	8	4	343	160	13
Future Vol, veh/h	42	8	4	343	160	13
Conflicting Peds, #/h	ır O	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Stora	ge, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	47	9	4	381	178	14
Major/Minor	Minor2	Ν	/lajor1	M	Major2	
Conflicting Flow All	574	185	192	0	-	0
Otara 1	405					

Conflicting Flow All	574	185	192	0	-	0	
Stage 1	185	-	-	-	-	-	
Stage 2	389	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	480	857	1381	-	-	-	
Stage 1	847	-	-	-	-	-	
Stage 2	685	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	478	857	1381	-	-	-	
Mov Cap-2 Maneuver	478	-	-	-	-	-	
Stage 1	844	-	-	-	-	-	
Stage 2	685	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	12.9		0.1		0		
HCM LOS	В						
HCM LOS	В						

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1381	- 514	-	-
HCM Lane V/C Ratio	0.003	- 0.108	-	-
HCM Control Delay (s)	7.6	0 12.9	-	-
HCM Lane LOS	А	A B	-	-
HCM 95th %tile Q(veh)	0	- 0.4	-	-

12/01/2023

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			÷.	1.	
Traffic Vol, veh/h	42	17	6	304	154	14
Future Vol, veh/h	42	17	6	304	154	14
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,#0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	47	19	7	338	171	16
Major/Minor	/linor2	Ν	/lajor1	M	/lajor2	

Major/Minor	IVIINOrZ		viajor i	iviajor2		
Conflicting Flow All	531	179	187	0 -	0	
Stage 1	179	-	-		-	
Stage 2	352	-	-		-	
Critical Hdwy	6.42	6.22	4.12		-	
Critical Hdwy Stg 1	5.42	-	-		-	
Critical Hdwy Stg 2	5.42	-	-		-	
Follow-up Hdwy		3.318	2.218		-	
Pot Cap-1 Maneuver	509	864	1387		-	
Stage 1	852	-	-		-	
Stage 2	712	-	-		-	
Platoon blocked, %					-	
Mov Cap-1 Maneuver	r 506	864	1387		-	
Mov Cap-2 Maneuver	r 506	-	-		-	
Stage 1	847	-	-		-	
Stage 2	712	-	-		-	
Approach	EB		NB	SB		
HCM Control Delay, s	s 12.1		0.1	0		
HCM LOS	В					
Minor Long/Major My		NDI		1 ODT	CDD	

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1387	- 575	-	-	
HCM Lane V/C Ratio	0.005	- 0.114	-	-	
HCM Control Delay (s)	7.6	0 12.1	-	-	
HCM Lane LOS	А	A B	-	-	
HCM 95th %tile Q(veh)	0	- 0.4	-	-	

Zebulon South TIA 6: NC-96 (Arendell Avenue) & Perry Curtis Road

Intersection						
Int Delay, s/veh	2.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ħ		-	र्भ
Traffic Vol, veh/h	14	73	237	4	35	136
Future Vol, veh/h	14	73	237	4	35	136
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	16	81	263	4	39	151

Major/Minor	Minor1	Ν	/lajor1	1	Major2	
Conflicting Flow All	494	265	0	0	267	0
Stage 1	265	-	-	-	-	-
Stage 2	229	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	-	-	2.218	-
Pot Cap-1 Maneuve	r 535	774	-	-	1297	-
Stage 1	779	-	-	-	-	-
Stage 2	809	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve		774	-	-	1297	-
Mov Cap-2 Maneuve	er 517	-	-	-	-	-
Stage 1	779	-	-	-	-	-
Stage 2	782	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay,	s 10.8		0		1.6	
HCM LOS	В					
Minor Lane/Major M	vmt	NBT	NBRW	BLn1	SBL	SBT
Capacity (veh/h)		-	-	717	1297	-
HCM Lane V/C Ratio	0	-	- (0.135	0.03	-
HCM Control Delay	(s)	-	-	10.8	7.9	0

В

0.5

-

-

-

-

А

0.1

А

-

HCM Lane LOS

HCM 95th %tile Q(veh)

Intersection						
Int Delay, s/veh	1.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ħ			ŧ
Traffic Vol, veh/h	8	52	214	4	16	92
Future Vol, veh/h	8	52	214	4	16	92
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	9	58	238	4	18	102

Major/Minor	Minor1	Ν	/lajor1	ľ	Major2	
Conflicting Flow All	378	240	0	0	242	0
Stage 1	240	-	-	-	-	-
Stage 2	138	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuve	r 624	799	-	-	1324	-
Stage 1	800	-	-	-	-	-
Stage 2	889	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	er 615	799	-	-	1324	-
Mov Cap-2 Maneuve	er 615	-	-	-	-	-
Stage 1	800	-	-	-	-	-
Stage 2	877	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay,	s 10.1		0		1.1	
HCM LOS	В					
Minor Lane/Major M	vmt	NBT	NBRWI	3Ln1	SBL	SBT
Capacity (veh/h)		-	-	768	1324	-
HCM Lane V/C Ratio		-	- C	.087	0.013	-
HCM Control Delay	(s)	-	-	10.1	7.8	0

В

0.3

-

-

-

-

А

0

А

-

HCM Lane LOS

HCM 95th %tile Q(veh)

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/05/2023

	٢	→	7	4	+	*	1	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	1	LDIX	5	1	WBIX	NDL	4	NDR	ODL	4	
Traffic Volume (vph)	10	688	150	73	569	4	113	10	79	7	19	29
Future Volume (vph)	10	688	150	73	569	4	113	10	79	7	19	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)	1000	-1%	1000	1000	0%	1000	1000	3%	1000	1000	1%	1000
Storage Length (ft)	125	170	0	125	070	0	0	070	0	0	170	0
Storage Lanes	1		0	1		0	0		0	0		0
Taper Length (ft)	25		Ŭ	25		Ŭ	25		Ŭ	25		Ű
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.973		1.00	0.999		1.00	0.947		1.00	0.929	1.00
Flt Protected	0.950	0.010		0.950	0.000			0.973			0.993	
Satd. Flow (prot)	1778	1822	0	1770	1861	0	0	1691	0	0	1710	0
Flt Permitted	0.423		, in the second s	0.950		•		0.804	, in the second s	•	0.954	v
Satd. Flow (perm)	792	1822	0	1770	1861	0	0	1397	0	0	1643	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			25			25	
Link Distance (ft)		774			1453			1831			462	
Travel Time (s)		15.1			28.3			49.9			12.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	11	764	167	81	632	4	126	11	88	8	21	32
Shared Lane Traffic (%)												
Lane Group Flow (vph)	11	931	0	81	636	0	0	225	0	0	61	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	Ŭ		12	Ŭ		0	Ŭ		0	Ŭ
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes							
Headway Factor	0.99	0.99	0.99	1.00	1.00	1.00	1.02	1.02	1.02	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2						8			4		
Detector Phase	2	2		1	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	17.0	17.0		14.0	17.0		14.0	14.0		14.0	14.0	
Total Split (s)	52.0	52.0		14.0	66.0		24.0	24.0		24.0	24.0	
Total Split (%)	57.8%	57.8%		15.6%	73.3%		26.7%	26.7%		26.7%	26.7%	
Maximum Green (s)	45.0	45.0		7.0	59.0		17.0	17.0		17.0	17.0	
Yellow Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0		-2.0	-2.0			-2.0			-2.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min		None	Min		None	None		None	None	
Act Effct Green (s)	46.2	46.2		9.2	56.7			17.5			17.5	
Actuated g/C Ratio	0.55	0.55		0.11	0.67			0.21			0.21	
v/c Ratio	0.03	0.93		0.42	0.51			0.78			0.18	
Control Delay	10.8	37.8		45.6	8.7			53.0			30.8	

2026 Build PM Peak Hour Timmons Group Synchro 11 Report

Zebulon South TIA

1: S Wakefield Street & NC-97 (Gannon Avenue)

12/05/2023

	٠	→	7	4	-	*	1	t	1	1	ŧ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	10.8	37.8		45.6	8.7			53.0			30.8	
LOS	В	D		D	А			D			С	
Approach Delay		37.5			12.9			53.0			30.8	
Approach LOS		D			В			D			С	
Queue Length 50th (ft)	3	489		44	154			121			29	
Queue Length 95th (ft)	11	#774		90	229			#234			63	
Internal Link Dist (ft)		694			1373			1751			382	
Turn Bay Length (ft)	125			125								
Base Capacity (vph)	449	1034		192	1371			320			376	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.02	0.90		0.42	0.46			0.70			0.16	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 84	.4											
Natural Cycle: 90												
Control Type: Actuated-Un	coordinate	d										
Maximum v/c Ratio: 0.93												
Intersection Signal Delay:					tersection							
Intersection Capacity Utiliz	ation 81.9%	6		IC	U Level	of Service	e D					
Analysis Period (min) 15												
# 95th percentile volume			ueue ma	y be long	jer.							
Queue shown is maxim	um after tw	o cycles.										
Splits and Phases: 1: S	Wakefield S	Street & N	IC-97 (G	annon Av	/enue)							
1 01	102		<u> </u>		/			_	Ø4			

Ø1		
14 s	52 s	24 s
← Ø6		Ø8
66 s		24 s

Zebulon South TIA

2: NC-96 (Arendell Avenue) & NC-97 (Gannon Avenue)

12/05/2023

	٦	+	7	1	Ŧ	*	1	t	1	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	<u> </u>	1	5	1	WDIX	The second secon	1	NDIX	<u> </u>	1	
Traffic Volume (vph)	66	363	91	282	512	57	90	322	176	51	227	50
Future Volume (vph)	66	363	91	282	512	57	90	322	176	51	227	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)	1000	2%	1000	1000	-2%	1000	1000	-2%	1000	1000	2%	1000
Storage Length (ft)	200	2 /0	100	350	270	0	125	270	0	250	270	0
Storage Lanes	1		100	1		0	123		0	1		0
Taper Length (ft)	25		1	25		0	25		0	25		U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.850	1.00	0.985	1.00	1.00	0.947	1.00	1.00	0.973	1.00
Flt Protected	0.950		0.000	0.950	0.000		0.950	0.017		0.950	0.010	
Satd. Flow (prot)	1752	1844	1567	1787	1853	0	1787	1782	0	1752	1794	0
Flt Permitted	0.425	1011	1001	0.950	1000	v	0.450	1102	Ū	0.157	1101	Ŭ
Satd. Flow (perm)	784	1844	1567	1787	1853	0	847	1782	0	290	1794	0
Right Turn on Red			No		1000	No	• • •		No	200		No
Satd. Flow (RTOR)			110			110			110			
Link Speed (mph)		35			35			20			35	
Link Distance (ft)		1453			677			1822			478	
Travel Time (s)		28.3			13.2			62.1			9.3	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	73	403	101	313	569	63	100	358	196	57	252	56
Shared Lane Traffic (%)	10	100	101	010	000	00	100	000	100	01	202	00
Lane Group Flow (vph)	73	403	101	313	632	0	100	554	0	57	308	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	. ugi u	_0.1	12	. ug.u		12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes						Yes	
Headway Factor	1.01	1.01	1.01	0.99	0.99	0.99	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15	-	9	15		9	15		9	15		9
Turn Type	Perm	NA	Perm	Prot	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2		2				8			4		
Detector Phase	2	2	2	1	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	7.0	10.0		7.0	7.0		7.0	7.0	
Minimum Split (s)	24.0	24.0	24.0	14.0	17.0		24.0	24.0		14.0	14.0	
Total Split (s)	29.0	29.0	29.0	24.0	53.0		37.0	37.0		37.0	37.0	
Total Split (%)	32.2%	32.2%	32.2%	26.7%	58.9%		41.1%	41.1%		41.1%	41.1%	
Maximum Green (s)	22.0	22.0	22.0	17.0	46.0		30.0	30.0		30.0	30.0	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0	2.0	3.0		2.0	2.0		2.0	2.0	
Recall Mode	Min	Min	Min	None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0	7.0				7.0	7.0				
Flash Dont Walk (s)	10.0	10.0	10.0				10.0	10.0				
Pedestrian Calls (#/hr)	0	0	0				0	0				
Act Effct Green (s)	22.4	22.4	22.4	18.1	45.6		30.0	30.0		30.0	30.0	

2026 Build PM Peak Hour Timmons Group Synchro 11 Report

Zebulon South TIA

	٠	→	7	4	+	•	1	Ť	1	4	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Actuated g/C Ratio	0.26	0.26	0.26	0.21	0.53		0.35	0.35		0.35	0.35	
v/c Ratio	0.36	0.84	0.25	0.83	0.64		0.34	0.89		0.56	0.49	
Control Delay	32.8	47.5	27.8	53.4	18.3		25.2	45.2		48.5	25.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	32.8	47.5	27.8	53.4	18.3		25.2	45.2		48.5	25.5	
LOS	С	D	С	D	В		С	D		D	С	
Approach Delay		42.2			29.9			42.1			29.1	
Approach LOS		D			С			D			С	
Queue Length 50th (ft)	34	215	45	171	240		41	290		26	134	
Queue Length 95th (ft)	75	#365	87	#309	356		85	#481		#84	212	
Internal Link Dist (ft)		1373			597			1742			398	
Turn Bay Length (ft)	200		100	350			125			250		
Base Capacity (vph)	222	522	443	401	1050		320	673		109	677	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.33	0.77	0.23	0.78	0.60		0.31	0.82		0.52	0.45	
Intersection Summary												
3 1	Other											
Cycle Length: 90												
Actuated Cycle Length: 85.	7											
Natural Cycle: 75												
Control Type: Actuated-Unc	coordinate	d										
Maximum v/c Ratio: 0.89												
Intersection Signal Delay: 3					tersection		_					
Intersection Capacity Utiliza	ation 88.9%	0		IC	U Level	of Service	θE					
Analysis Period (min) 15												
# 95th percentile volume			ueue ma	y be long	er.							
Queue shown is maximu	im after tw	o cycles.										
Splite and Dhases - 2: NC	06 (Area			07 (Car	non Aver	uo)						
Splits and Phases: 2: NC	-96 (Areno	ien Avent	ie) & NC	-97 (Gan	non Aver	ue)						

Ø1		Ø4	
24 s	29 s	37 s	
← Ø6		↑ Ø8	
53 s		37 s	

Int Delay, s/veh4MovementEBLEBTEBRWBLWBTWBRNBLNBTNBRSBLSBTSBRLane ConfigurationsImage: Configurati	Intersection													
Lane Configurations Image: configuration in the system of the system	Int Delay, s/veh	4												
Traffic Vol, veh/h 51 5 82 4 4 7 41 274 4 9 455 47 Future Vol, veh/h 51 5 82 4 4 7 41 274 4 9 455 47 Conflicting Peds, #/hr 0 </td <td>Movement</td> <td>EBL</td> <td>EBT</td> <td>EBR</td> <td>WBL</td> <td>WBT</td> <td>WBR</td> <td>NBL</td> <td>NBT</td> <td>NBR</td> <td>SBL</td> <td>SBT</td> <td>SBR</td> <td></td>	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Future Vol, veh/h 51 5 82 4 4 7 41 274 4 9 455 47 Conflicting Peds, #/hr 0	Lane Configurations		4			4			4			4		
Conflicting Peds, #/hr 0 <td>Traffic Vol, veh/h</td> <td>51</td> <td>5</td> <td>82</td> <td>4</td> <td>4</td> <td>7</td> <td>41</td> <td>274</td> <td>4</td> <td>9</td> <td>455</td> <td>47</td> <td></td>	Traffic Vol, veh/h	51	5	82	4	4	7	41	274	4	9	455	47	
Sign ControlStopStopStopStopStopStopStopFreeFreeFreeFreeFreeFreeFreeRT Channelized-NoneNoneNoneNoneStorage LengthVeh in Median Storage, #-0000-Grade, %-000-0-Peak Hour Factor9090909090909090909090Heavy Vehicles, %22222222222	Future Vol, veh/h	51	5	82	4	4	7	41	274	4	9	455	47	
RT Channelized - None - None - None - None Storage Length - - - - - - - - - - - None - - None - - None - - O - - O - - O - - O - None - O - O - O - O - None None None None None None None None	Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Storage Length -	Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
Veh in Median Storage, # 0 - 0 90	RT Channelized	-	-	None										
Grade, % - 0 - - 0 - - 0 - Peak Hour Factor 90 <td>Storage Length</td> <td>-</td> <td></td>	Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Peak Hour Factor 90	Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-	
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
	Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
	Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow 57 6 91 4 4 8 46 304 4 10 506 52	Mvmt Flow	57	6	91	4	4	8	46	304	4	10	506	52	

Major/Minor	Minor2			Vinor1			Major1		N	lajor2			
Conflicting Flow All	956	952	532	999	976	306	558	0	0	308	0	0	
Stage 1	552	552	-	398	398	-	-	-	-	-	-	-	
Stage 2	404	400	-	601	578	-	-	-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	- 1	2.218	-	-	
Pot Cap-1 Maneuver	238	259	547	222	251	734	1013	-	-	1253	-	-	
Stage 1	518	515	-	628	603	-	-	-	-	-	-	-	
Stage 2	623	602	-	487	501	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	220	242	547	172	234	734	1013	-	-	1253	-	-	
Mov Cap-2 Maneuver	220	242	-	172	234	-	-	-	-	-	-	-	
Stage 1	490	509	-	593	570	-	-	-	-	-	-	-	
Stage 2	578	569	-	397	495	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	23.7	17.7	1.1	0.1	
HCM LOS	С	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1013	-	-	343	301	1253	-	-
HCM Lane V/C Ratio	0.045	-	-	0.447	0.055	0.008	-	-
HCM Control Delay (s)	8.7	0	-	23.7	17.7	7.9	0	-
HCM Lane LOS	А	А	-	С	С	А	А	-
HCM 95th %tile Q(veh)	0.1	-	-	2.2	0.2	0	-	-

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	f,	
Traffic Vol, veh/h	27	5	9	242	436	46
Future Vol, veh/h	27	5	9	242	436	46
Conflicting Peds, #/h	r 0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	ge, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	30	6	10	269	484	51
Major/Minor	Minor2	Ν	Aajor1	Ν	Major2	

iviajor/iviinor	Winor2		viajor'i	N	/lajor2	
Conflicting Flow All	799	510	535	0	-	0
Stage 1	510	-	-	-	-	-
Stage 2	289	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	2.218	-	-	-
Pot Cap-1 Maneuver	355	563	1033	-	-	-
Stage 1	603	-	-	-	-	-
Stage 2	760	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve	r 351	563	1033	-	-	-
Mov Cap-2 Maneuve	r 351	-	-	-	-	-
Stage 1	596	-	-	-	-	-
Stage 2	760	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay,			0.3		0	
HCM LOS	C		0.0		0	
	U					
Minor Long/Major M	mt	NDI	NDTE		CDT	CDD

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1033	- 373	-	-	
HCM Lane V/C Ratio	0.01	- 0.095	-	-	
HCM Control Delay (s)	8.5	0 15.7	-	-	
HCM Lane LOS	Α	A C	-	-	
HCM 95th %tile Q(veh)	0	- 0.3	-	-	

12/05/202	3
-----------	---

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			÷.	Þ	
Traffic Vol, veh/h	27	11	18	224	394	47
Future Vol, veh/h	27	11	18	224	394	47
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	je, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	30	12	20	249	438	52

Major/Minor	Minor2	l	Major1	Ν	lajor2			
Conflicting Flow All	753	464	490	0	-	0		
Stage 1	464	-	-	-	-	-		
Stage 2	289	-	-	-	-	-		
Critical Hdwy	6.42	6.22	4.12	-	-	-		
Critical Hdwy Stg 1	5.42	-	-	-	-	-		
Critical Hdwy Stg 2	5.42	-	-	-	-	-		
Follow-up Hdwy		3.318	2.218	-	-	-		
Pot Cap-1 Maneuver	377	598	1073	-	-	-		
Stage 1	633	-	-	-	-	-		
Stage 2	760	-	-	-	-	-		
Platoon blocked, %				-	-	-		
Mov Cap-1 Maneuve	er 369	598	1073	-	-	-		
Mov Cap-2 Maneuve		-	-	-	-	-		
Stage 1	619	-	-	-	-	-		
Stage 2	760	-	-	-	-	-		
Approach	EB		NB		SB			
			0.6		0			
HCM Control Delay,			0.0		0			
HCM LOS	В							
Minor Lane/Major M	/mt	NBL	NBT	EBLn1	SBT	SBR		
		4070		445				

			-	-
Capacity (veh/h)	1073	- 415	-	-
HCM Lane V/C Ratio	0.019	- 0.102	-	-
HCM Control Delay (s)	8.4	0 14.7	-	-
HCM Lane LOS	А	A B	-	-
HCM 95th %tile Q(veh)	0.1	- 0.3	-	-

Zebulon South TIA 6: NC-96 (Arendell Avenue) & Perry Curtis Road

Intersection						
Int Delay, s/veh	2.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ħ			ર્સ
Traffic Vol, veh/h	6	56	186	7	113	292
Future Vol, veh/h	6	56	186	7	113	292
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,#0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	7	62	207	8	126	324

Major/Minor	Minor1	Ν	/lajor1	I	Major2	
Conflicting Flow All	787	211	0	0	215	0
Stage 1	211	-	-	-	-	-
Stage 2	576	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	360	829	-	-	1355	-
Stage 1	824	-	-	-	-	-
Stage 2	562	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	319	829	-	-	1355	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	824	-	-	-	-	-
Stage 2	498	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		2.2	
HCM LOS	B		U		2.2	
	5					
Minor Lane/Major Mv	mt	NBT	NBRW		SBL	SBT
Capacity (veh/h)		-	-	718	1355	-
HCM Lane V/C Ratio		-	- (0.093	-
HCM Control Delay (s	s)	-	-	10.5	7.9	0

HCIVI Control Delay (S)	-	-	10.5	7.9	0		
HCM Lane LOS	-	-	В	Α	А		
HCM 95th %tile Q(veh)	-	-	0.3	0.3	-		

Intersection						
Int Delay, s/veh	1.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ħ			ŧ
Traffic Vol, veh/h	5	34	168	9	55	187
Future Vol, veh/h	5	34	168	9	55	187
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,#0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	6	38	187	10	61	208

Major/Minor	Minor1	Ν	/lajor1	М	ajor2	
Conflicting Flow All	522	192	0	0	197	0
Stage 1	192	-	-	-	-	-
Stage 2	330	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	- 2	2.218	-
Pot Cap-1 Maneuver	515	850	-	-	1376	-
Stage 1	841	-	-	-	-	-
Stage 2	728	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve		850	-	-	1376	-
Mov Cap-2 Maneuve		-	-	-	-	-
Stage 1	841	-	-	-	-	-
Stage 2	692	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	s 9.9		0		1.8	
HCM LOS	A					
Minor Lane/Major Mv	rmt	NBT	NBRWE	BLn1	SBL	SBT
Capacity (veh/h)		-	-	777	1376	-
HCM Lane V/C Ratio		-	- 0	.056 (-
				~ ~		0

	-	- 111	1370	-		
HCM Lane V/C Ratio	-	- 0.056	0.044	-		
HCM Control Delay (s)	-	- 9.9	7.7	0		
HCM Lane LOS	-	- A	A	А		
HCM 95th %tile Q(veh)	-	- 0.2	2 0.1	-		

2026 Build + Improvements Traffic Volumes

Intersection							
Int Delay, s/veh	1.2						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	ł
Lane Configurations	Y			4	•	1	
Traffic Vol, veh/h	42	8	4	343	160	13	;
Future Vol, veh/h	42	8	4	343	160	13	}
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	;
RT Channelized	-	None	-	None	-	None	,
Storage Length	0	-	-	-	-	50)
Veh in Median Storage	e,#0	-	-	0	0	-	-
Grade, %	0	-	-	0	0	-	-
Peak Hour Factor	90	90	90	90	90	90)
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	47	9	4	381	178	14	ŀ

Major/Minor	Minor2	1	Major1	N	lajor2		
Conflicting Flow All	567	178	192	0	-	0	
Stage 1	178	-	-	-	-	-	
Stage 2	389	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy		3.318	2.218	-	-	-	
Pot Cap-1 Maneuver		865	1381	-	-	-	
Stage 1	853	-	-	-	-	-	
Stage 2	685	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuve		865	1381	-	-	-	
Mov Cap-2 Maneuve		-	-	-	-	-	
Stage 1	850	-	-	-	-	-	
Stage 2	685	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay,			0.1		0		
HCM LOS	В						
Minor Lane/Major M	vmt	NBL	NBTE	EBLn1	SBT	SBR	
Capacity (veh/h)		1381	-	520	-	-	

	1001	- 520	-	
HCM Lane V/C Ratio	0.003	- 0.107	-	-
HCM Control Delay (s)	7.6	0 12.7	-	-
HCM Lane LOS	А	A B	-	-
HCM 95th %tile Q(veh)	0	- 0.4	-	-

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	†	1
Traffic Vol, veh/h	42	17	6	304	154	14
Future Vol, veh/h	42	17	6	304	154	14
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	50
Veh in Median Storage	e,#0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	47	19	7	338	171	16
Maiar/Minar	din e rO	٨	Anian1	N	Anin mO	
	Minor2		Major1		/lajor2	
Conflicting Flow All	523	171	187	0	-	0
Stage 1	171	-	-	-	-	-
Stage 2	352	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	514	873	1387	-	-	-
Stage 1	859	-	-	-	-	-
Stage 2	712	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver		873	1387	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	854	-	-	-	-	-
Stage 2	712	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0.1		0	
HCM LOS	B		0.1		U	
	D					
Minor Long/Major Mur	n ł		NDT		ОРТ	SBR
Minor Lane/Major Mvr	nt	NBL		EBLn1	SBT	SDK
Capacity (veh/h)		1387	-	580	-	-
HCM Lane V/C Ratio	`	0.005		0.113	-	-
HCM Control Delay (s)	7.6	0	12	-	-
HCM Lane LOS		A	A	B	-	-
HCM 95th %tile Q(veh	1)	0	-	0.4	-	-

12/04/2023

Intersection						
Int Delay, s/veh	1.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ħ		5	1
Traffic Vol, veh/h	8	52	214	4	16	92
Future Vol, veh/h	8	52	214	4	16	92
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	9	58	238	4	18	102

Major/Minor	Minor1	Ν	/lajor1	N	Major2	
Conflicting Flow All	378	240	0	0	242	0
Stage 1	240	-	-	-	-	-
Stage 2	138	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	r 624	799	-	-	1324	-
Stage 1	800	-	-	-	-	-
Stage 2	889	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	er 615	799	-	-	1324	-
Mov Cap-2 Maneuve	er 615	-	-	-	-	-
Stage 1	800	-	-	-	-	-
Stage 2	877	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay,			0		1.1	
HCM LOS	В					
Minor Lane/Major My	vmt	NBT	NBRWE	3Ln1	SBL	SBT
Capacity (veh/h)				768	1324	-
HCM Lane V/C Ratio)	_	- 0		0.013	_
HCM Control Delay (_		10.1	7.8	_
How Control Delay ((0)			10.1	1.0	

В

0.3

-

-

-

-

А

0

-

-

HCM Lane LOS

HCM 95th %tile Q(veh)

Intersection							
Int Delay, s/veh	0.7						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	ł
Lane Configurations	Y			4	†	1	
Traffic Vol, veh/h	27	5	9	242	436	46	;
Future Vol, veh/h	27	5	9	242	436	46	;
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	,
RT Channelized	-	None	-	None	-	None	,
Storage Length	0	-	-	-	-	50)
Veh in Median Storage	e, # 0	-	-	0	0	-	-
Grade, %	0	-	-	0	0	-	-
Peak Hour Factor	90	90	90	90	90	90)
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	30	6	10	269	484	51	

Major/Minor	Minor2		Major1	Ν	lajor2	
Conflicting Flow All	773	484	535	0	-	0
Stage 1	484	-	-	-	-	-
Stage 2	289	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	2.218	-	-	-
Pot Cap-1 Maneuver		583	1033	-	-	-
Stage 1	620	-	-	-	-	-
Stage 2	760	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve		583	1033	-	-	-
Mov Cap-2 Maneuve		-	-	-	-	-
Stage 1	613	-	-	-	-	-
Stage 2	760	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay,	s 15.3		0.3		0	
HCM LOS	С					
Minor Lane/Major M	vmt	NBL	NBTE	EBLn1	SBT	SBR
Capacity (veh/h)		1033	-	386	-	-
HCM Lane V/C Ratio	1	0.01	_	0 092	-	_

	1000	- 300	, -	_
HCM Lane V/C Ratio	0.01	- 0.092	2 -	-
HCM Control Delay (s)	8.5	0 15.3	3 -	-
HCM Lane LOS	А	A C	; -	-
HCM 95th %tile Q(veh)	0	- 0.3	3 -	-

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			÷.	1	1
Traffic Vol, veh/h	27	11	18	224	394	47
Future Vol, veh/h	27	11	18	224	394	47
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	50
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	30	12	20	249	438	52

Major/Minor	Minor2	ľ	Major1	Ν	lajor2		
Conflicting Flow All	727	438	490	0	-	0	
Stage 1	438	-	-	-	-	-	
Stage 2	289	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy		3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	391	619	1073	-	-	-	
Stage 1	651	-	-	-	-	-	
Stage 2	760	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuve		619	1073	-	-	-	
Mov Cap-2 Maneuve		-	-	-	-	-	
Stage 1	637	-	-	-	-	-	
Stage 2	760	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay,	s 14.3		0.6		0		
HCM LOS	В						
Minor Lane/Major Mv	mt	NBL	NBTE	EBLn1	SBT	SBR	

Minor Lanc/Major MMin	NDL	NDIEDEIII	001	ODIX	
Capacity (veh/h)	1073	- 430	-	-	
HCM Lane V/C Ratio	0.019	- 0.098	-	-	
HCM Control Delay (s)	8.4	0 14.3	-	-	
HCM Lane LOS	А	A B	-	-	
HCM 95th %tile Q(veh)	0.1	- 0.3	-	-	

Intersection						
Int Delay, s/veh	1.8					
•						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		T.		٦	†
Traffic Vol, veh/h	5	34	168	9	55	187
Future Vol, veh/h	5	34	168	9	55	187
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	6	38	187	10	61	208
		••				

Major/Minor	Minor1	Ν	/lajor1		Major2	
Conflicting Flow All	522	192	0	0	197	0
Stage 1	192	-	-	-	-	-
Stage 2	330	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	-	-	2.218	-
Pot Cap-1 Maneuver	· 515	850	-	-	1376	-
Stage 1	841	-	-	-	-	-
Stage 2	728	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	er 492	850	-	-	1376	-
Mov Cap-2 Maneuve		-	-	-	-	-
Stage 1	841	-	-	-	-	-
Stage 2	696	-	-	-	-	-
0						
A I					00	
Approach	WB		NB		SB	
HCM Control Delay,			0		1.8	
HCM LOS	A					
Minor Lane/Major M	vmt	NBT	NBRW	BLn1	SBL	SBT
Capacity (veh/h)			-	777	1376	
HCM Lane V/C Ratio	`	_			0.044	-
HCM Control Delay (-	- (9.9	7.7	-
	0)			0.0	1.1	

А

0.2

-

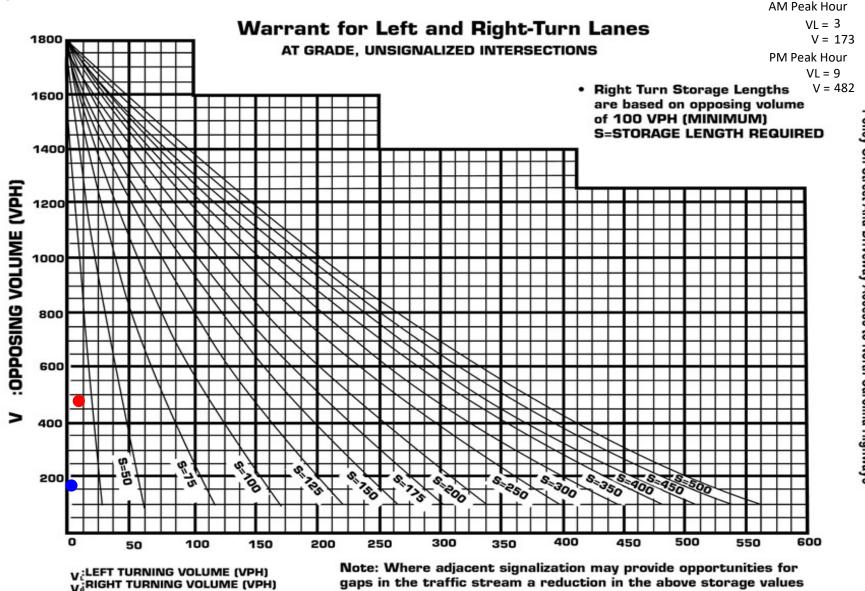
-

-

-

А

0.1


-

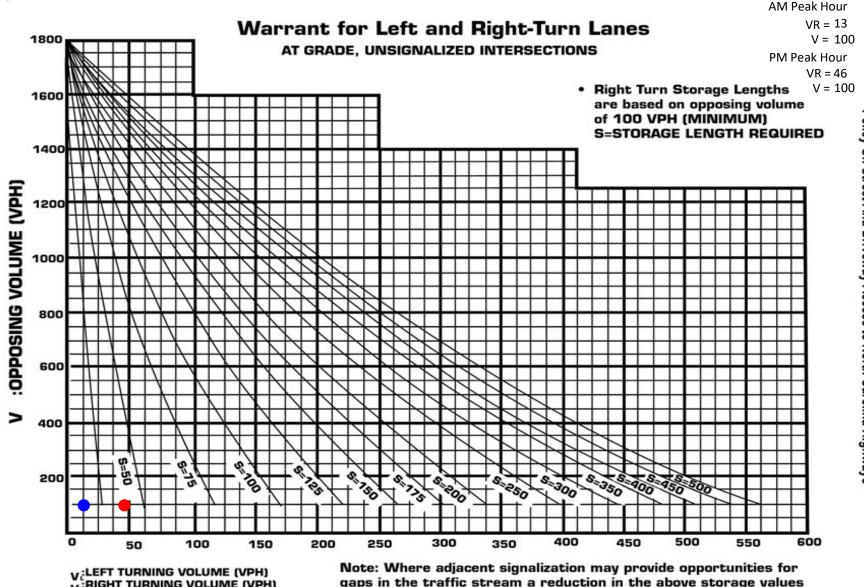
-

HCM Lane LOS

HCM 95th %tile Q(veh)

Appendix E – NCDOT Nomographs

Policy On Street And Driveway Access to North Carolina Highways


can be considered on a case by case basis.

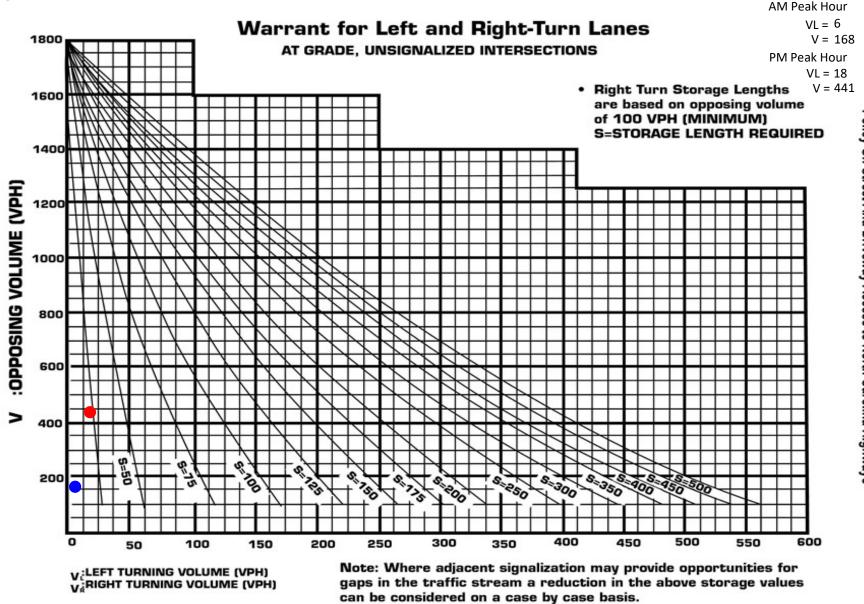
NC-96 (Arendell Ave) / Site Access 1

Northbound Left Turn

2026 Build AM and PM Peak Hours

LEGEND = AM Peak = PM Peak

V RIGHT TURNING VOLUME (VPH)


gaps in the traffic stream a reduction in the above storage values can be considered on a case by case basis.

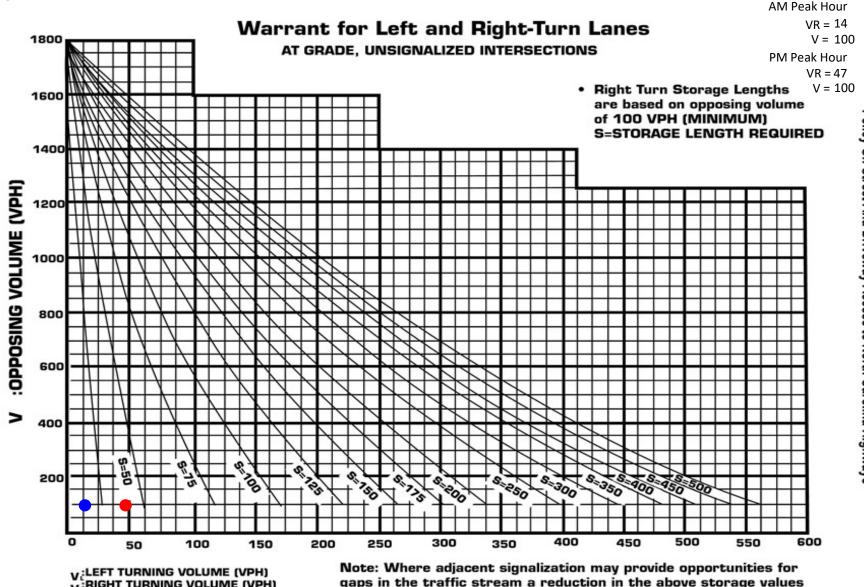
NC-96 (Arendell Ave) / Site Access 1

Southbound Right Turn

2026 Build AM and PM Peak Hours

LEGEND = AM Peak = PM Peak

Policy On Street And Driveway Access to North Carolina Highways



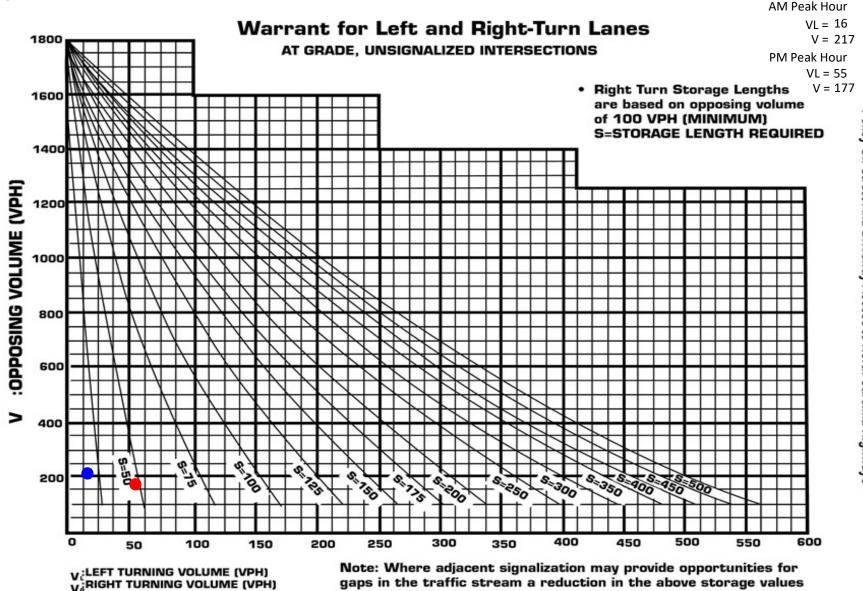
Northbound Left Turn

2026 Build AM and PM Peak Hours

LEGEND

= AM Peak= PM Peak

V RIGHT TURNING VOLUME (VPH)

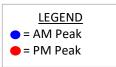

can be considered on a case by case basis.

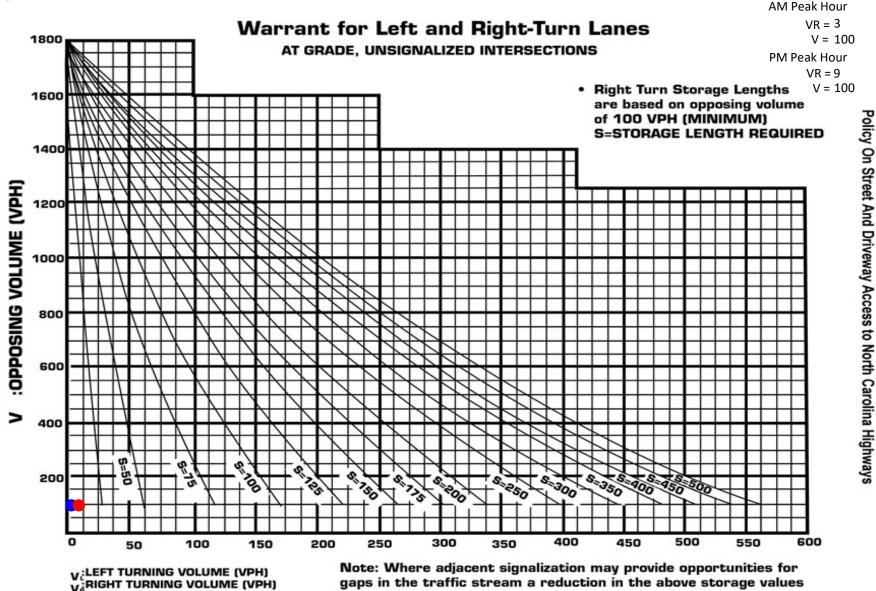
NC-96 (Arendell Ave) / Site Access 2

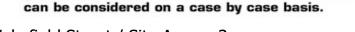
Southbound Right Turn

2026 Build AM and PM Peak Hours

LEGEND = AM Peak = PM Peak

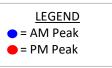

Policy On Street And Driveway Access to North Carolina Highways

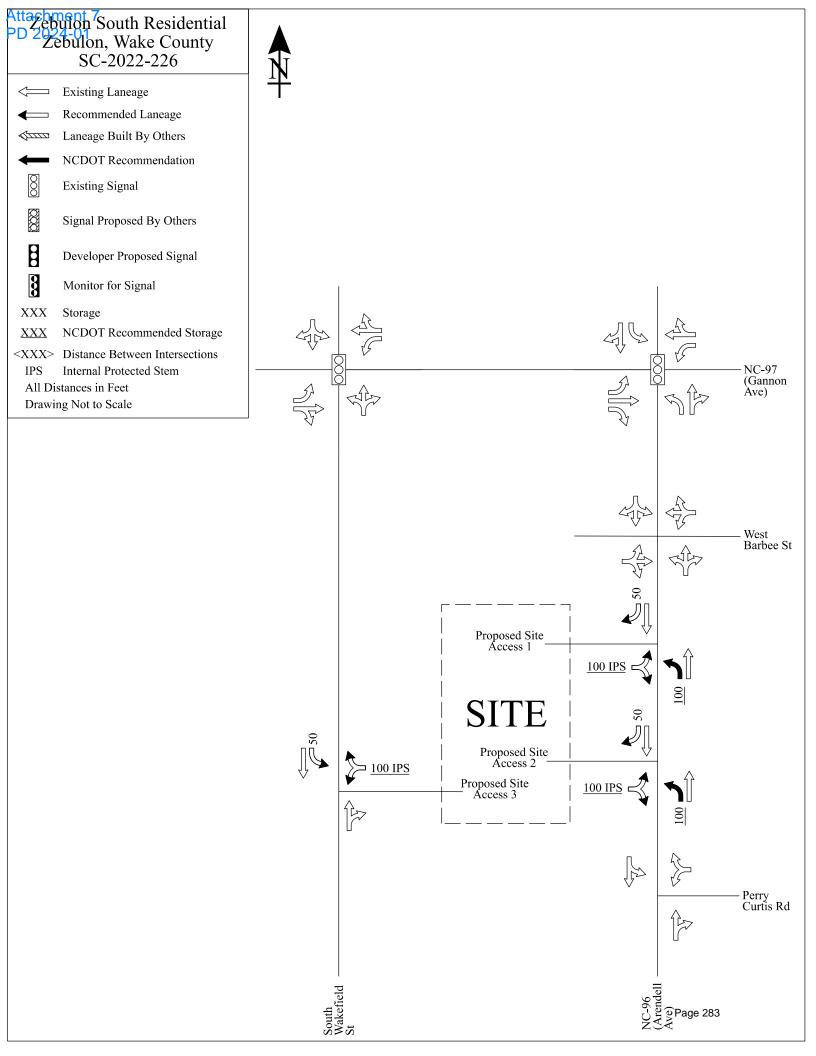

can be considered on a case by case basis.


S Wakefield Street / Site Access 3

Southbound Left Turn

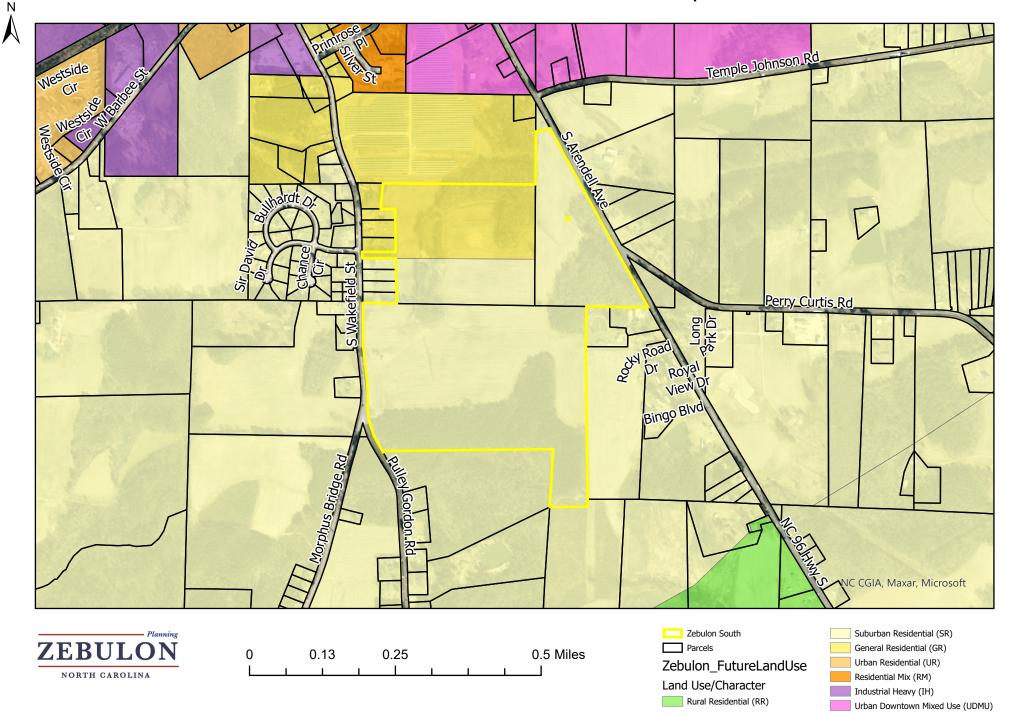
2026 Build AM and PM Peak Hours





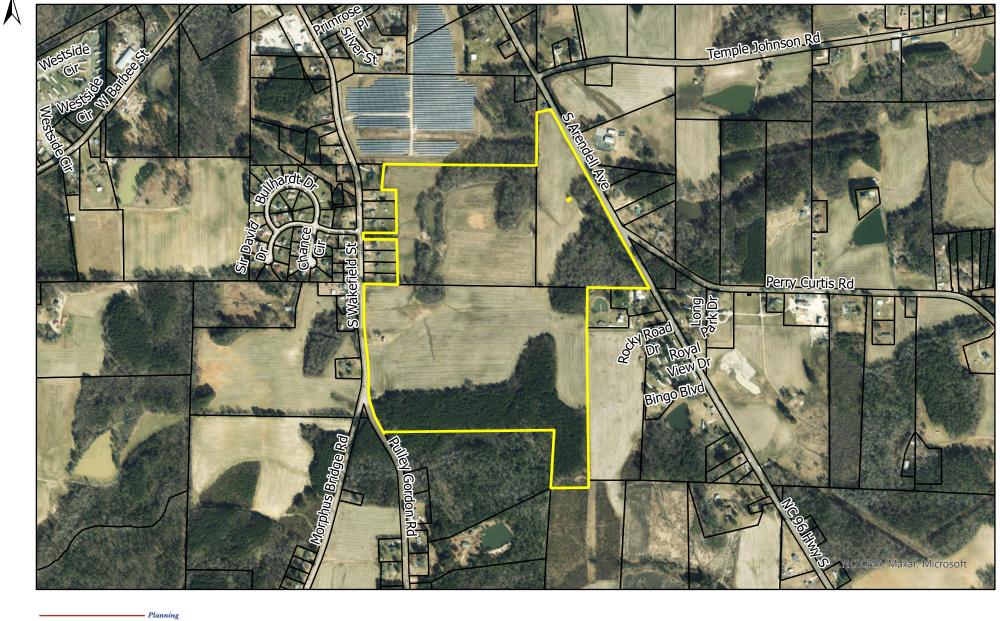
Northbound Right Turn

2026 Build AM and PM Peak Hours



Appendix F – NCDOT Requirements

Attachment 8 PD 2024-01


Future Land Use and Character Map


```
Attachment 9
PD 2024-01
```

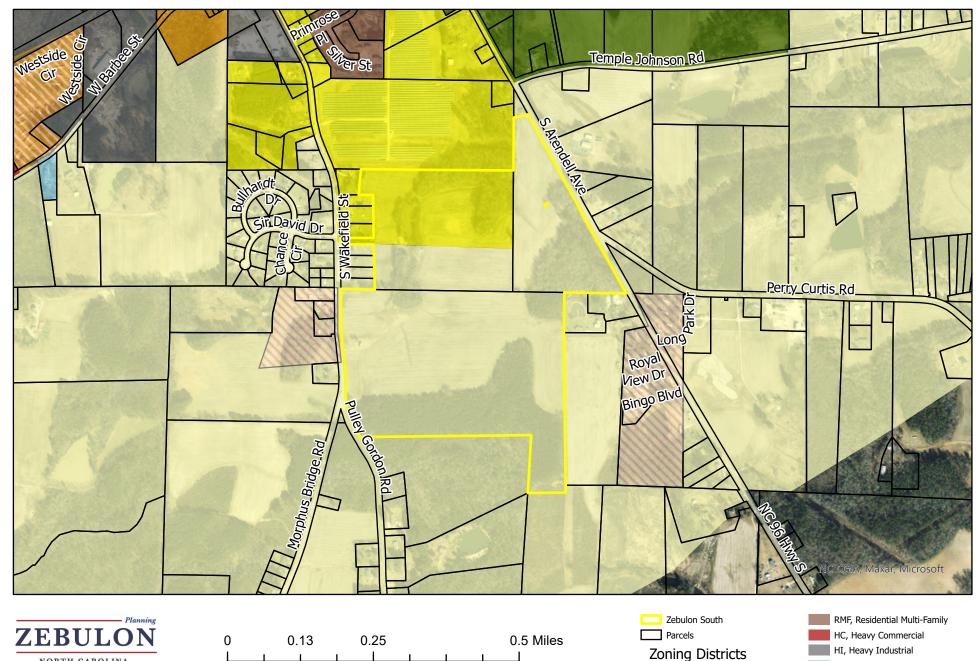
N

Aerial Map

0

0.13		0.25			
 	1		1	 1	

0.5 Miles


Parcels
Zebulon South

Attachment 10 PD 2024-01

NORTH CAROLINA

Zoning Map

OI, Office and Institutional

DTP, Downtown Periphery

MHO, Manufactured Home Overlay

Page 289

R2, Residential Suburban

R6, Residential Urban

R4, Residential Neighborhood

Site photo taken from side closest to Hwy 96

Site photo taken from the S. Wakefield side of the site.

Attachment 11 PD 2024-01

Some existing structures from the prior agricultural use on site

ZEBULON

NORTH CAROLINA

CASE # PD 2024-01 IDT# 886895- Zebulon South

PROJECT ADDRESS 751 S Wakefield St

PIN NUMBER: 2704492511/ 2705512202/ 2705413075

HEARING DATE: February 12, 2024

State of North Carolina

County of Wake

BEFORE ME, the undersigned Notary, <u>Lisa M. Markland</u> on this <u>30th</u> day of <u>January</u> 20<u>34</u>, personally appeared Michael J. Clark, known to me to be a credible person and of lawful age, who being by me first duly sworn, on his oath, deposes and says:

I Michael J. Clark, acting as the Planning Director for the Town of Zebulon, affirm that the following Public Notice Procedures have been completed in accordance with applicable North Carolina General Statute and Town of Zebulon Unified Development Ordinance Section 2.3.6 have been satisfied for the above referenced hearing.

• First Class Mailing Sent on 1/29/2024 (see attached mailing list and copy of mailing)

304

- Advertisement in a Paper of General Circulation sent on 1/29/2024 (Wake weekly, publication dates 2/2 & 2/9/2024)
- Posting Public Hearing Signage on Property on 1/29/2024 (pictures attached)
- Posted to Planning Department Website 1/29/2024
- Sent to E-Mail Distribution List on 1/29/2024

Michael J. Clark, AICP, CNU-A Subscribed and Syrorn to before me, this ____

Date

day of January

-isa M. Markland

[signature of Notary]

[printed name of Notary]

NOTARY PUBLIC

My commission expires: <u>3/29</u>, 20<u>25</u>.

Attachment 12 PD 2024-01

Notice of Public Hearing

Notice is hereby given pursuant to the provisions of Article 2.2.6 of the Town of Zebulon Unified Development Ordinance that a public hearing will be held on **February 12, 2024 at 6:00 PM** at the **Zebulon Municipal Complex, 1003 N. Arendell Avenue**, and will be conducted by the Board of Commissioners and Planning Board of the Town of Zebulon for the purpose of considering the following items:

IDT Project Number 886895 - PD 2024-01 – Zebulon South (751 S Wakefield St)

PIN # 2704492511, 2705512202, 2705413075. A request by Andrew Suriano of Deacon Development on behalf of property owners Harold Narron and Fred Corbett, Joseph Temple Sr and Alexander Harrison, Watson Family II LLC, for a rezoning to the Planned Development (PD) zoning district for the development of a 320 unit Planned Development.

IDT Project Number 1195805 - RZ 2024-01 - 321 Hospital Rd

PIN # 2705191832. A request by Germano Architecture and Interiors, PLLC on behalf of the property owners MiCy LLC., for a Zoning Map Amendment to the General Commercial (GC) zoning district.

Public comments may be submitted to Deputy Town Clerk Stacie Paratore at <u>SParatore@TownofZebulon.org</u> no later than 12:00 Noon on the day of the hearing to be read into the record. Links will be provided along with the full application packet and documentation on the Planning Department web page at <u>https://www.townofzebulon.org/departments/planning/public-hearing-information</u> For questions or additional information, please contact us at (919) 823-1816.

Wake Weekly February 2nd & 9th

3.5. General Mixed Use Zoning Districts

3.5.5. PLANNED DEVELOPMENT (PD) DISTRICT

A. PURPOSE AND INTENT

The Planned Development (PD) districts are established and intended to encourage innovative land planning and site design concepts that support a high quality of life and achieve a high quality of development, environmental sensitivity, energy efficiency, and other Town goals and objectives by:

- **a**. Reducing or diminishing the inflexibility or uniform design that sometimes results from strict application of zoning and development standards designed primarily for individual lots;
- **b.** Allowing greater freedom in selecting the means of providing access, open space, and design amenities;
- **C.** Allowing greater freedom in providing a well-integrated mix of residential and nonresidential land uses in the same development, including a mix of housing types, lot sizes, and densities;
- **d.** Creating a system of incentives for redevelopment and infill in order to revitalize established areas;
- **e.** Promoting a vibrant public realm by placing increased emphasis on active ground floor uses, pedestrian-oriented building façade design, intensive use of sidewalks, and establishment of public gathering areas;
- **f.** Providing for efficient use of land resulting in smaller networks of utilities and streets and thereby lowering development and housing costs; and
- **g.** Promoting quality design and environmentally sensitive development that respects surrounding established land use character and respects and takes advantage of a site's natural and man-made features, such as trees, estuaries, shorelines, special flood hazard area, and historic features.

B. GENERAL STANDARDS FOR ALL PLANNED DEVELOPMENTS

1. HOW ESTABLISHED

A planned development is established in a manner similar to the establishment of a conditional zoning district in accordance with the procedures and requirements in <u>Section 2.2.13</u>, Planned Development.

2. MASTER PLAN REQUIRED

All development configured as a PD shall be subject to a master plan submitted and approved as part of the application to establish the district. The master plan shall:

- **a.** Include a statement of planning objectives for the district;
- **b.** Describe the specific ways in which any modifications to the generally applicable standards in this Ordinance will result in a development of higher quality than would have otherwise resulted if the development was established without any proposed modifications to the standards in this Ordinance.
- **C.** Identify the general location of individual development areas, identified by land use(s) and/or development density or intensity;
- **d.** Depict the general configuration and relationship of the principal elements of the proposed development, including general building types;
- **e.** Identify for the entire district and each development area the acreage, types and mix of land uses, number of residential units (by use type), nonresidential floor area (by use type), residential density, and nonresidential intensity;
- **f.** Identify the general location, amount, and type (whether designated for active, passive, or urban) of open space;
- **g.** Identify the location of environmentally sensitive lands, wildlife habitat, and resource protection lands;
- **h.** Identify the on-site transportation circulation system, including the general location of all public and private streets, existing or projected transit service, pedestrian and vehicular circulation features, and how they will connect with existing and planned systems;
- i. Identify the general location of on-site potable water and wastewater facilities, and how they will connect to existing systems;
- **j.** Identify the general location of on-site stormwater management facilities, and how they will connect to existing public systems; and

ARTICLE 3: DISTRICTS

3.5. General Mixed Use Zoning Districts

3.5.5 Planned Development (PD) District

k. Identify the general location of all other on-site public facilities serving the development, including but not limited to parks, schools, bus shelters, and facilities for fire protection, police protection, EMS, and solid waste management.

3. COMPLIANCE WITH SUBDIVISION STANDARDS

Planned developments that include the division of land into two or more lots shall be subject to the subdivision standards in <u>Article 6: Subdivisions</u>, and shall be subject to the requirements of <u>Section</u> <u>2.2.14</u>, Preliminary Plat, and <u>Section 2.2.10</u>, Final Plat, prior to the issuance of a building permit.

4. SITE PLAN REVIEW

- **a.** The planned development master plan may take the form of a generalized concept plan for development that provides a general indication of building and site feature location, or may it may be configured to the level of detail associated with site plans and construction drawings depicting exact building placement, location and profile of public infrastructure, and configuration of site features like parking, landscaping, and similar elements.
- **b.** In cases where the master plan is more general or conceptual in nature, the development proposed in the planned development designation shall also undergo site plan review in accordance with <u>Section 2.2.17</u>, Site Plan.
- **C.** In cases where the master plan is detailed and meets the minimum requirements for a site plan in the opinion of the Board of Commissioners, the applicant shall request, and the Board of Commissioners may grant an exemption from subsequent site plan review.
- **d.** If a site plan review exemption is granted by the Board of Commissioners, the proposed development shall fully comply with the development configuration depicted in the planned development master plan. Failure to comply with the approved master plan configuration shall require an amendment of the planned development application in accordance with <u>Section</u> 2.2.17.I, Amendment.

5. **DENSITIES/INTENSITIES**

The densities for residential development and the intensities for nonresidential development applicable in each development area of a PD district shall be as established in the master plan, and shall be consistent with adopted policy guidance.

6. DIMENSIONAL STANDARDS

The dimensional standards applicable in each development area of a PD district shall be as established in the master plan. The master plan shall include at least the following types of dimensional standards:

- **a.** Minimum lot area;
- **b.** Minimum lot width;
- **c.** Minimum and maximum setbacks;
- **d.** Maximum lot coverage;
- e. Maximum building height;
- **f.** Maximum individual building size;
- **g.** Floor area ratio; and
- **h.** Minimum setbacks from adjoining residential development or residential zoning districts.

7. DEVELOPMENT STANDARDS

- **a.** All development in a PD district shall comply with the development standards of <u>Article 5:</u> <u>Development Standards</u>, and the subdivision and infrastructure design standards of <u>Article 6:</u> <u>Subdivisions</u>, unless modified in accordance with this section.
- **b.** In no instance shall a planned development district seek to modify, waive, or reduce any of the following standards:
 - i. <u>Section 3.8, Overlay Zoning Districts; or</u>
 - **ii.** <u>Section 6.5, Owners' Associations</u>.
- **C.** In cases where a planned development district is proposed as part of redevelopment of an existing site and the existing site does not comply with the standards in subsection (b) above, the development contemplated in the planned development shall not be required to achieve full

ARTICLE 3: DISTRICTS

3.5. General Mixed Use Zoning Districts

3.5.5 Planned Development (PD) District

compliance, but shall not increase the degree to which the development fails to comply with the standards in subsection (b) above.

8. CONSISTENCY WITH ADOPTED POLICY GUIDANCE

The PD zoning district designation, the master plan, and the terms and conditions document should be consistent with the Comprehensive Plan, and any applicable functional plans and small area plans adopted by the Town.

9. COMPATIBILITY WITH SURROUNDING AREAS

Development along the perimeter of a PD district shall be compatible with adjacent existing or proposed development. Where there are issues of compatibility, the master plan shall provide for transition areas at the edges of the PD district that provide for appropriate buffering and/or ensure a complementary character of uses. Determination of complementary character shall be based on densities/intensities, lot size and dimensions, building height, building mass and scale, hours of operation, exterior lighting, siting of service areas, or other aspects identified by the Board of Commissioners.

10. DEVELOPMENT PHASING PLAN

If development in the PD district is proposed to be phased, the master plan shall include a development phasing plan that identifies the general sequence or phases in which the district is proposed to be developed, including how residential and nonresidential development will be timed, how infrastructure (public and private) and open space will be provided and timed, and how development will be coordinated with the Town's capital improvements program.

11. CONVERSION SCHEDULE

- **a**. The planned development application may include a conversion schedule that identifies the extent to which one type of residential use may be converted to another type of residential use or one type of nonresidential use may be converted to another type of nonresidential use (i.e., residential to residential, or nonresidential to nonresidential). These conversions may occur within development areas and between development areas, as long as they occur within the same development phase, as identified by the approved development phasing plan, and are consistent with established extents of conversion set down in the conversion schedule.
- **b.** In the event an applicant seeks to revise the development in accordance with an approved conversion schedule, the applicant shall provide a revised site plan depicting the proposed conversions to the TRC for review and approval prior to commencing any conversions.

12. ON-SITE PUBLIC FACILITIES

a. DESIGN AND CONSTRUCTION

The master plan shall establish the responsibility of the developer/landowner to design and construct or install required and proposed on-site public facilities in compliance with applicable Town, state, and federal regulations.

b. DEDICATION

The master plan shall establish the responsibility of the developer/landowner to dedicate to the public the right-of-way and easements necessary for the construction or installation of required and proposed on-site public facilities in compliance with applicable Town, state, and federal regulations.

c. MODIFICATIONS TO STREET STANDARDS

In approving a master plan, the Board of Commissioners may approve modifications or reductions of street design standards—including those for right-of-way widths, pavement widths, required materials, provision of public transit amenities, and turning radii, with NCDOT approval, on finding that:

- **i.** The master plan provides for adequate separation/integration of vehicular, pedestrian, and bicycle traffic;
- **ii.** Access for emergency service vehicles is not substantially impaired;
- iii. Adequate parking is provided for the uses proposed; and

ARTICLE 3: DISTRICTS

3.5. General Mixed Use Zoning Districts

3.5.5 Planned Development (PD) District

- ${\bf iv.}\,$ Adequate space for public utilities is provided within the street right-of-way.

13. USES

The uses allowed in a PD district are identified in <u>Table 4.2.3</u>, <u>Principal Use Table</u>, as allowed subject to a master plan. Allowed uses shall be established in the master plan. Allowed uses shall be consistent with adopted policy guidance, the purpose of the particular PD district, and subject to any additional limitations or requirements set forth in <u>Section 4.3</u>, <u>Use-Specific Standards</u>, for the PD district. Nothing shall limit an applicant from seeking to modify an otherwise applicable use-specific standard in accordance with the standards in <u>Section 3.5.5.B.2</u>, <u>Master Plan Required</u>.

C. PLANNED DEVELOPMENT TERMS AND CONDITIONS

The terms and conditions document shall incorporate by reference or include, but not be limited to:

- 1. Conditions related to approval of the application for the PD zoning district classification;
- **2.** The master plan, including any density/intensity standards, dimensional standards, and development standards established in the master plan;
- **3.** Conditions related to the approval of the master plan, including any conditions related to the form and design of development shown in the master plan;
- **4.** Provisions addressing how transportation, potable water, wastewater, stormwater management, and other infrastructure will be provided to accommodate the proposed development;
- 5. Provisions related to environmental protection and monitoring; and
- **6.** Any other provisions the Board of Commissioners determines are relevant and necessary to the development of the PD in accordance with applicable standards and regulations.

D. AMENDMENTS TO APPROVED MASTER PLAN

Amendments or modifications to a master plan shall be considered in accordance with the standards in <u>Section 2.2.13</u>, <u>Planned Development</u>.

Adopted 06.07.2021

Rural Residential

This designation consists of lands that are sparsely developed, with mainly agricultural activity and very low-density residential as the primary uses along with more natural areas. This category provides its residents with the choice of relative seclusion within the countryside and away from a more developed setting. Some jurisdictions have limited rural character areas within their corporate limits, except in areas that have been annexed for eventual development or that are not suitable for future development. Other municipalities intentionally preserve rural character through the protections afforded by agricultural zoning. Floodplain areas may also retain their rural character over the long term given their unsuitability for any intensive land development.

Primary Land Use Types

- Agricultural uses.
- Scattered residential homesteads and clustered subdivision lots amid open space.

Characteristics

- Rural character from wide open landscapes, with minimal sense of enclosure and views to the horizon unbroken by buildings in most places.
- Scattered residential development on relatively large acreages, resulting in very high open space ratios and very low site coverage, and providing greater detachment from neighboring dwellings than in Estate Residential character areas.
- Typically no (or limited) centralized water or sanitary sewer service available. Also much greater reliance on natural drainage systems, except where altered significantly by agricultural operations or regional storm water management projects and/or infrastructure.
- Potential for conservation developments that further concentrate the overall development footprint through cluster designs, with increased open space set-aside to maintain the overall rural character and buffer adjacent properties. This may also make alternative community wastewater treatment methods feasible to eliminate the need for individual on-site septic systems.

South edge of planning area near Little River and the Wake County line.

Where on the Map

At the northern and southern edges of the larger planning area around Zebulon, aside from areas in the Rural Conservation category.

Attachment 14 PD 2024-01

Adopted 06.07.2021

Suburban Residential

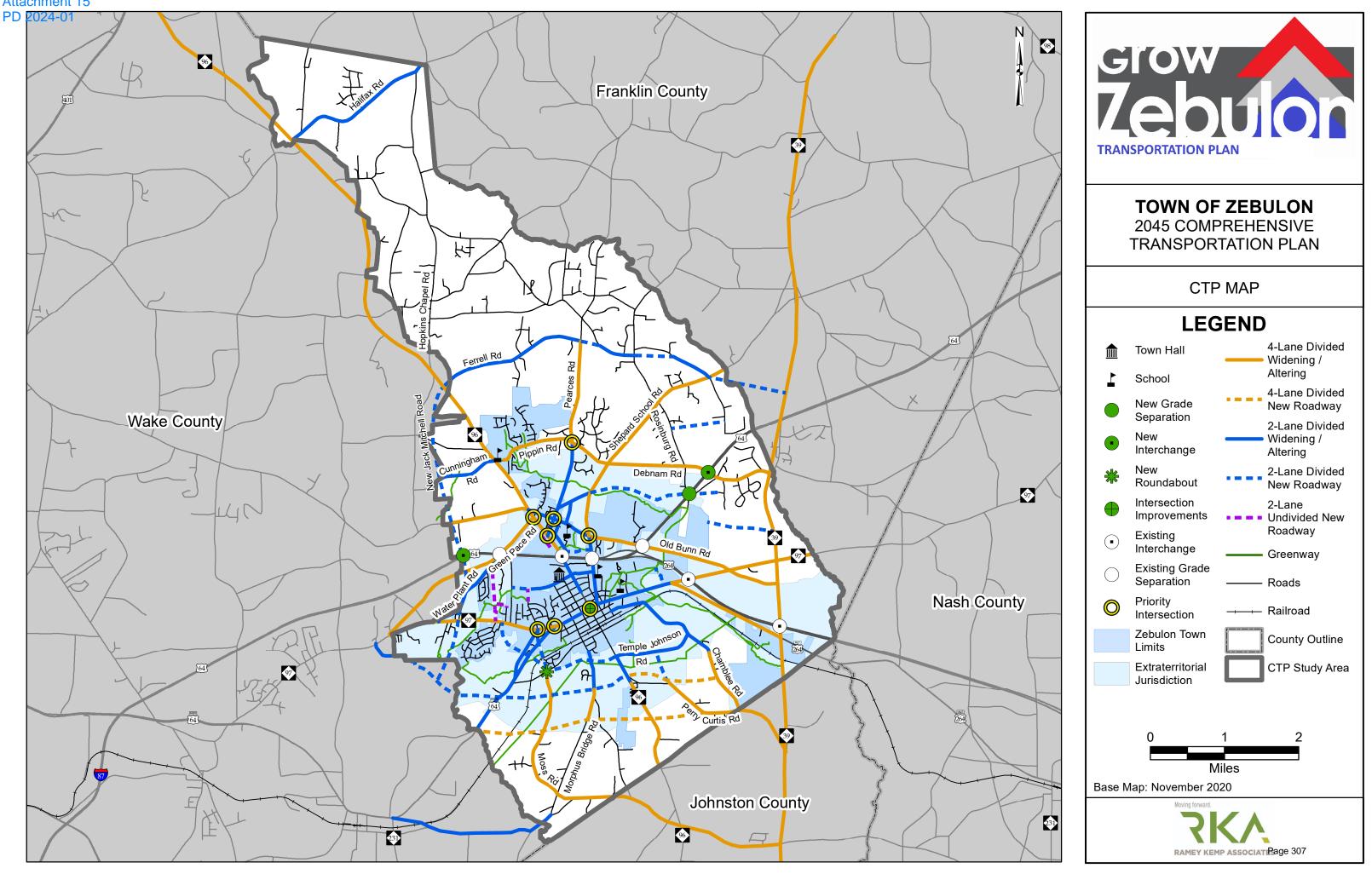
This designation is for residential areas where suburban character is established and preserved by achieving a balance between buildings and other site improvements relative to the degree of open space maintained within the neighborhood. The openness may be found in relatively large yard areas on individual lots and between homes and/or in common green spaces or water features. This distinguishes suburban character areas from more auto-oriented areas where site coverage in the form of dwellings, driveways and other paved surfaces predominates over open space.

Primary Land Use Types

- Detached residential dwellings.
- Planned developments that integrate other housing types (e.g., attached residential such as patio homes or townhomes), with increased open space to preserve an overall suburban character.
- Golf course subdivisions.

Characteristics

- Less noticeable accommodation of the automobile compared to more intensive autooriented areas, especially where driveways are on the side of homes rather than occupying a portion of the front yard and where garages are situated to the side or rear of the dwelling.
- A larger baseline minimum lot size in a Suburban Residential zoning district allows for deeper front yards and building setbacks and greater side separation between homes.
- Character-based zoning and development standards can also discourage overly standardized subdivision designs and promote conservation design by allowing for smaller lot sizes than the baseline in exchange for greater open space set-aside. This approach enables some viable use of sites partially constrained by topography or other factors. It also provides flexibility for additional housing forms that blend with the area's suburban residential character through additional on-site open space and perimeter buffering where differing housing types and densities are adjacent.
- More opportunity for natural and/or swale drainage (and storm water retention/absorption) relative to concentrated storm water conveyance in auto-oriented areas.


Subdivisions around Pippin Road in north Zebulon.

Where on the Map

Extensive coverage on the map, surrounding much of the core area of Zebulon in most directions, and all the way to the edge of the larger planning area in some locations.

Attachment 15

STAFF REPORT ZONING MAP AMENDMENT 2024-01 321 HOSPITAL RD FEBRUARY 12, 2024

Topic:RZ 2024-01 – 321 Hospital Rd,Speaker:Adam Culpepper, Senior PlannerFrom:Michael J. Clark, AICP, CNU-A, Planning DirectorPrepared by:Adam Culpepper, Senior PlannerApproved by:Joseph M. Moore II, PE, Town Manager

Executive Summary:

The Board of Commissioners will consider a Zoning Map Amendment for 321 Hospital Road (PIN# 1795932665). This is a legislative case.

Background:

The Applicant, Germano Architecture + Interiors, PLLC (Michael Germano) requests rezoning a .34-acre parcel from Office Institutional (OI) District to General Commercial (GC) District. The property is located on the west side of Hospital Rd and a secondary frontage on the eastern side of Pony Rd.

The applicant is not proposing any conditions and if approved, all uses permitted within the GC-General Commercial Zoning District would be permitted at the subject property.

Discussion:

Unified Development Ordinance (UDO) Section 2.2.25.J provides the following standards for the Board to base their decision on the rezoning request:

- 1. Whether the proposed rezoning advances the public health, safety, or welfare;
- 2. Whether, and the extent to which the proposed rezoning is appropriate for its proposed location, and is consistent with the purposes, goals, objectives, and policies of the Town's adopted policy guidance;
- 3. Whether an approval of the rezoning is reasonable and in the public interest;
- 4. Any other factors as the Board of Commissioners may determine to be relevant.

Policy Analysis:

Comprehensive Land Use Plan:

The Future Land Use and Character Map designates the future use of the property as General Commercial (GC). The GC designation is for commercial retail, office, and service uses located primarily along portions of major roadway corridors for high visibility and accessibility (re. Grow Zebulon: Comprehensive Land Use Plan (Land Use and Development section pg.18)). Primary land use types within this designation include automobile service-related enterprises, restaurant chains and "big box" commercial stores.

Unified Development Ordinance:

The applicant proposes no changes to the site as part of this Zoning Map Amendment. Any modifications to the site must adhere to Town regulations in accordance with the Unified Development Ordinance.

STAFF REPORT ZONING MAP AMENDMENT 2024-01 321 HOSPITAL RD FEBRUARY 12, 2024

Financial Analysis:

Amendment to the zoning map at the requested subject property to GC will allow the applicant to use the site for a wider array of commercial uses than permitted under OI district. The economic impact of the zoning map amendment will be minimal as the subject property was already used as commercial office space.

Staff Recommendation:

Staff recommends seeking public input during a joint public hearing and referring the matter to the Planning Board for recommendation.

Attachments:

- 1. Application
- 2. Future Land Use Map
- 3. Aerial Map
- 4. Zoning Map
- 5. Labeled Site Photos
- 6. Public Hearing Notification Affidavit
- 7. Principle Use Table Excerpt

Town of Zebulon

Planning Department

1003 N. Arendell Avenue, Zebulon, NC 27597 Phone: (919) 823-1810 Fax: (919) 887-2824 www.townofzebulon.org

ZONING MAP AMENDMENT PETITION

GENERAL INFORMATION:

In accordance with section 2.2.25 of the UDO, a Zoning Map Amendment provides a uniform means for reviewing and deciding proposed amendments to the Official Zoning Map whenever the public necessity, general welfare, the Town's adopted policy guidance, or appropriate land use practices justify or require doing so. This procedure sets out the requirements for amendments to the zoning district designation of land within the Town's planning jurisdiction as well as for land coming into the Town's planning jurisdiction via annexation in accordance with the standards in Sections 160A-382 through 160A-385 of the North Carolina General Statutes.

INSTRUCTIONS:

PRE-APPLICATION MEETING: A pre-application meeting with staff in accordance with Section 2.3.2 of the UDO to verify the application requirements, processes, and procedures regarding a proposed request. To schedule a meeting, applicants must e-mail a pdf map, drawing, model, site or sketch plan to the Planning Department (<u>Planning@townofzebulon.org</u>) no later than five (5) working days prior to the desired meeting day.

NEIGHBORHOOD MEETING: Neighborhood meetings are required in accordance with Section 2.3.4 of the UDO prior to application submission. The applicant is required to notify property owners and any neighborhood association that represents citizens within that area within 750 feet of the subject property via first class mail a minimum of 10 days in advance of the neighborhood meeting. The applicant shall use their own return address on the envelopes as the meeting is a private meeting between the developer and the neighbors. The applicant shall submit the "Certified List of Property Owners" and "Neighborhood Meeting Packet" forms included on the Town's website with their initial submittal.

ANNEXATION REQUIREMENTS: If a property or portion thereof subject to this rezoning is outside the corporate limits and ETJ, an annexation petition is **required** to be submitted on the same day as this application in accordance with section 2.2.2 of the UDO.

APPLICATION FOR ZONING MAP AMENDMENT

APPLICATION PROCEDURE: The applicant requesting a Zoning Map Amendment must submit an application through the Town of Zebulon GeoCivix Web Portal. As noted below some materials must be brought in person to the Zebulon Planning Department to complete the application process. Access to Geocivix can be found on the Town of Zebulon Website or through this link (<u>https://townofzebulon.geocivix.com/secure/</u>)

• Materials to Submit through the Town of Zebulon GeoCivix Web Portal:

- Completed Application Form
- PDF Plan Set (see site plan checklist)
- One (1) Legal Description (metes and bounds) of subject property
- Registered survey of subject property
- Certified List of Property Owners within 750 feet of subject property
- Owner's Consent Form
- Neighborhood Meeting Packet (If Required)

• Materials to Submit in Person with the Town of Zebulon Planning Department:

- Stamped envelopes addressed to Certified List of Property Owners all the homeowners associations of those properties within 750 feet of the outer boundary subject property or properties. Affixed with the following return address: Town of Zebulon Planning Department 1003 N. Arendell Ave Zebulon, NC 27597
- Petition Fee (Please See Fee Schedule) (Can be paid online but applicants must let Planning Staff know prior to paying)

PUBLIC HEARING PROCEDURE: Upon submittal of a complete application, the Planning Department will schedule the application for a joint public hearing before the Planning Board and the Board of Commissioners. APPLICANTS ARE STRONGLY ENCOURAGED TO CONTACT PLANNING STAFF AS SOON AS POSSIBLE TO ADDRESS ANY QUESTIONS ABOUT THE PUBLIC HEARING. Notices of the public hearing will be mailed to all adjacent property owners of the property being considered for a Zoning Map Amendment. At the public hearing, the applicant, proponents, and opponents will be given the opportunity to offer evidence in favor of or against the proposal. After completion of the public hearing, the Planning Board will deliberate and forward its recommendation to the Board of Commissioners for final consideration. Deadline dates and Joint Public Hearing dates can be found on the Town of Zebulon's website.

APPLICATION FOR ZONING MAP AMENDMENT

PART 1. DESCRIPTION OF REQUEST/PI	ROP	PERTY		
Street Address of the Property: 321 Hospital Road, Zebulon NC 27597			Acreage: .34	
Parcel Identification Number (NC PIN): 1795932665		Deed Book: 18056	Deed Page(s): 2394	
Existing Zoning of the Property: OI		Proposed Zoning of the Property: GC		
Existing Use of the Property:		Proposed Use of the Property:		
Vacant - Formerly Dentist		Wholesale Sales		
Reason for Rezoning: To allow for proposed use of property and bring parcel in line with the Town's Future Land Use Map.				
PART 2. APPLICANT/AGENT INFORMA	ATI(ON		
Name of Applicant/Agent:	icha	vel Cermano)		
Germano Architecture + Interiors, pllc (Michael Germano)				
106 N Arendell Ave		State:	Zip Code:	
Zebulon		NC	27597	
Email of Applicant/Agent:		Telephone Number of Applicant/Agent:	Fax Number of Applic	ant/Agent:
michael@germanoai.com		919.823.1894		
Are you the owner of the property? Are you the owner's agent? Yes Yes Yes Yes No Yes No No				
PART 3. PROPERTY OWNER INFORMATION				
Name of Property Owner:				
MiCy LLC Street Address of Property Owner:				
6013 Reedy Creek Rd				
City: Deleigh	State: NC	:	Zip Code:	
Raleigh Email of Property Owner:		hone Number of Property Owner: Fax Number of Property Owner:		y Owner:
6.cyrus@gmail.com	919.565.6365			
<i>I hereby state that the facts related in this application and any documents submitted herewith are complete, true, correct, and accurate to the best of my knowledge.</i>				
Signature of Applicant: M.J.		Print Name: Michael Gerr	nano	<i>Date:</i> 11/12
Signature of Owner: Cyrus Stacey		Print Name: Cyrus Stacey	/	<i>Date:</i> 04/12

APPLICATION FOR ZONING MAP AMENDMENT

LEGISLATIVE CONSIDERATIONS – ZONING MAP AMENDMENT

The applicant shall propose site-specific standards and conditions that take into account the following considerations, which are considerations that are relevant to the legislative determination of whether or not the proposed zoning district is in the public interest. Therese considerations do not exclude the legislative consideration of any other factor that is relevant to the public interest. Failure to adequately address the findings below may result in denial of the application. Please attach additional pages if necessary. The petition is justified based on the facts as they relate to the Standards in Section 2.2.25 J of the UDO as follows:

1. Please explain how the proposed Zoning Map Amendment advances the public health, safety, or welfare

This rezoning will allow for a currently vacant property to be re-established. We hope that this property will be a catalyst for redevelopment in the surrounding area.

2. Please explain how the proposed Zoning Map Amendment is appropriate for its proposed location, and is consistent with the purposes, goals, objectives, and policies of the town's adopted policy guidance;

The proposed change is in line with the Town's Future Land Use Map.

3. Please explain how an approval of the Zoning Map Amendment is reasonable and in the public interest;

The proposed change is in line with the Town's Future Land Use Map and stated goals of the Zebulon 2030 plan.

4. Please explain how the proposed Zoning Map Amendment addresses any other factors as the Board of Commissioners may determine to be relevant. These include but are not limited to the proposed uses requested and any requested deviations and proposed alternative means of compliance.

No deviations from the UDO are being requested. This is only a zoning map amendment request.

APPLICATION FOR ZONING MAP AMENDMENT

OWNER'S CONSENT FORM

Name of Project:

MiCy, IIc Offices

Submittal Date:

12/11/2023

OWNER'S AUTHORIZATION

I hereby give CONSENT to Germano Architecture + Interiors, pllc (type, stamp or print clearly full name of agent) to act on my behalf, to submit or have submitted this application and all required material and documents, and to attend and represent me at all meetings and public hearings pertaining to the application(s) indicated above. Furthermore, I hereby give consent to the party designated above to agree to all terms and conditions which may arise as part of the approval of this application.

I hereby certify I have full knowledge the property I have an ownership interest in is the subject of this application. I acknowledge and agree that, pursuant to Section 2.2.25 of the Town of Zebulon Unified Development Ordinance, that lands subject to a zoning map amendment shall be subject to all the standards, conditions, and plans approved as part of that application. These standards, plans, and approved conditions are perpetually binding on the land as an amendment to this Ordinance and the Official Zoning Map and may only be changed in accordance with the procedures established in this Ordinance. Development located outside the Town of Zebulon's corporate limits shall comply with all Town policies related to annexation and the extension of utilities. I understand that all other applicable standards and regulations of the UDO will remain applicable to the subject lands unless specifically listed as conditions or deviations as part of this request. I understand that any false, inaccurate or incomplete information provided by me or my agent will result in the denial, revocation or administrative withdrawal of this application, request, approval or permits. I acknowledge that additional information may be required to process this application. I further consent to the Town of Zebulon to publish, copy or reproduce any copyrighted document submitted as a part of this application for any third party. I further agree to all terms and conditions, which may be imposed as part of the approval of this application.

<u>Cyrus Stacey</u> Cyrus Stacey (Dec 4, 2023 14:16 EST)	Cyrus Stacey	04/12/2023
Signature of Owner	Print Name	Date

CERTIFICATION OF PROPERTY OWNER

I hereby certify the statements or information made in any paper or plans submitted herewith are true and correct to the best of my knowledge. I understand this application, related material and all attachments become official records of the Planning Department of the Town of Zebulon, North Carolina, and will not be returned.

Cyrus Stacey Cyrus Stacey (Dec 4, 2023 14:16 EST)	Cyrus Stacey	04/12/2023
Signature of Owner	Print Name	Date

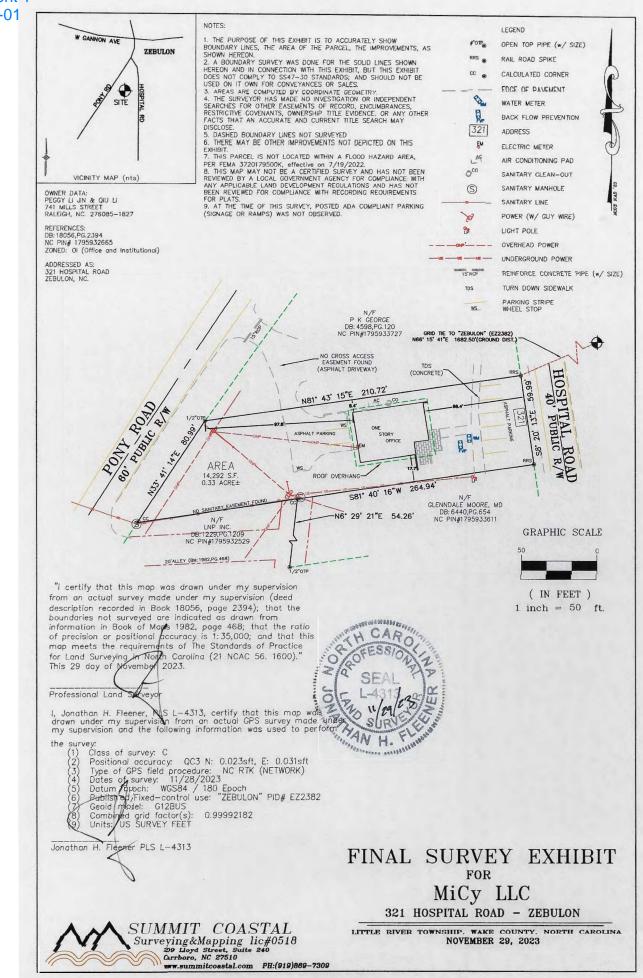
*Owner of record as shown by the Wake County Revenue Department (www.wakegov.com). An option to purchase does not constitute ownership. If ownership has been recently transferred, a copy of the deed must accompany this form.

APPLICATION FOR ZONING MAP AMENDMENT

ADJACENT OWNERS AND HOA CONTACTS:

Provide a certified list of property owners subject to this application and all properties owners within 750-feet feet of the subject property, and any HOA Contacts for developments which fall within 750-feet of the subject property.

Parcel Address	Parcel ID Number	Owner's Name
See attached list.		


HOA Contacts:

Development Name	Contact Name	Contact Address

JLON INC 1795926902 615 MACK TODD RD JLON INC 17959326902 615 MACK TODD RD JF00N INC 179593321 8101 W GANNON AVE 179593351 4017 WENDY LN 179593351 4017 WENDY LN IFFERES 179593352 615 MACK TODD RD IFFERES 1795931422 PARISH REALTY C/O RENEE BAKER IFFERES 1795931422 PARISH REALTY C/O RENEE BAKER IFFERES 1795931342 PARISH REALTY C/O RENEE BAKER JLON INC 1795931340 PARISH REALTY C/O RENEE BAKER JLON INC 1795931340 PARISH REALTY C/O RENEE BAKER JLON INC 1795931340 720 NEAL JLON INC 1795931340 720 NEAL <	Address	Owner	PIN Mailing Address 1	Mailing Address 2	Mailing Address 3
FAMILY DOLLAR STORES OF ZEBULON INC1795932082 ATTN: REAL, ESTATE TAXZEBULON CAPTTAL LLC17959333611 PO BOX 28510TIDEWATER INVESTORS ILLC17959333611 PO BOX 28510MOORE, GLENNDALE MD17959333611 PO BOX 28510WINDLEY, HEBER W III WINDLEY, GINA M17959333514 4017 WENDY LNMOORE, GLENNDALE MD17959333514 4017 WENDY LNMINDLEY, HEBER W III WINDLEY, GINE PARTIS1795933325 4000 WINSTON HILL DR APT 204URP INCURP INC1795931350 615 MACK TODD RDUNP INCUNP INC1795931350 615 MACK TODD RDUNP INCUNP INC1795931350 90 BOX 13500 HILL DR APT 204UNP INC1795931350 615 MACK TODD RDUNP INC1795931350 615 MACK TODD RDUNP INC1795931350 615 MACK TODD RDUNP INC1795931350 90 BARISH REALTY C/O RENEE BAKERUNP INC1795931350 307 HOSPITAL RDM FOWLER INC1795931350 307 HOSPITAL RDM FORDALL1795931350	CK TODD RD	HERITAGE BAPTIST CHURCH INC	1795926902 615 MACK TODD RD	ZEBULON NC 27597-9396	
ZEBULON CAPITAL LLC 17959333451 313 HOSPITAL RD TIDEWATER INVESTORS ILLC 1795933514 001 WENDY LN MOREC, FIEBR W II WINDLEY, GINA M 1795933514 001 WENDY LN WINDLEY, HEBR W II WINDLEY, GINA M 1795933514 4017 WENDY LN NCC ROPERTIES LLC 1795933514 4017 WENDY LN MINDLEY, HEBR W II WINDLEY, GINA M 1795933534 6101 WENDY LN NCC PROPERTIES LLC 1795933536 615 MACK TODD RD DANIEL G KAMIN ZEBULON ENTERPRISES 1795931422 PARISH REALTY C/O RENEE BAKER DANIE LOC 1795931540 PARISH REALTY C/O RENEE BAKER LUP INC 1795931540 PARISH REALTY C/O RENEE BAKER LUP INC 1795931540 PARISH REALTY C/O RENEE BAKER SOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH D 1795931540 PARISH REALTY C/O RENEE BAKER LUP INC 1795931540 PARISH REALTY C/O RENEE BAKER SOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH D 17959312540 PARISH REALTY C/O RENEE BAKER LUP INC 1795931421 PARISH REALTY C/O RENEE BAKER SOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH D 1795931421 PARISH REALTY C/O RENEE BAKER M FOWLER INC 1795931421 PARISH REALTY C/O RENEE BAKER LUP INC LUP INC 1795931421 PARISH REALTY C/O RENEE BAKER <td>GANNON AVE</td> <td>FAMILY DOLLAR STORES OF ZEBULON INC</td> <td>1795942082 ATTN: REAL ESTATE TAX</td> <td>500 VOLVO PKWY</td> <td>CHESAPEAKE VA 23320-1604</td>	GANNON AVE	FAMILY DOLLAR STORES OF ZEBULON INC	1795942082 ATTN: REAL ESTATE TAX	500 VOLVO PKWY	CHESAPEAKE VA 23320-1604
TIDEWATER INVESTORS I LLC1795832846 1011 W GANNON AVEMORE, GLENNDALE MD1795933511 PO BOX 28510MORE, GLENNDALE MD1795933514 4017 WENDY LNJNCI PROFERTIES LLC1795933514 4017 WENDY LNJNCI PROFERTIES LLC1795933514 4017 WENDY LNJNCI PROFERTIES LLC179593352 4000 WINSTON HILL DR APT 204JNCI PROFERTIES LLC1795933250 615 MACK TODD RDDANIEL G KAMIN ZEBULON ENTERPRISES1795933254 900 WINSTON HILL DR APT 204JNCJNC1795933250 615 MACK TODD RDLNP INC1795931350 PARISH REALTY C/O RENEE BAKERLNP INC1795931393 307 HOSPITAL RDSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH D1795931395 307 HOSPITAL RDM FOWLER INC1795931395 307 HOSPITAL RDM M FOWLER INC1795931380 PARISH REALTY C/O RENEE BAKERLNPINC1795931380 PARISH REALTY C/O RENEE BAKERLNPINC1795934312 DI LU C <td>SPITAL RD</td> <td>ZEBULON CAPITAL LLC</td> <td>1795933427 313 HOSPITAL RD</td> <td>ZEBULON NC 27597-2542</td> <td></td>	SPITAL RD	ZEBULON CAPITAL LLC	1795933427 313 HOSPITAL RD	ZEBULON NC 27597-2542	
MOORE, GLENNDALE MD1795933511 PO BOX 28510WINDLEY, HEBE W III WINDLEY, GINA MI1795933541 4017 WINTERD IIJNCI PROPERTIES LLC1795933354 4017 WINTERD IIJNCI PROPERTIES LLC1795933354 900 WINSTON HILL DR APT 204JNCI PROPERTIES LLC1795933352 4000 WINSTON HILL DR APT 204AGORGE, P. K1795933327 4000 WINSTON HILL DR APT 204LINP INC1795933350 615 MACK TODD RDLINP INC1795933350 615 MACK TODD RDLINP INC1795933350 615 MACK TODD RDLINP INC1795933353 07 HOSPITAL RDLINP INC17959331356 DARRISH REALTY C/O RENEE BAKERLINP INC17959331357 1010 4220 NEAL RDLINP INC1795933358 201 MOINON ANELINP INC1795933358 201 MOINON ANELINP INC1795933358 201 MOINON ANELINP INC1795933158 203 BARISH REALTY C/O RENEE BAKERLINP INC1795934358 201 DO 111 W GANNON ANELINP INC </td <td>GANNON AVE</td> <td>TIDEWATER INVESTORS I LLC</td> <td>1795832846 1011 W GANNON AVE</td> <td>ZEBULON NC 27597-2130</td> <td></td>	GANNON AVE	TIDEWATER INVESTORS I LLC	1795832846 1011 W GANNON AVE	ZEBULON NC 27597-2130	
WINDLEY, HEBER W III WINDLEY, GINA M1795333514 4017 WENDY LNINCI PROPERTIES LLCINCI PROPERTIES LLCDANIEL G KAMIN ZEBULON ENTERPRISES179533124 ALALTY CJO RELEES DRDANIEL G KAMIN ZEBULON ENTERPRISES179533127 4000 WINSTON HILL DR APT 204DERGE, P.K179533122 PARRISH REALTY C/O RENEE BAKERLINP INC179533122 PARRISH REALTY C/O RENEE BAKERLINP INC179533122 PARRISH REALTY C/O RENEE BAKERLINP INC1795331540 PARRISH REALTY C/O RENEE BAKERLINP INC	OSPITAL RD	MOORE, GLENNDALE MD	1795933611 PO BOX 28510	RALEIGH NC 27611-8510	
INCI PROPERTIES LLCITOPSOPERTIES LLCDANIEL G KAMIN ZEBULON ENTERPRISEST7959232933 621 WALTERS DRDANIEL G KAMIN ZEBULON ENTERPRISEST795933272 90 BOX 10234GEORGE, PKT795931240 WINSTON HILL DR APT 204NP INCT795931242 PARRISH REALTY C/O RENEE BAKERLINP INCT795931242 PARRISH REALTY C/O RENEE BAKERLINP INCT795931242 PARRISH REALTY C/O RENEE BAKERLINP INCT795931240 PARRISH REALTY C/O RENEE BAKERLNP INCT795931240 PARRISH REALTY C/O RENEE BAKERLNP INCT795931297 PARRISH REALTY C/O RENEE BAKERLNP INCT795931297 PARRISH REALTY C/O RENEE BAKERLNP INCT795931290 PARRISH REALTY C/O RENEE BAKERLNP INCT795931291 PARRISH REALTY C/O RENEE BAKERLNP INCT795931291 PARRISH REALTY C/O RENEE BAKERSOUTH ATLANTIC CONFERENCE ON INCT795931291 PARRISH REALTY C/O RENEE BAKERLNP INCT795931291 PARRISH REALTY C/O RENEE BAKERSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH DT795931291 PARRISH REALTY C/O RENEE BAKERLNP INCTHE CARRINGTON INCT795931291 PARRISH REALTY C/O RENEE BAKERTHE CARRINGTON LAR STORES OF ZEBULON INCT795931291 PARTIN REAL TAXTHE CARRINGTON APARTIMENTS LPT795934213 1011 W GANNON AVETHE CARRINGTON APARTISH LLCT795933255 125 OLD CHAPIN RDTHE CARRINGTON APARTILCT795933255 125 OLD CHAPIN RDTHE CARRINGTON APARTILCT795933255 125 OLD CHAPIN RDCOLLADO, LLCT795933255 125 OLD CHAPIN RDJN, PEGOY LJ, DUJUT795933255 550 DON VILCJN, PEGOY LJ, DUJUT	OSPITAL RD	WINDLEY, HEBER W III WINDLEY, GINA M	1795933514 4017 WENDY LN	ZEBULON NC 27597-7631	
DAVIEL G KAMIN ZEBULON ENTERPRISES17959347549 PO BOX 10234DAVIEL G KAMIN ZEBULON ENTERPRISES1795933272 4000 WINSTON HILL DR APT 204GEORGE, P K17959332532 PARRISH REALTY C/O RENEE BAKERLNP INC1795931540 PARRISH REALTY C/O RENEE BAKERSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH D1795931359 TARRISH REALTY C/O RENEE BAKERNM FOWLER INC17959313540 PARRISH REALTY C/O RENEE BAKERSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH D17959313541 ATTN: REAL ESTATE TAXLIN INC1795931359 TARRISH REALTY C/O RENEE BAKERSOUTH ATLANTIC CONFERENCE ASSOCIATION NC17959313541 ATTN: REAL ESTATE TAXLIN INC17959313541 ATTN: REAL ESTATE TAXLIN INC1795931359 TARRISH REALTY C/O RENEE BAKERFAMILY DOLLAR STORES OF ZEBULON INC1795931351 TATN: REAL ESTATE TAXLIN INC1795931351 TATN: REAL ESTATE TAXTIDEWATER INVESTORS I LLC1795933052 INUTATION HOMES-TAX DEPTTIDEWATER INVESTORS I LLC1795933052 ILD IOI 101 W GANNON AVETIDEWATER INVESTOR ILLC1795933158 2030 BARRISH REALTY C/O RENEE BAKERTIDEWATER INVESTOR ILLC1795933158 2030 BARRISH REALTY C/O RENEE BAKERTIDEWATER INVESTOR LLC1795933257 S6 ID IOI HOMES-TAX DEPTTIDEWATER INVESTOR ILLC1795933258 G MARIA M COLLADO. RANNON AVETIDEWATER INVESTOR LLC1795933258 2030 BARRISH REALTY C/O RENEE BAKERTIDEWATER INVESTOR ILC1795933258 2	1ACK TODD RD	JNCJ PROPERTIES LLC	1795929933 621 WALTERS DR	WAKE FOREST NC 27587-6180	
GEORGE, P.K1795933727 4000 WINSTON HILL DR APT 204 HERTFAGE BAPTIST CHURCH INC17959333727 4000 WINSTON HILL DR APT 204 1795931420 PARRISH REALTY C/O RENEE BAKER 1795931420 PARRISH REALTY C/O RENEE BAKER 1795931540 PARRISH REALTY C/O RENEE BAKER 1795931540 PARRISH REALTY C/O RENEE BAKER 1795931540 PARRISH REALTY C/O RENEE BAKER 1795931393 307 HOSPITAL RDLNP INC1795931540 PARRISH REALTY C/O RENEE BAKER 1795931393 307 HOSPITAL RDLNP INC1795931540 PARRISH REALTY C/O RENEE BAKER 1795931391 ATTN. REAL ESTATE TAX 1795931391 ATTN. REAL ESTATE TAX 1795933962 INVITATION HOMES-TAX DEPT 1795933962 INVITATION HOMES-TAX DEPT 17959333665 TA1 MILLCCOLLADO, LLC17959346170 1011 W GANNON AVE 1795933586 MARIA M COLLADO-RAMIREZ 1795933586 MARIA M COLLADO AVE STE 201 1795933275 S60 TA1 MILLS AT 1795933275 S60 TA1 MILLS AT 1795933275 S60 TA1 MILLS AT 1795933275 S60 TA1 MILLS AT 17959	V GANNON AVE	DANIEL G KAMIN ZEBULON ENTERPRISES	1795947549 PO BOX 10234	PITTSBURGH PA 15232-0234	
HERITAGE BAPTIST CHURCH INC1795933380 615 MACK TODD RDLNP INC1795931422 PARISH REALTY C/O RENEE BAKERLNP INC1795931322 PARISH REALTY C/O RENEE BAKERLNP INC1795931340 PARISH REALTY C/O RENEE BAKERSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH D1795931395 307 HOSPITAL RDSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH D1795931395 307 HOSPITAL RDNM FOWLER INC1795931395 307 HOSPITAL RDSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH D1795931395 307 HOSPITAL RDNM FOWLER INC1795931395 307 HOSPITAL RDLINP INC1795931395 307 HOSPITAL RDLINP INC1795931395 307 HOSPITAL RDLINP INC1795931395 307 HOSPITAL RDLINP INC1795931395 307 HOSPITAL RDLINDEWATER INVESTORS I LLC1795931391 1011 W GANINON AVETIDEWATER INVESTORS I LLC1795934131 1011 W GANINON AVETIDEWATER INVESTORS I LLC1795933255 125 OLD CHAPIN RDTHE CARRINGTON APARTMENTS LP1795933255 125 OLD CHAPIN RDCOLLADO, LLC1795933255 125 OLD CHAPIN RDCOLLADO, LLC1795933255 125 OLD CHAPIN RDCOLLADO, LLC1795933255 100 CHAPIN RDCOLLADO, LLC1795933255 100 CHAPIN RDCOLLADO, LLC1795933255 100 CHAPIN RDCOLLADO, LLC1795933255 66 741 MILLS FTZEBULON GREEN ASSOCIATES LIMITED PARTNERSHIPNRALVILC1795933255 100 CHAPIN RDJN, PEGEC LL, JI QIU1795933255 665 741 MILLS FTJN, PEGEC LL, JI QIU17959332255665 741 MILLS FTJN, PEGEC LLC17959332255565 741 MILLS FT	HOSPITAL RD	GEORGE, P K	1795933727 4000 WINSTON HILL DR APT 204	CARY NC 27513-8151	
INFING1795931422 PARRISH REALTY C/O RENEE BAKERINPINGINFINGINPINGINFINGINPINGINFINGINPINGINFINGINPINGINFINGINPINGINFINGINPINGINFINGINPINGINFINGINPINGINFINGSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH DSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH DSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH DNM FOWLER INCINPINGINPINGINPINGIND INCINPINGIND INCIND INC <td< td=""><td>AACK TODD RD</td><td>HERITAGE BAPTIST CHURCH INC</td><td>1795923580 615 MACK TODD RD</td><td>ZEBULON NC 27597-9396</td><td></td></td<>	AACK TODD RD	HERITAGE BAPTIST CHURCH INC	1795923580 615 MACK TODD RD	ZEBULON NC 27597-9396	
LNP INCI795932529 PARISH REALTY C/O RENEE BAKERLNP INCLNP INCLNP INCSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH DSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH DI795931354 O PARISH REALTY C/O RENEE BAKERSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH DI795931354 O PARISH REALTY C/O RENEE BAKERSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH DI795931354 O PARISH REALTY C/O RENEE BAKERNM FOWLER INCLNP INCLNP INCI795931395 307 HOSPITAL RDLNP INCI7959313971 ATTN: REAL ESTATE TAXLNP INCI7959313971 ATTN: REAL ESTATE TAXTIDEWATER INVESTORS I LLCI7959344133 1011 W GANNON AVETIDEWATER INVESTORS I LLCI795934261 10011 W GANNON AVETIDEWATER INVESTOR I LLCI795934253 1011 W GANNON AVETIDEWATER INVESTOR I LLCI79593455 125 0LD CHAPIN RDTHE CARRINGTON APARTMENTS LPI79593455 125 0LD CHAPIN RDVENTAS GC ZEBULON LPI795933556 TA1 MILLS ATCOLLADO, LLCI795933158 2939 BREEZEWOOD AVE STE 201JN, PEGSV LI, JI QIUI7959332555 CA1 MILLS ATJN, PEGSV LI, JI QIUI795932665 741 MILLS ATJN, PEGSV LI, JI QIUI7959332555 541 MILLS ATJN, PEGSV LI, JI QIUI7959332555 541 MILLS ATJN, PEGSV LICJ7959332555 541 MILLS ATJN, PEGSV LICJ7959332555 541 MILLS ATJN, PEGSV LICJ7959332555 541 MILLS ATJN, PEGSV LICJ7959332555555555555555555555555555555555	ONY RD	LNP INC	1795931422 PARRISH REALTY C/O RENEE BAKER	PO BOX 1128	ZEBULON NC 27597-1128
INC1795931540 PARISH REALTY C/O RENEE BAKERSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH D7795931395 307 HOSPITAL RDSOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH D7795931395 307 HOSPITAL RDN M FOWLER INC1795931091 4220 NEAL RDINP INC7795931071 ATTN: REALESTATE TAXFAMILY DOLLAR STORES OF ZEBULON INC7795931971 ATTN: REAL ESTATE TAXTIDEWATER INVESTORS I LLC7795931971 ATTN: REAL ESTATE TAXTIDEWATER INVESTORS I LLC7795933962 INVITATION HOMES-TAX DEPTVRAVIHARI LLC7795933555 125 OLD CHAPIN RDVRAVIHARI LLC77959335786 MARIA M COLLADO-RAMIREZTHE CARRINGTON APARTMENTS LP77959335786 MARIA M COLLADO-RAMIREZCOLLADO, LLC77959335786 MARIA M COLLADO-RAMIREZIN, PEGGY LI, JI QIU77959335786 MARIA M COLLADO-RAMIREZIN, PEGGY LI, JI QIU77959332665 741 MILLS STIN, PEGGY LI, JI QIU77959332655 741 MILLS STIN, PEGY LL, JI QIU7795933275 5561 MONELY DA STE 203IN, POSPITAL ROAD LLC7795933275 5561 MONELY DA STE 203301 HOSPITAL ROAD LLC77959332805 5441 MILLS ST301 HOSPITAL ROAD LLC77959332805 5441 MILLS ST301 HOSPITAL ROAD LLC77959332865 5441 MILLS ST301 HOSPITAL ROAD LLC <td< td=""><td>ONY RD</td><td>LNP INC</td><td>1795932529 PARRISH REALTY C/O RENEE BAKER</td><td>PO BOX 1128</td><td>ZEBULON NC 27597-1128</td></td<>	ONY RD	LNP INC	1795932529 PARRISH REALTY C/O RENEE BAKER	PO BOX 1128	ZEBULON NC 27597-1128
SOUTH ATLANTIC CONFERENCE ASSOCIATION OF SEVENTH D1795931395307 HOSPITAL RDM M FOWLER INCLNP INC17959310914220 NEAL RDINP INCTNP INC17959310914220 NEAL RDFAMILY DOLLAR STORES OF ZEBULON INC1795931971ATTN: REAL ESTATE TAXTIDEWATER INVESTORS I LLC1795931971ATTN: REAL ESTATE TAXTIDEWATER INVESTORS I LLC1795931971ATTN: REAL ESTATE TAXTIDEWATER INVESTORS I LLC1795931971ATTN: REAL ESTATE TAXTIDEWATER INVESTORS I LLC179593461701011 W GANNON AVETIDEWATER INVESTORS I LLC1795933962INVITATION HOMES-TAX DEPTTIDEWATER INVESTORS I LLC1795933655101 W HARPER STVENTAS GC ZEBULON LP1795933655101 W HARPER STVRAVIHARI LLC1795933655100 W HARPER STTHE CARRINGTON APARTMENTS LP17959331582939 BREEZEWOOD AVE STE 201COLLADO, LLC17959331582939 BREEZEWOOD AVE STE 201JN, PEGGY LI, JI QIU17959332565741 MILLS STSEBULON TOWN LLC17959332665741 MILLS STJN, PEGGY LL, JI QIU17959332665741 MILLS STZEBULON TOWN LLC17959332665741 MILLS STJN, PEGGY LL, JI QIU17959332665741 MILLS STJN, PEGGY LL, JI QIU17959332665741 MILLS STJN, PEGGY LL, JI QIU17959332275561 MONTELV DRJN, PLC17959332275561 MONTELV DRJN, HOSPITAL ROAD LLC17959332805744 NNEW HOPE RDJN, HOSPITAL ROAD LLC17959332865744 NNEW HO	ONY RD	LNP INC	1795931540 PARRISH REALTY C/O RENEE BAKER	PO BOX 1128	ZEBULON NC 27597-1128
M FOWLER INC17959410104220 NEAL RDLNP INCLNP INC1795930080PARRISH REALTY C/O RENEE BAKERFAMILY DOLLAR STORES OF ZEBULON INC1795931971ATTN: REAL ESTATE TAXTIDEWATER INVESTORS I LLC179583461701011 W GANNON AVETIDEWATER INVESTORS I LLC1795933962INVITATION HOMES-TAX DEPTTIDEWATER INVESTORS I LLC1795933962INVITATION HOMES-TAX DEPTTIDEWATER INVESTORS I LLC1795933962INVITATION HOMES-TAX DEPTTIDEWATER INVESTORS I LLC1795933555125 OLD CHAPIN RDVENTAS GC ZEBULON LP1795933555125 OLD CHAPIN RDVRAVIHARI LLC1795933555125 OLD CHAPIN RDCOLLADO, LLC1795933555100 W HARPER STCOLLADO, LLC17959331582339 BREEZEWOOD AVE STE 201COLLADO, LLC17959331582939 BREEZEWOOD AVE STE 201SEBULON GREEN ASSOCIATES LIMITED PARTNERSHIP17959332565741 MILLS STCOMPLIANT INVESTCO LLC17959332665741 MILLS STJIN, PEGGY LI, JI QIU17959332665741 MILLS STZEBULON TOWN LLC17959332755561 MONTELV DRJIN, PEGY LL, JI QIU17959332751795933275ZEBULON TOWN LLC17959332665741 MILLS STJIN, PEGY LL, JI QIU17959332751795933275ZEBULON TOWN LLC17959332751795933275JIN HOSPITAL ROAD LLC17959332805744 N NEW HOPE RDJI HOSPITAL ROAD LLC17959332805744 N NEW HOPE RDJI HOSPITAL ROAD LLC1795933280517959332805JI HO	HOSPITAL RD		1795931395 307 HOSPITAL RD	ZEBULON NC 27597-2542	
LNP INC1795930080 PARRISH REALTY C/O RENEE BAKERFAMILY DOLLAR STORES OF ZEBULON INC1795931971 ATTN: REAL ESTATE TAXTIDEWATER INVESTORS I LLC1795846170 1011 W GANNON AVETIDEWATER INVESTORS I LLC17958346170 1011 W GANNON AVETIDEWATER INVESTORS I LLC1795834193 1011 W GANNON AVETIDEWATER INVESTORS I LLC1795933962 INVITATION HOMES-TAX DEPTVENTAS GC ZEBULON LP1795933655 125 0LD CHAPIN RDVRAJVIHARI LLC1795933755 125 0LD CHAPIN RDCOLLADO, LLC1795933755 125 0LD CHAPIN RDCOLLADO, LLC1795933158 2939 BREEZEWOOD AVE STE 201JIN, PEGGY LI, JI QIU1795933158 2939 BREEZEWOOD AVE STE 201JIN, PEGGY LI, JI QIU1795932665 741 MILLS STJIN, PEGGY LI, JI QIU1795932265 741 MILLS STJIN, PEGGY LL, JI QIU1795932265 741 MILLS STJIN, PEGY LL, JI QIU179593227 5561 MONTELV DR RTJIN, PEGY LL, JI QIU179593227 5561 MONTELV DR RTJIN HOSPITAL ROAD LLC179593227 5561 MONTELV DR RTJOT HOSPITAL ROAD LLC17959332805 4544 N NEW HOPE RDJOT HOSPITAL ROAD LLC17959332805 4544 N NEW HOPE RD	V GANNON AVE	M M FOWLER INC	1795941010 4220 NEAL RD	DURHAM NC 27705-2322	
FAMILY DOLLAR STORES OF ZEBULON INC1795931971 ATTN: REAL ESTATE TAXTIDEWATER INVESTORS I LLC1795846170 1011 W GANNON AVETIDEWATER INVESTORS I LLC1795844193 1011 W GANNON AVETIDEWATER INVESTORS I LLC17958346170 1011 W GANNON AVETIDEWATER INVESTORS I LLC1795933962 INVITATION HOMES-TAX DEPTVENTAS GC ZEBULON LP1795934563 101 W HARPER STVRAJVIHARI LLC179593555 125 OLD CHAPIN RDCOLLADO, LLC1795933765 125 OLD CHAPIN RDCOLLADO, LLC1795933158 2939 BREEZEWOOD AVE STE 201ZEBULON GREEN ASSOCIATES LIMITED PARTNERSHIP1795930436 907 POINCIANA LNJN, PEGGY LI, JI QIU1795932665 741 MILLS STZEBULON TOWN LLC1795932043 100 NW 116TH AVEJN, PEGGY LL, JI QIU1795932265 741 MILLS STZEBULON TOWN LLC1795932265 741 MILLS STJN, PEGGY LL, JI QIU1795932265 741 MILLS STZEBULON TOWN LLC1795932265 741 MILLS STJN, PEGGY LL, JI QIU17959322665 741 MILLS STZEBULON TOWN LLC17959322665 741 MILLS STJN, PEGGY LL, JI QIU179593227 5561 MCNEELY DR STE 203JN HOSPITAL ROAD LLC1795933227 5561 MCNEELY DR STE 203SOTA, BARNARD1795931805 4544 N NEW HOPE RDCOSTA, BARNARD1795931805 4544 N NEW HOPE RD	AACK TODD RD	LNP INC	1795930080 PARRISH REALTY C/O RENEE BAKER	PO BOX 1128	ZEBULON NC 27597-1128
TIDEWATER INVESTORS I LLC1795846170 1011 W GANNON AVETIDEWATER INVESTORS I LLC1795834133 1011 W GANNON AVETIDEWATER INVESTORS I LLC1795933962 INVITATION HOMES-TAX DEPTVENTAS GC ZEBULON LP1795933565 101 W HARPER STVRAJVIHARI LLC179593555 125 OLD CHAPIN RDTHE CARRINGTON APARTMENTS LP17959337655 125 OLD CHAPIN RDCOLLADO, LLC17959335786 MARIA M COLLADO-RAMIREZZEBULON GREEN ASSOCIATES LIMITED PARTNERSHIP17959346436 907 POINCIANA LNJN, PEGGY LI, JI QIU1795932665 741 MILLS STZEBULON TOWN LLC1795932665 741 MILLS STJN, PEGGY LL, JI QIU1795932265 741 MILLS STZEBULON TOWN LLC1795932265 741 MILLS STJN, PEGGY LL, JI QIU1795932265 741 MILLS STSEBULON TOWN LLC17959322665 741 MILLS STARUKA LLC179593227 5561 MCNEELY DR STE 203301 HOSPITAL ROAD LLC17959332805 5641 MN UNDELFON DRCOSTA, BARNARD17959332865 5441 N NEW HOPE RDCOSTA, BARNARD17959332865 5441 N NEW HOPE RD	ONY RD	FAMILY DOLLAR STORES OF ZEBULON INC	1795931971 ATTN: REAL ESTATE TAX	500 VOLVO PKWY	CHESAPEAKE VA 23320-1604
TIDEWATER INVESTORS I LLC 1795844193 1011 W GANNON AVE VENTAS GC ZEBULON LP 1795938962 INVITATION HOMES-TAX DEPT VRAJVIHARI LLC 1795933565 101 W HARPER ST THE CARRINGTON APARTMENTS LP 1795933565 125 OLD CHAPIN RD COLLADO, LLC 1795933565 MARIA M COLLADO-RAMIREZ COLLADO, LLC 17959335786 MARIA M COLLADO-RAMIREZ ZEBULON GREEN ASSOCIATES LIMITED PARTNERSHIP 1795933158 2939 BREEZEWOOD AVE STE 201 COMPLIANT INVESTCO LLC 179593466 741 MILLS ST JIN, PEGGY LI, JI QIU 1795932665 741 MILLS ST ZEBULON TOWN LLC 17959322665 741 MILLS ST JIN, PEGGY LL, JI QIU 17959322665 741 MILLS ST ZEBULON TOWN LLC 1795933227 5561 MON ELC ND R JIN HOSPITAL ROAD LLC 1795933227 5561 MONEELY DR STE 203 JI HOSPITAL ROAD LLC 17959332805 5561 MONEELY DR STE 203 JOT HOSPITAL ROAD LLC 17959332805 5561 MONEELY DR STE 203	V GANNON AVE	TIDEWATER INVESTORS I LLC	1795846170 1011 W GANNON AVE	ZEBULON NC 27597-2130	
VENTAS GC ZEBULON LP17959338962 INVITATION HOMES-TAX DEPTVRAJVIHARI LLC1795945228 101 W HARPER STTHE CARRINGTON APARTMENTS LP1795837655 125 OLD CHAPIN RDCOLLADO, LLC17958337655 125 OLD CHAPIN RDCOLLADO, LLC1795933786 MARIA M COLLADO-RAMIREZZEBULON GREEN ASSOCIATES LIMITED PARTNERSHIP1795933158 2939 BREEZEWOOD AVE STE 201JN, PEGGY LI, JI QIU17959302655 741 MILLS STJN, PEGGY LI, JI QIU1795932665 741 MILLS STJN, PEGGY LL, JI QIU17959322655 741 MILLS STJN, PEGGY LL17959322655 741 MILLS STJN, PEGGY LL17959322655 741 MILLS STJN, PEGGY LLC17959322655 741 MILLS STJN, PEGGY LL17959322655 741 MILLS STJN, PEGGY LL17959322665 741 MILLS STJN, PEGGY LL17959322665 741 MILLS STJN, PEGGY LL179593227 5561 MCNEELY DR STE 203JO1 HOSPITAL ROAD LLC1795933227 5561 MCNEELY DR STE 203JO1 HOSPITAL ROAD LLC17959332865 4544 N NEW HOPE RDCOSTA, BARNARD1795931805 4544 N NEW HOPE RD	V GANNON AVE	TIDEWATER INVESTORS I LLC	1795844193 1011 W GANNON AVE	ZEBULON NC 27597-2130	
VRAJVIHARI LLC1795945228101 W HARPER STTHE CARRINGTON APARTMENTS LP1795837655125 OLD CHAPIN RDTHE CARRINGTON APARTMENTS LP17958337655125 OLD CHAPIN RDCOLLADO, LLC179583376517958331582339 BREEZEWOOD AVE STE 201ZEBULON GREEN ASSOCIATES LIMITED PARTNERSHIP1795934036907 POINCIANA LNJIN, PEGGY LI, JI QIU1795932665741 MILLS STJIN, PEGGY LI, JI QIU1795932665741 MILLS STJIN, PEGGY LL, JI QIU1795932265741 MILLS STJIN, PEGGY LL, JI QIU1795932265741 MILLS STJIN, PEGGY LL1795932275561 MCNEELY DR STE 203JOI HOSPITAL ROAD LLC17959332275561 MCNEELY DR STE 203COSTA, BARNARD17959318054544 N NEW HOPE RD	/ GANNON AVE	VENTAS GC ZEBULON LP	1795938962 INVITATION HOMES-TAX DEPT	1717 MAIN ST STE 2000	DALLAS TX 75201-4657
THE CARRINGTON APARTMENTS LP1795837655125 OLD CHAPIN RDTHE CARRINGTON APARTMENTS LP1795935786MARIA M COLLADO-RAMIREZCOLLADO, LLC17959335786MARIA M COLLADO-RAMIREZZEBULON GREEN ASSOCIATES LIMITED PARTNERSHIP17959331582339 BREEZEWOOD AVE STE 201COMPLIANT INVESTCO LLC1795940436907 POINCIANA LNJIN, PEGGY LI, JI QIU1795932665741 MILLS STJIN, PEGGY LI, JI QIU1795932665741 MILLS STJIN, PEGGY LL1795932265741 MILLS STJIN, PEGGY LL1795932275561 MCNEELY DR STE 203JOI HOSPITAL ROAD LLC17959332275561 MCNEELY DR STE 203COSTA, BARNARD17959318054544 N NEW HOPE RD	V GANNON AVE	VRAJVIHARI LLC	1795945228 101 W HARPER ST	SNOW HILL NC 28580-1323	
COLLADO, LLC1795935786MARIA M COLLADO-RAMIREZZEBULON GREEN ASSOCIATES LIMITED PARTNERSHIP17958331582339 BREEZEWOOD AVE STE 201COMPLIANT INVESTCO LLC1795940436907 POINCIANA LNJIN, PEGGY LI, JI QIU1795932665741 MILLS STJIN, PEGGY LI, JI QIU1795932665741 MILLS STJIN, PEGGY LI, JI QIU1795932265741 MILLS STJIN, PEGGY LI, JI QIU1795932265741 MILLS STJIN, PEGGY LI, JI QIU1795932275561 MONEELY DR STEJIN, PEGGY LI, JI QIU17959332275561 MONEELY DR STEZEBULON TOWN LLC17959332275561 MONEELY DR STEARUKA LLC17959332275561 MONEELY DR STEJOI HOSPITAL ROAD LLC17959338054544 N NEW HOPE RDCOSTA, BARNARD17959318054544 N NEW HOPE RD	ONY RD	THE CARRINGTON APARTMENTS LP	1795837655 125 OLD CHAPIN RD	LEXINGTON SC 29072-2005	
ZEBULON GREEN ASSOCIATES LIMITED PARTNERSHIP17958331582939 BREEZEWOOD AVE STE 201COMPLIANT INVESTCO LLC1795940436907 POINCIANA LNJIN, PEGGY LI, JI QIU1795932665741 MILLS STJIN, PEGGY LI, JI QIU17958480821080 NW 116TH AVEARUKA LLC179593024310 MIDDLETON DR301 HOSPITAL ROAD LLC17959332275561 MCNEELY DR STE 203COSTA, BARNARD17959318054544 N NEW HOPE RD	V GANNON AVE	COLLADO, LLC	1795935786 MARIA M COLLADO-RAMIREZ	7125 FALLS GLEN CT	RALEIGH NC 27614-7174
COMPLIANT INVESTCO LLC 1795940436 907 POINCIANA LN JIN, PEGGY LI, JI QIU 1795932665 741 MILLS ST ZEBULON TOWN LLC 1795848082 1080 NW 116TH AVE ARUKA LLC 1795930243 10 MIDDLETON DR 301 HOSPITAL ROAD LLC 1795933227 5561 MCNEELY DR STE 203 COSTA. BARNARD 1795931805 4544 N NEW HOPE RD	UGGINS OAK DR	ZEBULON GREEN ASSOCIATES LIMITED PARTNERSHIP	1795833158 2939 BREEZEWOOD AVE STE 201	FAYETTEVILLE NC 28303-5497	
JIN, PEGGY LI, JI QIU 1795932665 741 MILLS ST ZEBULON TOWN LLC 1795848082 1080 NW 116TH AVE ARUKA LLC 1795930243 10 MIDDLETON DR 301 HOSPITAL ROAD LLC 1795933227 5561 MCNEELY DR STE 203 COSTA, BARNARD COSTA, BARNARD 1795931805 4544 N NEW HOPE RD	V GANNON AVE	COMPLIANT INVESTCO LLC	1795940436 907 POINCIANA LN	ZEBULON NC 27597	
ZEBULON TOWN LLC 1795848082 1080 NW 116TH AVE ARUKA LLC 1795930243 10 MIDDLETON DR 301 HOSPITAL ROAD LLC 1795933227 5561 MCNEELY DR STE 203 COSTA, BARNARD 1795931805 4544 N NEW HOPE RD 00	OSPITAL RD	JIN, PEGGY LI, JI QIU	1795932665 741 MILLS ST	RALEIGH NC 27608-1827	
ARUKA LLC 1795930243 10 MIDDLETON DR . RD 301 HOSPITAL ROAD LLC 1795933227 5561 MCNEELY DR STE 203 . COSTA. BARNARD 1795931805 4544 N NEW HOPE RD	V GANNON AVE	ZEBULON TOWN LLC	1795848082 1080 NW 116TH AVE	PLANTATION FL 33323-2518	
301 HOSPITAL ROAD LLC COSTA. BARNARD 11C 1795931805 4544 N NEW HOPE RD	ONY RD	ARUKA LLC	1795930243 10 MIDDLETON DR	ZEBULON NC 27597-9246	
COSTA. BARNARD 1795931805 4544 N NEW HOPE RD	OSPITAL RD	301 HOSPITAL ROAD LLC	1795933227 5561 MCNEELY DR STE 203	RALEIGH NC 27612-7625	
	ONY RD	COSTA, BARNARD	1795931805 4544 N NEW HOPE RD	RALEIGH NC 27604-4343	

Attachment 1 RZ 2024-01

Attachment 1 RZ 2024-01

zoning_map_amendment_-_2023

Final Audit Report

Attachment 1 R2 2024-01

2023-12-11

Created:	2023-12-04
Ву:	Germano Architecture Interiors, pllc (office@germanoai.com)
Status:	Signed
Transaction ID:	CBJCHBCAABAAkuwBKOY7oZgd3wAxAlW8ObK8yYtd021V

"zoning_map_amendment_-_2023" History

- Document created by Germano Architecture Interiors, pllc (office@germanoai.com) 2023-12-04 7:12:04 PM GMT- IP address: 71.65.192.124
- Document emailed to Cyrus Stacey (6.cyrus@gmail.com) for signature 2023-12-04 7:12:12 PM GMT
- Email viewed by Cyrus Stacey (6.cyrus@gmail.com) 2023-12-04 - 7:15:46 PM GMT- IP address: 66.249.83.200
- Document e-signed by Cyrus Stacey (6.cyrus@gmail.com) Signature Date: 2023-12-04 - 7:16:16 PM GMT - Time Source: server- IP address: 76.218.234.142
- Document emailed to Michael Germano (michael@germanoai.com) for signature 2023-12-04 7:16:18 PM GMT
- Email viewed by Michael Germano (michael@germanoai.com) 2023-12-04 - 7:16:37 PM GMT- IP address: 71.65.192.124
- Document e-signed by Michael Germano (michael@germanoai.com) Signature Date: 2023-12-11 - 2:33:59 PM GMT - Time Source: server- IP address: 71.65.192.124
- Agreement completed. 2023-12-11 - 2:33:59 PM GMT

NORTH CAROLINA GENERAL WARRANTY DEED

Parcel Identifier No. 0063138	Verified by	County on the	day of	. 20
By:				
Mail/Box to: GRANTEE			· · · · · ·	
This instrument was prepared by: Kohr	Law, PLLC. 205 W. Millbrook	Road. Ste. 210, Raleigh, N	IC 27609	
Brief description for the Index: LOT	Broughton LD34 AC, Hospit	al Road,		
THIS DEED made this day	of	, 20 <u>23</u> , b	y and between	
GRANTOR Peggy Jin, unmarried, and Ji Qiu Li, unmar 741 Mills Street Raleigh, NC 27608	ried	GRA MiCy LLC a North Car 6013 Reedy Creek Roa Raleigh, NC 27607		ompany
Enter in appropriate block for each Gra corporation or partnership. The designation Grantor and Grantee as			• 0.0	
plural, masculine, feminine or neuter as WITNESSETH, that the Grantor, for a v these presents does grant, bargain, sell a situated in the City of <u>Zebul</u> North Carolina and more particularly do See Exhibit A attached hereto.	aluable consideration paid by nd convey unto the Grantee in on		n lot, parcel of land o	or condominium unit
The property hereinabove described wa All or a portion of the property herein c A map showing the above described pro	onveyed includes or _Xo operty is recorded in Plat Bool Page 1 o	does not include the prim: < page	ary residence of a Gi	rantor.
NC Bar Association Form No. 3 © 1976. Revised Printed by Agreement with the NC Bar Association		No	This standard for orth Carolina Bar Associat	m has been approved (by: ion – NC Bar Form No. 3
Submitted electronic	ally by "Kohn Law PLIC"	1		

Submitted electronically by "Kohn Law, PLLC" in compliance with North Carolina statutes governing recordable documents Page 320 and the terms of the submitter agreement with the Wake County Register of Deeds.

ABK019495PG01076

RZ 2024-01

TO HAVE AND TO HOLD the aforesaid lot or parcel of land and all privileges and appurtenances thereto belonging to the Grantee in fee simple.

And the Grantor covenants with the Grantee, that Grantor is seized of the premises in fee simple, has the right to convey the same in fee simple, that title is marketable and free and clear of all encumbrances, and that Grantor will warrant and defend the title against the lawful claims of all persons whomsoever, other than the following exceptions:

Ad valorem taxes for the current year (prorated through the date of Settlement); utility easements and unviolated covenants, conditions or restrictions that do not materially affect the value of the Property.

IN WITNESS WHEREOF, the Grantor has duly executed the foregoing as of the day and year first above written.

	(SEAL)
(Entity Name)	Print/Type Name: Peggy Jin
By:	
Print/Type Name & Title:	Print/Type(Vame: Ji Qiu Li
By:	(SEAL)
Print/Type Name & Title:	Print/Type Name:
By:	(SEAL)
Print/Type Name & Title:	Print/Type Name:

STATE OF NORTH CAROLINA

COUNTY OF WAKE

ζ

[

I, the undersigned, a Notary Public of the County and State aforesaid, do hereby certify that Peggy Jin, whose identity has been proven by sat/sfactory evidence, said evidence being:

TT I

I have personal knowledge of the identity of the principal(s);

I have seen satisfactory evidence of the principal's identity, by a current state or federal identification with the principal's photograph in the form of a ______

A credible witness has sworn to the identity of the principal(s);

personally appeared before me this day and acknowledged the execution of the foregoing instrument. And further that Peggy Jin, Attorney-In-Fact for Ji Qiu Li, personally appeared before me this day, and being first duly sworn, deposes that she executed the foregoing annexed instrument for and on behalf of Ji Qiu Li, and that her authority to execute and acknowledge the said instrument is contained in a duly executed, acknowledged and recorded Power of Attorney in the Office of the Register of Deeds of Wake County, recorded in Book <u>04644</u>, Page <u>3899</u>, Wake County Registry, and the said instrument was executed under and by virtue of the authority given by said instrument granting her Power of Attorney; and the said Peggy Jin acknowledged the due execution of the foregoing instrument for the purposes expressed therein for herself and on behalf of Ji Qiu Li.

Witness my hand and seal, this the 8th day of December, 2023. Notary Public Print Name: Howard 5-Kenn	NOTARE
My Commission Expires: 7/14/14	2 PUBLIC
[AFFIX NOTARY SEAL BELOW - NOTE THAT SEAL MUST BE \underline{FUL}	Z PUBLIC
(Official Seal)	CONTRACTION OF THE OWNER OWNER OF THE OWNER

This standard form has been approved by: North Carolina Bar Association – NC Bar Form No. 3

EXHIBIT A

BEGINNING at an iron stake in the eastern right of way line of SR 2367 (Pony Road), said iron stake being the southwestern corner of the parcel of land described by Deed recorded in Book 2218, Page 243, Wake county Registry, runs thence from said point of BEGINNING with the eastern right of way line of SR 2367 North 37 degrees 32 minutes 27 seconds East 80.79 feet to an iron stake; runs thence North 85 degrees 30 minutes East 210.98 feet to a railroad spike in the western right of way line of SR 2372 (Hospital Road), runs thence with said right of way South 04 degrees 30 minutes East 60.00 feet to a railroad spike; runs thence South 85 degrees 30 minutes West 265.08 feet to an iron stake in the eastern right of way line of SR 2367, the point and place of BEGINNING, and being all of the certain tract or parcel of land containing 0.33 acres as shown by map and survey of Turning Point Surveying PLLC dated May 15, 1997 for TRB Investments, L.L.C. Attachment 1 RZ 2024-01

Town of Zebulon

Planning Department

1003 N. Arendell Avenue, Zebulon, NC 27597 Phone: (919) 823-1810 Fax: (919) 887-2824 www.townofzebulon.org

INSTRUCTION PACKET AND AFFIDAVIT FOR NEIGHBORHOOD MEETINGS

GENERAL INFORMATION:

In accordance with Section 2.3.4 of the Unified Development Ordinance, the purpose of the neighborhood meeting is to inform landowners and occupants of nearby lands about a development application that is going to be reviewed under this Ordinance, and to provide the applicant an opportunity to hear comments and concerns about the development proposal prior to the public hearing process. The neighborhood meeting is proposed as a means of resolving potential conflicts and outstanding issues with nearby landowners, where possible, in a more informal context.

WHEN IS A NEIGHBORHOOD MEETING REQUIRED?

- Conditional Rezonings
- Planned Developments
- Site Plans in the Downtown Core or Downtown Periphery Zoning Districts
- Special Use Permits; or
- Zoning Map Amendments that establish a more dense or intense zoning district.

INSTRUCTIONS

Prior to submitting an application for the applications listed above the applicant must conduct at least one (1) Neighborhood Meeting. The applicant shall submit all forms included in this packet with the initial application submittal in accordance with Section 2.3.4 of the Town of Zebulon Unified Development Ordinance.

The Neighborhood Meeting must be held in accordance with the following rules:

- These groups and individuals must be invited to the meeting:
- The applicant is required to notify the Planning Department, all property owners within 750 feet of the subject property, and any neighborhood association that represents citizens in the area via first class mail a minimum of 10 days in advance of the neighborhood meeting, not including the day of mailing. The applicant shall use their own return address on the envelopes as the meeting is a private meeting between the applicant and the neighbors.

The applicant shall include with the meeting notice a vicinity map in addition to either the existing zoning map of the area or preliminary plans of the proposed development (see Handout requirements below).

- The meeting must be held within specific timeframes and meet certain requirements:
- The meeting must be held for a minimum of two (2) hours, Monday through Thursday, during the 5:00 p.m. 9:00 p.m. time period. The meeting cannot be held on a Town recognized holiday (which coincide with the State of North Carolina recognized holidays).
- The meeting shall be held at a place that is generally accessible to neighbors that reside in close proximity to the land subject to the application.
- A sign-in sheet must be used in order to verify attendance. Ensure each attendee signs in. Please note if any person(s) refuses to sign in. Note if no one attended.

INFORMATION PACKET FOR NEIGHBORHOOD MEETINGS

HANDOUT REQUIREMENTS:

For any process requiring a legislative or quasi-judicial hearing, preliminary plans of the proposed development must be available at the meeting to help facilitate discussion. Neighbors may request emailed/mailed copies of the maps or plans from the applicant by checking the "send plans" box on the sign-in sheet; applicant shall provide reduced copies upon request.

Printed copies must equal the number of notices required to be sent.

Contact information for the applicant's representative must be provided on the attached "Project Contact Information" form.

"Common Construction Issues & Who to Call" sheet (attached) must be included as part of the handout.

A copy of the handout must be included as part of the Neighborhood Meeting report.

The agenda of the meeting shall include:

Explanation of all processes the meeting is being held for (rezoning, subdivision, etc.).

Explanation of future meetings (additional neighborhood meetings, Planning Board, Board of Commissioners, etc.).

Explanation of development proposal – uses and conditions for rezonings, layout for subdivision and site plans, and builder/end user if known/public knowledge.

Questions or concerns by attendees, and responses by the applicant, if any, must be noted. Provide blank comment sheets or notecards for neighbors to submit written comments. The applicant shall also include any questions and concerns received via written correspondence (such as email) or phone call along with responses provided by the applicant.

The applicant shall be responsible for notifying any neighbors who check the "Send Plans & Updates" box on the sign-in sheet of any additional neighborhood meetings and the actual submittal date to the Town with a link to the Town of Zebulon's Interactive Development Map.

For accountability purposes, please submit the following with your application:

- A copy of the letter mailed to neighbors and neighborhood organizations (use attached invitation template);
- A list of those persons and neighborhood organizations invited to the meeting;
- A copy of the sign-in sheet (use attached sign-in sheet template);
- A summary of the meeting and a list of any changes made to the project as a result of the neighborhood comments (use attached meeting summary template);
- The affidavit, signed, dated, and notarized (use attached affidavit template); and
- One reduced copy of the maps and/or plans presented to the neighbors at the Neighborhood Meeting.

INFORMATION PACKET FOR NEIGHBORHOOD MEETINGS

NOTICE OF NEIGHBORHOOD MEETING

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Dear Neighbor: You are invited to a neighborhood meeting to review and discuss the development proposal at:

321 Hospital Road, Zebulon NC 27597	1795932665
(Address)	(Pin Numbers)

in accordance with the Town of Zebulon Neighborhood Meeting procedures. This meeting is intended to be a way for the applicant to discuss the project and review the proposed plans with adjacent neighbors and neighborhood organizations before the submittal of an application to the Town. This provides neighbors an opportunity to raise questions and discuss any concerns about the impacts of the project before it is officially submitted. Once an application has been submitted to the Town, it may be tracked using the Interactive Development Map located on the Town of Zebulon website at https://www.townofzebulon.org/services/planning.

A Neighborhood Meeting is requested because this project will include:

- Conditional Rezoning
 - Planned Unit Development

Site Plan within the Downtown Core or Downtown Periphery Zoning Districts

Zoning Map Amendment (results in more intensive uses or increased density)

Special Use Permit (Quasi-Judicial Hearing)

*Quasi-Judicial Hearing: The Board of Commissioners cannot discuss the project prior to the public hearing.

The following is a description of the proposed (also see attached map(s) and/or plan sheet(s)): The property is being proposed to be rezoned from Office/Institutional to General Commercial to bring the property in-line with the Town of Zebulon Future Land Use Map.

Estimated Submittal Date:

MEETING INFORMATION:

Property Owner(s) Name(s) MiCy, LLC

Applicant(s) Germano Architecture + Interiors, pllc

Contact Information (e-mail/phone) michael@germanoai.com/919.404.8085

Meeting Address: 114 N Arendell Ave. Zebulon NC 27597

Time of Meeting: 5:00pm-7:00pm

**Meetings shall occur between 5:00 p.m.-9:00 p.m. on a Monday through Thursday (excluding Town recognized holidays). If you have questions about the general process for this application, please contact the Planning Department at 919-823-1809. You may also find information about the Zebulon Planning Department and on-going planning efforts at https://www.townofzebulon.org/services/planning

INFORMATION PACKET FOR NEIGHBORHOOD MEETINGS

PROJECT CONTACT INFORMATION

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Development Contacts:	MiCy LLC	
Project Name: MiCy Rezoning		Zoning: GC
Location: 321 Hospital Rd, Zebulon N	NC 27597	
Property PIN(s): 1795932665		Acreage/Square Feet: .34 acres
Property Owner: MiCy LLC		
Address: 6013 Reedy Creek Rd		
City: Raleigh	eigh State: NC Zip: 27607	
Phone: 919.821.7477	Email: 6cyrus@gmail.com	
Developer: N/A		
Address:		
City:	State:	Zip:
Phone:	Fax:	Email:
Engineer: Architect: Germano Archite	ecture + Interiors, pllc	
Address: 106 N Arendell Ave		
City: Zebulon	State: NC	Zip: 27597
Phone: 919.404.8085	Fax:	Email: michael@germanoai.com
Builder (if known): N/A		
Address:		
City:	State:	Zip:
Phone:	Fax:	Email:

INFORMATION PACKET FOR NEIGHBORHOOD MEETINGS

PROVIDING INPUT TO THE PLANNING BOARD OR BOARD OF COMMISSIONERS:

Each Board of Commissioners meeting agenda includes a Public Forum time when anyone is permitted to speak for three (3) minutes on any topic with the exception of items listed as Public Hearings for that meeting. The Board of Commissioners meets on the 1st Monday of each month at 7:00 p.m. and Joint Public Hearings are scheduled for the 2nd Monday of every Month. (except for holidays, see schedule of meetings at <u>https://www.townofzebulon.org/agendas-minutes</u>. You may also contact Board of Commissioners at <u>https://www.townofzebulon.org/government/board-commissioners</u>.

PRIVATE AGREEMENTS AND EASEMENT NEGOTIATION:

The Town of Zebulon cannot enforce private agreements between developers and neighbors and is not a party to the easement and right-of-way negotiation that occurs between developers and neighboring property owners for easements or rights-of-way that are necessary to build the project.

It is recommended that all private agreements be made in writing and that if a property owner feels it necessary, they should obtain private legal counsel in order to protect their interests in both private agreements and during easement negotiations. The only conditions that the Town of Zebulon can enforce are those conditions that are made a part of the conditional zoning of the property by agreement of the developer and the Town. As an example, if a developer offers to build a fence for a neighbor to mitigate some impact, the Town can only enforce the construction of the fence if the fence becomes a condition of the rezoning. This would occur by the developer offering the condition as part of their conditional zoning application package or at the Joint Public Hearing on the conditional zoning and the Town accepting it as a condition. Private agreements regarding a fence being constructed will not be enforced by the Town.

To request that any agreement with a developer is made a part of the conditional zoning at the time of approval, you may ask at the public hearing if the agreement is included in the conditions. If it is not, you may request that the Board of Commissioners not approve the rezoning without the agreement being included in the conditions (note that it is up to Board of Commissioners whether to approve or deny the rezoning but they cannot impose conditions that the applicant does not agree to add). The developer's proposed conditions can be viewed any time after a rezoning is submitted on the Town of Zebulon Interactive Development Map which can be found at: https://www.townofzebulon.org/services/planning/whats-coming-zebulon.

DOCUMENTATION:

Neighbors to a requested new development and/or rezoning are strongly encouraged to fully document (such as through dated photographs) the condition of their property before any work is initiated for the new development. Stormwater controls installed on developed property are not designed to and will likely not remove 100% of the soil particles transported by stormwater runoff. As a result, creeks and ponds could become cloudy for a period of time after rain events.

INFORMATION PACKET FOR NEIGHBORHOOD MEETINGS

NEIGHBORHOOD MEETING SIGN-IN SHEET:

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

Project Name: MiCy Rezoning

Meeting Address: 114 N Arendell Ave. Zebulon NC 27597

Date of Meeting: _____ 2024

Property Owner(s) Names: MiCy, LLC

Applicants: Germano Architecture + Interiors, pllc

Please print your name below, state your address and/or affiliation with a neighborhood group, and provide your phone number and email address. Providing your name below does not represent support or opposition to the project; it is for documentation purposes only.

	Name/ Organization	Address	Phone#	E-mail
1	(Jermano Arch+Inf	100 N Aportal	910 4040,000	Manal Q 2 manageria
2	Micy	6013 Reed Creeked	919-369-2742	Le. Cyrus Qgmail.com
3	Glenndale Moore	P.O. Box 28551 Relaigh	(414) 271-5875	1
4	Shelden Blaur.	P.O. Box 28510 Relaigh 3 8 Parky R.M.	917-53838.	sz Shelow. Blair Doutles
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25	-			

Attach Additional Sheets If Necessary.

Time of Meeting: <u>5:00pm</u>

hment 1)24-01							
						TION PACK	
SUMMARY OF This document is a public reco parties. Project Name: Hos Meeting Address: H	The North International Intern	rth Carolina Public	Records Act and n	hay be published on T	the Town's v	vebsite or disclose	d to thi
Date of Meeting: Property Owner(s) Nat	• •					-	
Applicants: Mich	MU -	Germa	and Arch	itetre.	t Ind	evievs.	
Please summarize the que additional sheets, if neces should not be "Noted" or given and justification for	estions/comm ssary). Please ' "No Respons	ents and your restate if/how the se". There has to	esponse from the project has been be documentated	ne Neighborhood n modified in res	Meeting i ponse to a	n the spaces be ny concerns. T	he res
Question/ Concern #1	What	will tal	a place	at the	bu	bling?	
Applicant Response: _	Propert Spare		will pport	Use ex Import/	isting expor-	build i F busini	M 155.
Question/ Concern #2_							
Applicant Response:							
Question/ Concern #3							
Question/ Concern #3 Applicant Response:							
Applicant Response: _							

Page 7 of 8

AFFIDAVIT OF CONDUCTING A NEIGHBORHOOD MEETING, SIGN-IN SHEET AND ISSUES/RESPONSES SUBMITTAL

This document is a public record under the North Carolina Public Records Act and may be published on the Town's website or disclosed to third parties.

I.

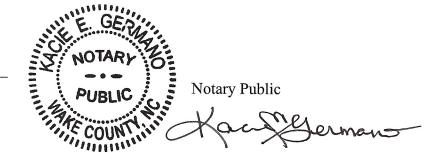
, do hereby declare as follows:

1. I have conducted a Neighborhood Meeting for the proposed Rezoning, Major Site Plan, Master Subdivision Plan, or Special Use Permit.

2. The meeting invitations were mailed to the Zebulon Planning Department, all property owners within 750 feet of the subject property and any neighborhood association that represents citizens in the area via first class mail a minimum of 10 days in advance of the Neighborhood Meeting.

3. The meeting was conducted at 14 N. ActenDate Are (location/address) on ______ (location/address) on ______ (date) from _5.00p (start time) to ______ (end time).

4. I have included the mailing list, meeting invitation, sign-in sheet, issue/response summary, and zoning map/reduced plans with the application.

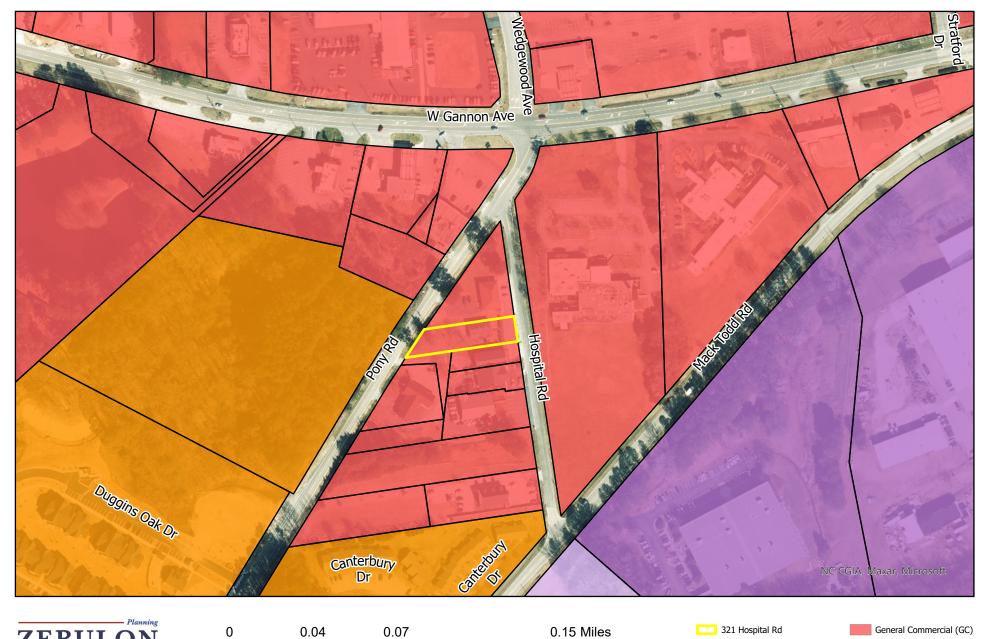

5. I have prepared these materials in good faith and to the best of my ability.

Bv:

STATE OF NORTH CAROLINA COUNTY OF WAKE

Sworn and subscribed before me, Kacie E. Germano, a Notary Public for the above State and County, on this the 3rd day of January 2023

SEAL


Print Name Kace E. Germano

My Commission Expires: 06.25.2028

```
Attachment 2
RZ 2024-01
```

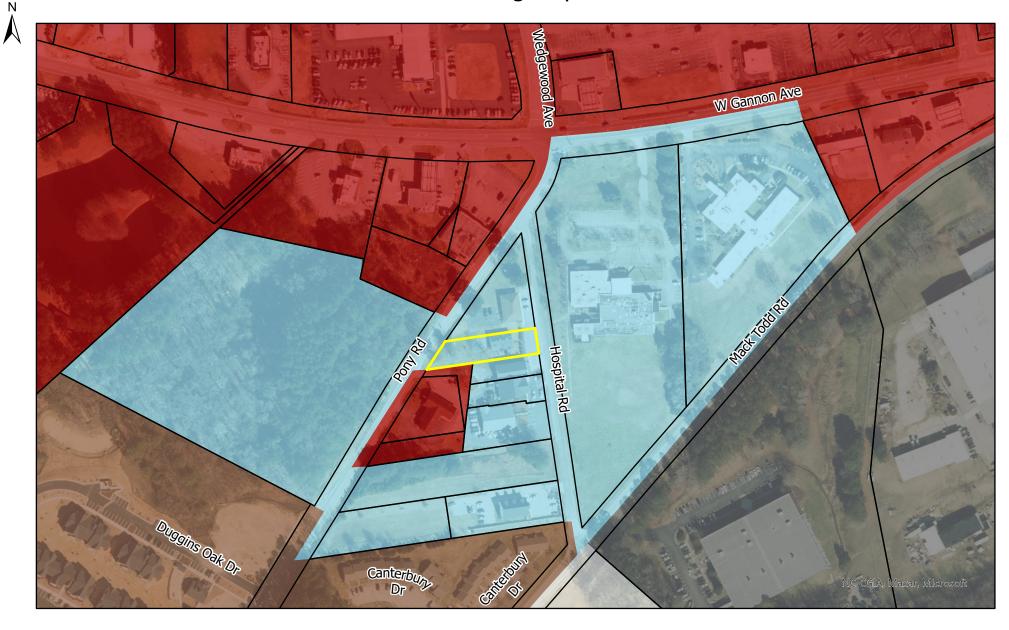
Ν

Future Land Use and Character Map

- 1

```
Attachment 3
RZ 2024-01
```

Aerial Map


0

0.15 Miles

321 Hospital Rd

Attachment 4 RZ 2024-01

Zoning Map

1

0

321 Hospital Rd HC, Heavy Commercial LI, Light Industrial Parcels Streets HI, Heavy Industrial OI, Office and Institutional **Zoning Districts** RMF, Residential Multi-Family

View of the site from Hospital Road

View of the site from Pony Road

ZEBULON

NORTH CAROLINA

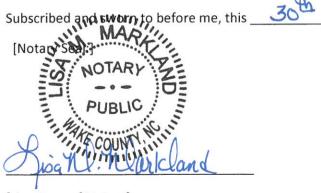
CASE # RZ 2024-01 IDT# 1195805- 321 Hospital Road

PROJECT ADDRESS 321 Hospital Road

PIN NUMBER: 1795932665

HEARING DATE: February 12, 2024

State of North Carolina


County of Wake

BEFORE ME, the undersigned Notary, Lisa M. Markland on this 30th day of <u>January</u> 20,24, personally appeared Michael J. Clark, known to me to be a credible person and of lawful age, who being by me first duly sworn, on his oath, deposes and says:

I Michael J. Clark, acting as the Planning Director for the Town of Zebulon, affirm that the following Public Notice Procedures have been completed in accordance with applicable North Carolina General Statute and Town of Zebulon Unified Development Ordinance Section 2.3.6 have been satisfied for the above referenced hearing.

- First Class Mailing Sent on 1/29/2024 (see attached mailing list and copy of mailing) •
- Advertisement in a Paper of General Circulation sent on 1/29/2024 (Wake weekly, publication . dates 2/2 & 2/9/2024)
- Posting Public Hearing Signage on Property on 1/29/2024 (pictures attached) •
- Posted to Planning Department Website 1/29/2024
- Sent to E-Mail Distribution List on 1/29/2024

Michael J. Clark, AICP, CNU-A

Lisa W. Markland

[signature of Notary]

[printed name of Notary]

day of 📐

NOTARY PUBLIC

My commission expires: 3 29 , 20**25**.

Notice of Public Hearing

Notice is hereby given pursuant to the provisions of Article 2.2.6 of the Town of Zebulon Unified Development Ordinance that a public hearing will be held on February 12, 2024 at 6:00 PM at the Zebulon Municipal Complex, 1003 N. Arendell Avenue, and will be conducted by the Board of Commissioners and Planning Board of the Town of Zebulon for the purpose of considering the following items:

IDT Project Number 886895 - PD 2024-01 – Zebulon South (751 S Wakefield St)

PIN # 2704492511, 2705512202, 2705413075. A request by Andrew Suriano of Deacon Development on behalf of property owners Harold Narron and Fred Corbett, Joseph Temple Sr and Alexander Harrison, Watson Family II LLC, for a rezoning to the Planned Development (PD) zoning district for the development of a 320 unit Planned Development.

IDT Project Number 1195805 - RZ 2024-01 - 321 Hospital Rd

PIN # 2705191832. A request by Germano Architecture and Interiors, PLLC on behalf of the property owners MiCy LLC., for a Zoning Map Amendment to the General Commercial (GC) zoning district.

Public comments may be submitted to Deputy Town Clerk Stacie Paratore at <u>SParatore@TownofZebulon.org</u> no later than 12:00 Noon on the day of the hearing to be read into the record. Links will be provided along with the full application packet and documentation on the Planning Department web page at <u>https://www.townofzebulon.org/departments/planning/public-hearing-information</u> For questions or additional information, please contact us at (919) 823-1816.

Wake Weekly February 2nd & 9th

A=Allowed (if listed in a PD mast	e4.2.3: Principal Use To the relan); P=Permitted subject to app	olicable use-specific standards;
Use Type	use permit and compliance with ap	Mixed Use
[1]	GC	OI
RES	IDENTIAL USE CLASSIFICATI	ON
Assisted Living Facility	Р	Р
Boarding/ Rooming House		S
Bungalow Court		S
Continuing Care Retirement	Р	Р
Center		·
Duplex Dwelling	S	P
Family Care Home	Р	Р
Group Home	•	S
Halfway House	•	S
Live/Work Dwelling	Р	Р
Manufactured Dwelling	•	[3]
Multi-family Dwelling	Р	Р
Pocket Neighborhood	•	Р
Nursing Home	P	Р
Single-family Attached Dwelling	Р	Р
Single-family Detached Dwelling	Р	Р
Triplex/Quadplex	Р	Р
Upper-story Residential	Р	Р
INST	TUTIONAL USE CLASSIFICAT	ION
Adult Day Care Center	Р	Р
Antenna Collocation, Major	Р	Р
Antenna Collocation, Minor	Р	Р
Arboretum or Formal Garden	Р	Р
Auditorium	Р	Р
Blood/Tissue Collection	•	S
Broadcasting Studio	Р	
Cemetery, Columbarium, or Mausoleum	S	S
Child Day Care Center	Р	Р
Child Day Care, Drop In	Р	Р
College or University	S	Р
Community/Youth/ Senior Center	Р	Р
Cultural Facility, Library, or Museum	Р	Р
Drug/Alcohol Treatment Facility	S	Р

A=Allowed (if listed in a PD mas	4.2.3: Principal Use T ter plan); P=Permitted subject to application of the plan of the permit and compliance with application of the permit application of the perm	plicable use-specific standards;
Use Type	Commercial	Mixed Use
[1]	GC	OI
Fire/EMS/Police Station	Р	Р
Fraternal Club or Lodge	Р	Р
Government Office	Р	Р
Helicopter Landing Pad		S
Hospital		S
Indoor Private Recreation	Р	Р
Outdoor Private Recreation	Р	Р
Park (public or private)	Р	Р
Passenger Terminal	Р	Р
Post Office	Р	Р
Psychiatric Treatment Facility		S
Religious Institution	Р	Р
School, Elementary	Р	Р
School, High/Middle	Р	Р
School, Vocational		Р
Small Wireless Facility	Р	Р
Telecommunications Tower, Minor or Concealed	S	S
Temporary Wireless Facility	Р	Р
Urgent Care Facility	Р	Р
Utility, Major	Р	Р
Utility, Minor	Р	Р
CON	MERCIAL USE CLASSIFICATI	ON
Animal Day Care / Grooming	Р	
Art Gallery	Р	Р
Artisan Studio	Р	Р
Auction House	Р	
Automotive Repair and Servicing (without painting/ bodywork)	Р	
Automotive Sales and Rentals	Р	
Automotive Parts and Accessories Sales	Р	a de la companya de l
Bar, Cocktail Lounge, or Private Club	S	
Bed and Breakfast	Р	Р
Boat and Marine Rental, Sales, and Service	Р	

Table4 A=Allowed (if listed in a PD master S=Requires approval of a special us		licable use-specific standards;
Use Type	Commercial	Mixed Use
[1]	GC	OI
Bottle Shop (with on premise consumption)	S	• • • • • •
Business Incubator	Р	Р
Campground	Р	
Car Wash or Automobile Detailing	Р	
Catering Establishment	Р	•
Check Cashing/Payday Lending Establishment	S	
Clothing Rental	Р	
Coffee Shop	Р	Р
Commercial Recreation, Indoor	Р	•
Computer-Related Services	Р	• • • • • • • • • • • • • • • • • • •
Convenience Store (no gasoline sales)	Р	
Convenience Store (with gasoline sales)	Р	
Co-Working Space	Р	Р
Event Venue	Р	
Financial Services Establishment	Р	Р
Funeral-Related Services	S	
Games of Skill	S	
Grocery Store	Р	• •
Gymnasium/ Fitness Center	Р	Р
Hair, Nails, and Skin-Related Services	Р	Р
Hotel or Motel	Р	• • • • • • • • • • • • • • • • • • •
Laundry or Cleaning Service	Р	
Microbrewery, Microwinery, or Microdistillery	Р	
Nightclub or Dance Hall	Р	
Office, Medical	Р	Р
Office, Professional	Р	Р
Office, Sales or Service	Р	Р
Package and Printing Service	Р	Р
Park and Ride Facility	Р	Р
Parking Lot	Р	Р
Parking Structure	Р	Р

ercial Mixed Use C Ol S S
S
S .
· · · · · · · · · · · · · · · · · · ·
Р
Р
Р
· · · · · ·
· · · · ·
· · · ·
· · · ·
S
· · · ·
· · · · · · · · · · · · · · · · · · ·
LASSIFICATION
S
CLASSIFICATION
÷.

[2] Uses are defined in Article 9, Measurement and Definitions.

[3] Manufactured housing is only permitted on lots in the manufactured home overlay district.